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Genome sequencing of single cells has a variety of applications, 

including characterizing difficult-to-culture microorganisms and identifying 

somatic mutations in single cells from mammalian tissues. A major hurdle in 
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this process is the bias in amplifying the genetic material from a single cell, a 

procedure known as polymerase cloning. Here we describe the microwell 

displacement amplification system (MIDAS), a massively parallel polymerase 

cloning method in which single cells are randomly distributed into hundreds to 

thousands of nanoliter wells and simultaneously amplified via multiple 

displacement amplification for shotgun sequencing. MIDAS reduces 

amplification bias because polymerase cloning occurs in physically separated 

nanoliter-scale reactors, thus increasing the template concentration by 

reducing the reaction volume.   

MIDAS is first applied to single E. coli cells, facilitating the de novo 

assembly of near-complete microbial genomes to unprecedented levels. In 

addition, MIDAS allowed us to detect single-copy number changes in primary 

human adult neurons at 1–2 Mb resolution, resolutions not possible with 

standard whole genome amplification. MIDAS will further the characterization 

of genomic diversity in many heterogeneous cell populations. 
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Chapter 1: Introduction 
 

1.1:  Next Generation Sequencing 
	
  

Over the last six years, the cost of sequencing has dropped 

precipitously, at a rate orders of magnitude greater than Moore’s law1.  In 

addition to a cost reduction, next generation sequencing allows for hundreds 

of millions of molecules to be accurately sequenced in parallel.  Thus, an 

entire human genome can be sequenced at high depth in less than 2 weeks, a 

vast improvement from the original, Sanger sequenced human genome2.  

Commercialization of high throughput sequencers by companies such as 

Illumina and 454 have given scientists the opportunity to analyze enormous 

amounts of sequencing data.  Specifically, the Illumina HiSeq can generate 

over 600 billion bases of sequencing data in a single run3. 

Due to the ease of which sequencing data can be obtained and the 

subsequent assembly of numerous genomes from various organisms, 

researchers have begun to study genomic complexities, such as point 

mutations4, epigenetics5, and copy number variations on bulk populations of 

cells6.  More recently, scientists have noticed that cells exist in heterogeneous 

populations.  An obvious example is cancer7.  Cancer cells have distinct 

genomes from healthy cells of the same organism, and scientists continue to 

decipher these ever changing genomes.  However, non-cancerous single cells
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from the same tissue of an individual mammal could also possess varying 

genomes, and these individual cells are just now being studied8.  Additionally, 

many bacteria live in heterogeneous populations, making it impossible to 

sequence a single organism9.  Important questions remain regarding the 

genomes of individual cells.  As will be described later in this chapter, 

technology is now becoming available to help decipher single cell genomes. 

 

1.2:  Single Cell Isolation 
	
  

Isolation of single cells cleanly has paramount importance for single cell 

sequencing.  Single cells must be physically separated and contained without 

cell free contamination.  The technology for isolating single cells has greatly 

improved the throughput in recent years.  

Originally, cells were separated through simple dilutions9.  One can 

assume that cells seed according to the Poisson Distribution: 

 

 

 

where λ is the expected value, k is the desired number, and e is the base of 

the natural logarithm.  Thus, if cells are diluted in PCR tubes such that there is 

one cell for every ten tubes, about 99.5% of the tubes will contain either zero 

or one cell.  Although a large percentage of tubes will have zero cells (90.5%), 

this dilution essentially ensures that there will be no more that one cell in every 

! 
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tube.  This method results in very low throughput isolation. To improve upon 

isolation efficiency, scientists began to use micromanipulation to physically 

pipette single cells into individual PCR tubes10.  Thus, upon proper 

micromanipulation, every tube is guaranteed to have a single cell.  This 

process, however, is completely manual and very tedious.  Another manual, 

laborious process includes laser microdissection of single cells from tissues11. 

 Fluorescent activated cell sorting (FACS) proved to be a major 

improvement for cell isolation12.  Cells can be loaded into a FACS machine, 

and quickly sorted into a 96 or 384 well plate such that each tube has only a 

single cell.  This technique continues to be commonly used as thousands of 

cells can be sorted in less than one hour.  Although FACS sorting greatly 

increases the throughput of single cell isolation, technical challenges still exist.  

FACS machines are expensive and bulky, making it difficult for smaller labs to 

maintain their own machines.  Furthermore, contamination of cell free DNA 

abounds in FACS machines.  Thus, they must be prepped and cleaned for 

several hours prior to usage.  This fact also makes the use of a communal 

FACS machine very difficult, if not impossible. 

 Perhaps one of the best methods for single cell isolation is the use of 

microfluidic devices13-16.  The advent of releasable microvalves allows for the 

physical isolation of cells.  These devices can be made in a microfabrication 

facility at low cost, and are about the size of a standard microscope slide.  

Furthermore, they are disposable so cell free contamination is less of an issue.  

These devices can use simple diffusion, pressure activated flows, or optical 
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tweezers to isolate cells into small chambers for further processing. However, 

these devices require special equipment to run.  Additionally, not everyone 

has access to microfabrication facilities to design these devices. 

 

1.3:  Single Cell Amplification 
	
  

For next generation sequencing, generally micrograms of DNA are 

required as input17.  Although not an issue for bulk sequencing as often the 

DNA from millions of cells is used as input, obtaining this amount of DNA 

poses a large problem for single cell sequencing.  The amount of DNA from a 

single cell ranges from 5 femtograms for a single bacterium, to 5 picograms for 

a single mammalian cell.  These cells often cannot be cultured to obtain 

millions of clonal duplicates for sequencing.  Thus, they must be efficiently and 

uniformly amplified in a process call whole genome amplification, or WGA9, 12, 

13, 15, 18, 19.  Although PCR based WGA methods exist, the most common WGA 

is multiple displacement amplification, or MDA20.  In this method, cells are first 

lysed and the DNA is denatured.  Then, random hexamer primers anneal 

completely stochastically to different regions of the single stranded DNA.  

Phi29 polymerase, which has a very long processivity and a very high strand 

displacement activity, then polymerizes the second strand from each random 

hexamer.  When the polymerase reaches a downstream primer, it displaces 

the strand.  This process continues on the displaced strands resulting in 
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exponential amplification.  The final product is a condensed, hyberbranching 

structure12. 

The major advantages to MDA are the long processivity and ability to 

displace strands with high efficiency.  This results in long, continuous strands 

up to 12 kilobases in length.  Additionally, the process occurs isothermally at 

30 C so thermocycling is not necessary.  These properties make it a far better 

choice to PCR for single cell WGA9. 

Two major disadvantages of MDA have plagued researchers for over 

ten years, and have prevented significant advancements in single cell 

genomics.  The first major disadvantage is cell free and environmental 

contamination.  Since the mechanism relies on random priming, the hexamers 

can anneal just as easily to the target template as it can to contaminating 

DNA.  Often from the dust or the environment, cell free DNA can effortlessly 

float into any given reaction9.  To complicate matters further, the template 

DNA mass from single cells is often several orders of magnitude less than the 

mass of contaminating DNA.  After exponential amplification, the 

contaminating DNA will dominate the amplicon product.  Thus, great care must 

be taken when preparing any MDA reaction.  Using ultraviolet radiation on 

reagents and cleaning equipment with ethanol and other chemicals is 

necessary prior to any reaction9, 12, 13, 15, 18, 19. 

The second major disadvantage of MDA is the biased amplification of 

the template genome12.  Again, the reaction relies on random hexamers 

annealing completely stochastically to the template.  The annealing of primers, 
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however, does not occur in a uniform and timely manner.  For example, at 

time t=0, primers can anneal to a certain region of the template which begins 

to exponentially amplify.  This region will exist in a much higher concentration 

than another region where primers begin to anneal at time t=1 hour, and even 

more so than a region where primers anneal at time t=5 hours.  Thus, certain 

regions of the template might have >1000x coverage, where other regions will 

have virtually no coverage.  This makes downstream analyses, such as 

genome assembly and CNV calling, extremely difficult7, 9, 12.  Therefore, many 

single cell sequencing applications have been limited up until very recently. 

The technology of WGA has improved significantly over the past 10 

years to account for cell free contamination and amplification bias.  Originally, 

through the use of dilutions in a clean and controlled environment, the amount 

of contamination was limited to sub femtogram levels.  This allowed, for the 

first time, the sequencing and assembly of a single bacterial cell.  The bias 

was still significant, allowing for only 60% of the genome to be accurately 

assembled9.  With the implementation of clean FACS sorting, cell free DNA 

contamination could be removed from the samples, again greatly improving 

the contamination rates.  Since this was still just an improvement on isolation, 

the bias during amplification remained relatively high12.  To improve upon the 

bias, small volume reactions were implemented.  This increased the 

concentration of the template, allowing for more uniform annealing of the 

primers in the initial stages of MDA21.  Microfluidics resulted in easy 

implementation of small volumes.  The amplicon mass was still too small for 
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sequencing due to the minimal reagents, so the amplicon was reamplified in a 

PCR tube. For the first time, bias was significantly reduced, though still too 

high to produce draft quality assemblies13-16. 

Most recently, a non-MDA based WGA technique, known as MALBAC, 

was implemented, reducing amplification bias to unprecedented levels22, 23.  

This reaction uses several rounds of linear amplification in the initial stages to 

increase the genomic copy number.  After the initial amplification, PCR is used 

to amplify the DNA to microgram levels. The linear amplification still relies on 

random priming, so small biases still exist.  Furthermore, the enzymes used 

are error prone, which creates false positive mutations.  Despite these small 

drawbacks, MALBAC proved a strong alternative to MDA for whole genome 

amplification. 

 

1.4:  Library Construction 
	
  

In order to sequence any given DNA template, a sequencing library 

must be constructed. Illumina sequencers can only sequence up to 150 base 

pairs per molecule3.  Thus, the template DNA must be fragmented to 200-800 

base pair fragments prior to sequencing.  Furthermore, template DNA For 

Illumina sequencers, the template must anneal to oligonucleotides attached to 

a flow cell.  Consequently, Illumina adapters must be present on the ends of 

each template molecule. The process of fragmenting template DNA and 

adding adapters is referred to as Illumina library construction. 
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Classically, template DNA is sheared using a Covaris machine to 

produce high-energy waves to fragment the DNA to a very tight size range.  

After end repair, A-tailing, and adapter ligation, PCR is used to amplify each 

individual molecule prior to sequencing.  Prior to each step, purification is 

necessary, resulting in the compounding loss in template DNA.  Therefore, 

micrograms of DNA prior to shearing are necessary to properly construct a 

library.  

More recently, a library construction technique based on random 

transposition was developed.  Called Nextera, complex transposase 

molecules with Illumina adapters attached randomly insert into and fragment 

template DNA24, 25.  The results of this reaction are template molecules, 

ranging in size from 200-1000 bp, each with attached Illumina adapters.  After 

the transposases are inactivated, PCR can be directly performed on the 

molecules to create a sequencing library without any purification steps. 

Although originally created to create sequencing libraries from 50-200 

nanograms of genomic DNA, researchers have use Nextera to generate 

libraries with as little as 10 picograms of DNA.  Thus, Nextera proves a great 

alternative for classical library construction when only small template masses 

are available, such as those derived from small volume whole genome 

amplification24. 
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1.5: De Novo Assembly of Microbial Genomes from Single Cells 
	
  

As previously mentioned, many bacteria coexist in heterogeneous 

populations.  Prominent examples include sea-water26, soil27, and the human 

microbiome28.  Less than one percent of bacteria have been sequenced and 

analyzed, namely because they are unculturable29-32.  Scientists do not know 

exactly the types of environments that these bacteria can grow in or the 

nutrients that they feed on.  Moreover, many of these bacteria require 

symbiotic relationships with differing bacteria to grow.  Thus, the only clear 

way to genomically analyze these bacteria is through the use of single cell 

amplification and sequencing. 

Previously, researchers have studied environmentally heterogeneous 

bacteria through metagenomics and 16S rRNA sequencing33, 34.  This involves 

taking an environmental sample, lysing, creating a sequencing library, and 

sequencing.  Accordingly, the DNA from every organism will be analyzed, and 

generally resolved down to a phylum taxonomic level.  Specific species of 

bacteria cannot be determined, though recently updated algorithms can 

separate species in low complexity environments35. The16S rRNA gene is 

universal in bacteria. By PCR amplifying and sequencing this gene, phyla can 

also be determined. 

Many of the unculturable bacteria could prove important in various 

applications.  Those from seawater or soil could possible be used in chemical 

processing or alternative forms of energy33.  However, those most interesting 

lie in the gut of humans36-39.These can have a direct impact on metabolism.  
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Recently, scientists have shown through metagenomics that overall 

populations of bacteria in lean and obese identical twins are completely 

different.  By feeding the bacteria from the lean twin to mice, the mice 

remained lean.  On the other hand, mice fed bacteria from the obese twin 

became obese40.  These important studies demonstrate the importance of the 

human microbiome with regards to metabolism.  However, scientists still do 

not know exactly which genes or bacteria cause the varying metabolic rates. 

With the implementation of single cell amplification and sequencing on 

bacteria, new assembly algorithms were created to account for the large 

amounts of biases in the sequencing data.  Specifically, Velvet-SC10 and 

SPAdes41 were designed specifically for de novo assembly of single cell 

genomes. Both algorithms correct for chimeric reads created during MDA. 

Velvet-SC relies on De Brujin graphs for assembly.  These are optimal for the 

short reads length generated from Illumina sequencers.  It also uses a sliding 

minimum coverage cutoff, such that regions of low coverage can still be 

incorporated into the assembly.  Thus, up to 70% of the genomes can be 

assembled.  SPAdes relies on paired De Brujin graphs, and stitches together 

many assemblies into scaffolds.  It also uses an initial error correction step to 

remove low quality reads prior to assemblies, and so misassemblies are 

minimized.  Therefore, SPAdes shows improved results compared to Velvet-

SC.  
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1.6: Copy Number Variation 
	
  

Copy number variation (CNV) refers to the change in copy number of 

specific genes or regions.  These can be as large as a chromosome and as 

small as part of a single gene. One of the most well known CNVs is trisomy 

21, where chromosome 21 has 3 copies instead of 2, in Down’s Syndrome 

patients.  Many smaller germline CNVs, often found in bulk sequencing 

samples, have been characterized using both microarrays and sequencing7, 42.  

Recently, researchers have begun to analyze CNVs from single cancer 

cells7, 42.  Cancer cells often exhibit very large CNVs in terms of size and are 

often much more than a single copy number gain or loss43. Additionally, each 

cancer cell from a given tumor generally has a unique CNV profile, displaying 

the need for single cell CNV analysis.  With amplification using both MDA and 

MALBAC, scientists have discovered distinctive CNVs22. 

As with de novo assembly, complex algorithms were developed to 

accurately call CNVs in single cells.  One such algorithm was developed by 

the Cold Spring Harbor Labarotory42.  After sequencing, unique reads are 

binned into previously well-defined bins approximately 60 kilobases in size.  

The bins were chosen to remove mapping biases.  After Lowess smoothing 

based on GC content, copy numbers are called using circular binary 

segmentation.  This algorithm is the most widely used CNV calling algorithm.  

Another algorithm has been developed which is based on a Hidden Markov 

Model22.  By comparing a cancerous cell to a healthy cell, the algorithm 
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removes background noise and calls unique CNVs.  Sequencing data from a 

healthy cell are necessary for this algorithm to work properly. 

In addition to cancer cells, CNVs have recently been called on single 

neurons from the same brain.  Higher cognitive functions of the complex 

require a complex network of neurons.  New evidence has shown that neurons 

contain non-identical genomes, and the DNA content can vary up to 10% in 

between neurons from the same brain based on FACS fluorescent 

quantification.  Diseased neurons, such as those from Alzheimer’s patients, 

display even great variations44-50.  Unlike CNVs in tumor cells, CNVs in 

neurons are small in size and amplitude, often a single copy number gain or 

loss.  Accordingly, these CNVs are more difficult to accurately characterize 

than larger CNVs.  Due to biased whole genome amplification techniques, 

convincingly calling small CNVs has become a major hurdle. Nonetheless, this 

has become a hot topic in genomics, and could possibly elucidate several 

neurological disorders. 

 

1.7:  Scope of the Dissertation 
	
  

The purpose of this dissertation was to develop a technique to 

unbiasedly amplify whole genomes of single cells.  Additionally, we wanted to 

amplify many cells in parallel to decrease costs and increase throughput. 

In Chapter 2, we describe the technology development portion of the 

dissertation, which is named the Microwell Displacement Amplification 
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System, or MIDAS.  We describe the design and implementation of a 

microwell array consisting of thousands of nanoliter microwells.  We also 

demonstrate extraction using micromanipulators followed by an adapted low 

input library construction technique.  Finally, we show that the bias level of 

amplicons using MIDAS is far less than any previously published technique. 

In chapter 3, we apply MIDAS to single E. coli cells for de novo 

assembly.  We show that due to the low amount of bias, over 90% of the 

genome can be accurately assembled, close to 50% more assembly than 

previously published data.  We then demonstrate that sequencing to a high 

depth can possibly result in even more assembled genome. 

Lastly, in chapter 4, we apply MIDAS to single neuronal nuclei. First, we 

demonstrate that trisomy 21 can accurately be called using MIDAS, where it 

cannot using standard MDA. We then show that CNVs can be accurately 

called at the one megabase level using a computational spike in method, an 

unprecedented level from single cell amplicons.  Furthermore, we present data 

that many CNVs overlap between single neuronal nuclei.  
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Chapter 2:  A Technique for Generating 

Unbiased Whole Genome Amplification 

Sequencing Libraries from Single Cells 

2.1:  Abstract 
	
  

We describe a method to uniformly amplify whole genomes of single 

cells and generate low input sequencing libraries.  Single cell amplification 

occurs in nanoliter volume microwells, which increase the concentration of the 

template such that primer annealing can occur evenly.  After extracting with a 

micromanipulator, low input sequencing libraries are generated with sub 

nanogram inputs.  Finally, we show that this amplification method is superior 

to previously published methods in terms of reducing amplification bias. 

 

2.2:  Introduction 
	
  

Amplification bias has proved to be the most challenging obstacle to 

overcome in single cell whole genome amplification.  During multiple 

displacement amplification (MDA), random hexamer primers anneal to the 

template genome.  This annealing is not completely stochastic, and due to 

exponential amplification, certain regions of the genome become
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overrepresented in the respective sequencing library20.  The bias causes great 

difficulty in many downstream analyses, such as de novo assembly and copy 

number variation calling. 

 Over the past several years, researchers have attempted to reduce 

amplification biases.  One such technique includes double stranded nuclease 

normalization12.  After amplification, amplicons are denatured and slowly 

reannealed.  After a double stranded nuclease treatment, the overrepresented 

regions are degraded, resulting in a more uniform library.  Furthermore, 

supplementing the reactions with single stranded binding proteins has been 

used to diminish biases19, 51. Another technique to minimize bias is reducing 

the amplification volume14, 21.  The template concentration is subsequently 

increased, improving the primer annealing efficiency.  Although bias is 

reduced, this technique typically does not produce enough amplicon mass for 

standard Illumina library construction.  A third technique employed to curtail 

bias is using pseudo-linear amplification with the MALBAC method22, 23.  The 

initial linear amplification increases the genome copy number, such that the 

subsequent exponential amplification occurs more uniformly.  MALBAC has 

resulted vast improvements in single cell genomics. 

 As described previously, most Illumina sequencing libraries require 

micrograms of input DNA for proper construction.  Because low volume 

amplifications often result in nanogram level amplicons, classical library 

construction remains unfeasible.  With the advent of Nextera transposase 

based library construction, input DNA mass has decreased significantly.  
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Libraries can be prepared with as little as 10 picograms of DNA, making 

possible the use of small volume amplifications24, 25. 

 In this chapter, we describe a microwell array device that can amplify 

hundreds of cells in parallel.  The device, the size of a microscope slide, has 

16 arrays of 255 nanoliter scale microwells.  After random cell seeding, 

amplification can be seen in real time using an incubated microscope.  

Positive wells can then be extracted using a micromanipulator with fine glass 

pipettes, followed by low input library construction using Nextera tagmentation.  

The resulting libraries are then compared to other single cell amplification 

methods in addition to bulk libraries, and the bias proves minimal.   

 

2.3 Methods 
	
  

2.3.1 Microwell Array Fabrication 
	
  
 Microwell arrays were fabricated from polydimethylsiloxane (PDMS). 

Each array was 7 mm x 7 mm, with 2 rows of 8 arrays per slide and 255 

microwells per array.  The individual microwells were 400 µm in diameter and 

100 µm deep (~12 nL volume), and were arranged in honeycomb patterns in 

order to minimize space in between the wells. To fabricate the arrays, first, an 

SU-8 mold was created using soft lithography at the Nano3 facility at UC San 

Diego. Next, a 10:1 ratio of polymer to curing agent mixture of PDMS was 

poured over the mold.  Finally, the PDMS was degassed and cured for 3 hours 

at 65 oC. 
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2.3.2 Cell Seeding, Lysis, and Multiple Displacement 
Amplification 

	
  
 All reagents not containing DNA or enzymes were first exposed to 

ultraviolet light for 10 minutes prior to use.  The PDMS slides were treated with 

oxygen plasma to make them hydrophilic and ensure random cell seeding. 

The slides were then treated with 1% bovine serum albumin (BSA) (EMD 

Chemicals, Billerica, MA) in phosphate buffered saline (PBS) (Gibco, Grand 

Island, NY) for 30 minutes and washed 3x with PBS to prevent DNA from 

sticking to the PDMS.  The slides were completely dried in a vacuum prior to 

cell seeding. Cells were diluted in 1x PBS to a concentration of 0.1 cells per 

well per array, and 3 µL of cell dilution was added to each array.  This dilution 

ensures that approximately 99.5% of the wells have no more than one cell.  

Initially, to verify that cell seeding adhered to the Poisson distribution, 

cells were stained with 1x SYBR green and viewed under a fluorescent 

microscope.  Proper cell distribution was further confirmed with SEM imaging.  

For SEM imaging, chromium was sputtered onto the seeded cells for 6 

seconds to increase conductivity.  Note that the imaging of cell seeding was 

only used to confirm the theoretical Poisson distribution and not performed 

during actual amplification and sequencing experiments due to the potential 

introduction of contamination.  

After seeding, cells were left to settle into the wells for 10 minutes. The 

seeded cells were then lysed either with 300 U ReadyLyse lysozyme at 100 
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U/µL (Epicentre, Madison, WI) and incubation at room temperature for 10 

minutes, or with five 1 minute freeze/thaw cycles using a dry ice brick and 

room temperature in a laminar flow hood.  After lysis, 4.5 µL of alkaline lysis 

(ALS) buffer (400 mM KOH, 100 mM DTT, 10 mM EDTA) was added to each 

array and incubated on ice for 10 minutes.  Then, 4.5 µL of neutralizing (NS) 

buffer (666 mM Tris-HCl, 250 mM HCL) was added to each array.  11.2 µL of 

MDA master mix (1x buffer, 0.2x SYBR green I, 1 mM dNTP’s, 50 µM thiolated 

random hexamer primer, 8U phi29 polymerase, Epicentre, Madison, WI) was 

added and the arrays were then covered with mineral oil.  The slides were 

then transferred to the microscope stage enclosed in a custom temperature 

controlled incubator set to 30 oC.  Images were taken at 30-minute intervals for 

10 hours using a 488 nm filter.   

 

2.3.4 Image Analysis 
	
  

Images were analyzed with a custom Matlab script to subtract 

background fluorescence.  Because SYBR Green I was added to the MDA 

master mix, fluorescence under a 488 nm filter was expected to increase over 

time for positive amplifications. If a digital profile of fluorescent wells with 

increasing fluorescence over time was observed (approximately 10-20 wells 

per array), the array was kept.  If no wells fluoresced, amplification failed and 

further experiments were stopped.  Alternatively, if a majority of the wells 

fluoresced, the array was considered to have exogenous contamination from 
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environmental DNA and subsequent analysis was similarly stopped.  If 2 

abutting wells fluoresced, neither was extracted due to the higher likelihood of 

more than one cell in each well existing (as in this case, seeding was 

potentially non-uniform).  Finally, only wells with amplicons originating from a 

single point were extracted, ensuring that only single-cell derived amplicons 

were processed; thus, any potential cross-well contamination was prevented. 

 

2.3.5 Amplicon Extraction 
	
  

1 mm outer diameter glass pipettes (Sutter, Novato, CA) were pulled to 

~30 µm diameters, bent to a 45 degree angle under heat, coated with 

SigmaCote (Sigma, St. Louis, MO), and washed 3 times with dH20.  Wells with 

positive amplification were identified using the custom Matlab script described 

above. A digital micromanipulation system (Sutter, Novato, CA) was used for 

amplicon extraction.  The glass pipette was loaded into the micromanipulator 

and moved over the well of interest.  The microscope filter was switched to 

bright field and the pipette was lowered into the well.  Negative pressure was 

slowly applied, and the well contents were visualized proceeding into the 

pipette.  The filter was then switched back to 488 nm to ensure the well no 

longer contained any fluorescent material.  Amplicons were deposited in 1 µL 

dH20. 
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2.3.5 Amplicon Quantification 
	
  

For	
  quantification	
  of	
  microwell	
  amplification,	
  0.5	
  μL	
  of	
  amplicon	
  was	
  

amplified	
  a	
  second	
  time	
  using	
  MDA	
  in	
  a	
  20	
  μL	
  PCR	
  tube reaction (1x buffer, 0.2x 

SYBR green I, 1 mM dNTP’s, 50 mM thiolated random hexamer primer, 8U 

phi29 polymerase).  After purification using Ampure XP beads (Beckman 

Coulter, Brea, CA), the 2nd round amplicon was quantified using a Nanodrop 

spectrophotometer.  The 2nd round amplicon was then diluted to 1 ng, 100 pg, 

10 pg, 1 pg, and 100 fg to create an amplicon ladder.  Subsequently, the	
  

remaining	
  0.5	
  μL	
  of	
  the	
  1st round amplicon was amplified using MDA along with 

the amplicon ladder in a quantitative PCR machine.  The samples were 

allowed to amplify to completion, and the time required for each to reach 0.5x 

of the maximum fluorescence was extracted.  The original amplicon 

concentration could then be interpolated.  This 2nd round of MDA was only 

performed during amplicon quantification in order to determine approximately 

how much DNA was produced in each microwell.  Amplicons that were 

sequenced were only subjected to the initial round of MDA, and thus did not 

have any secondary MDA or quantification performed.  

 

2.3.6 Low Input Library Construction 
	
  

1.5 µL of ALS buffer was added to the extracted amplicons to denature 

the DNA followed by a 3-minute incubation at room temperature. 1.5 µL of NS 

buffer was added on ice to neutralize the solution.  10 U of DNA Polymerase I 
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(Invitrogen, Carlsbad, CA) was added to the denatured amplicons along with 

250 nanograms of unmodified random hexamer primer, 1 mM dNTPs, 1x 

Ampligase buffer (Epicentre, Madison, Wi), and 1x NEB buffer 2 (NEB, 

Cambridge, MA). The solution was incubated at 37 oC for 1 hour, allowing 

second strand synthesis.  1 U of Ampligase was added to seal nicks and the 

reaction was incubated first at 37 oC for 10 minutes and then at 65 oC for 10 

minutes.  The reaction was cleaned using standard ethanol precipitation and 

eluted in 4 µL water. 

Nextera transposase enzymes (Epicentre, Madison, WI) were diluted 

100 fold in 1x TE buffer and glycerol.  10 µL transposase reactions were then 

conducted on the eluted amplicons after addition of 1 µL of the diluted 

enzymes and 1x tagment DNA buffer.  The reactions were incubated for 5 

minutes at 55 oC for mammalian cells and 1 minute at 55 oC for bacterial cells.  

0.05 U of protease (Qiagen, Hilden, Germany) was added to each sample to 

inactivate the transposase enzymes; the protease reactions were incubated at 

50 oC for 10 minutes followed by 65 oC for 20 minutes.  5 U Exo minus Klenow 

(Epicentre, Madison, WI) and 1 mM dNTP’s were added and incubated at 37 

oC for 15 minutes followed by 65 oC for 20 minutes. Two stage quantitative 

PCR using 1x KAPA Robust 2G master mix (Kapa Biosystems, Woburn, MA), 

10 µM Adapter 1, 10 µM barcoded Adapter 2 in the first stage, and 1x KAPA 

Robust 2G master mix, 10 µM Illumina primer 1, 10 µM Illumina primer 2, and 

0.4x SYBR Green I in the second stage was performed and the reaction was 

stopped before amplification curves reached their plateaus.  The reactions 
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were then cleaned up using Ampure XP beads in a 1:1 ratio.   A 6% PAGE gel 

verified successful tagmentation reactions. 

 

2.3.7 Bulk Library Construction 
	
  

Genomic DNA was extracted from approximately 4,000 neuronal nuclei 

using the DNeasy blood and tissue kit (Qiagen, Hilden, Germany).  The 

genomic DNA was incubated with 1 µL undiluted Nextera transposase 

enzymes and 1x tagment DNA buffer for 5 minutes at 55 oC.  The reactions 

were cleaned with MinElute columns (Qiagen, Hilden, Germany) and eluted in 

20 µL water.  5 U Exo minus Klenow (Epicentre, Madison, WI) and 1 mM 

dNTP’s were added and incubated at 37 oC for 15 minutes followed by 65 oC 

for 20 minutes. Two stage quantitative PCR using 1x KAPA Robust 2G master 

mix (Kapa Biosystems, Woburn, MA), 10 µM Adapter 1, 10 µM barcoded 

Adapter 2 in the first stage, and 1x KAPA Robust 2G master mix, 10 µM 

Illumina primer 1, 10 µM Illumina primer 2, and 0.4x SYBR Green I in the 

second stage was performed and the reaction was stopped before 

amplification curves reached their plateaus.  The reactions were then cleaned 

up using Ampure XP beads in a 1:1 ratio.   A 6% PAGE gel verified successful 

tagmentation reactions. 
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2.3.8 Data Analysis 
	
  

Bacterial libraries were size selected into the 300-600 bp range and 

sequenced in an Illumina MiSeq using 100 bp paired end reads.  E. coli data 

was both mapped to the reference genome.  For the mapping analysis, 

libraries were mapped as single end reads to the reference E. coli K12 

MG1655 genome using default Bowtie52 parameters with removal of any reads 

with multiple matches.  Contamination was analyzed, and clonal reads were 

removed using SAMtools’53 rmdup function. The reads were then binned into 

4,600 equally sized bins for bias analysis.   

Mammalian single-cell libraries from neuronal nuclei were sequenced in 

an Illumina Genome Analyzer IIx or Illumina HiSeq using 36 bp single end 

reads. For each sample, reads were mapped to the genome using Bowtie.  

Clonal reads resulting from Polymerase Chain Reaction artifacts were 

removed using samtools, and the remaining unique reads were then assigned 

into 49,891 genomic bins of approximately 60 kb in size that were previously 

determined such that each would contain a similar number of reads after 

mapping42.  The binning was used for bias analysis. 

In-tube MDA sperm data54, microfluidic based amplification sperm 

data6, MALBAC sperm data23, and MALBAC cancer data22 were downloaded 

from the SRA database corresponding to previously published data.  For the 

sperm samples, 2 random sperm libraries were combined to create a diploid 
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sample, and the X and Y chromosomes were excluded from further analysis.  

For the cancer sample, only the diploid chromosomes were included in 

analysis.  The data was analyzed in a similar fashion as the mammalian cells. 

 

2.4:  Results 
	
  

We designed and fabricated microwell arrays of a size comparable to 

standard microscope slides. The format of the arrays, including well size, 

pattern and spacing, was optimized to achieve efficient cell loading, optimal 

amplification yield and convenient DNA extraction. Each slide consisted of 16 

arrays, each containing 255 microwells 400 µm in diameter, allowing for 

parallel amplification of 16 separate heterogeneous cell populations (Figure 

2.1a).  After testing several materials such as SU-8 on glass, which had a very 

weak bonding, we found that PDMS was the optimal material choice, as array 

fabrication was very reproducible and cost was minimal.  Furthermore, PDMS 

could obtain hydrophilic properties with the use of oxygen plasma for several 

hours.  All liquid handling procedures (cell seeding, lysis, DNA denaturation, 

neutralization and addition of amplification master mix) required one pump of a 

pipette per step per array, minimizing the labor required for hundreds of 

amplification reactions. This system requires less of each amplification and 

library construction reagent than conventional methods, as each microwell 

spatially confines the reaction to 12 nL in volume.  Thus, cost was minimized 

when performing MIDAS (Table 2.1). 
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 We tested multiple cell-loading densities to ensure that each well would 

contain only one single cell, and initially loaded the microwells at densities of 

roughly 1 cell per well and 1 cell per 10 wells. By the Poisson distribution, 

described by the equation: 

 

 

 

where λ is the expected value, k is the desired number, and e is the base of 

the natural logarithm, in the 1 cell per well case, 63% should have at least one 

cell, but 26% could have more than one cell.  Wells containing greater than 1 

cell cannot be used for single cell amplification.  In the 1 cell per 10 well case, 

no more than 0.5% of the wells should contain more than 1 cell. We confirmed 

that the cells were indeed being seeded at the theoretical distribution using 

fluorescent microscopy after staining cells with SYBR Green I (Figure 2.2).  

We thus decided to load cells at a density of 1 cell per 10 wells, ensuring that 

99.5% of generated amplicons would arise from a single cell.  The remaining 

empty wells served as internal negative controls, allowing easy detection and 

elimination of contaminated samples.  We further confirmed proper microbial 

and mammalian cell seeding in microwells at the 1 cell per 10 well level by 

scanning electron microscopy (Figure 2.1b, Figure 2.3).  Scanning electron 

microscopy proved that each “fluorescent dot” arose from a single cell, and not 

multiple cells sticking to each other.  

! 
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 After seeding of cell populations into each microwell array, we 

performed limited multiple displacement amplification on the seeded single 

cells in the partitioned microwells, each with a physically separated (save for a 

thin aqueous layer atop the arrays) volume of ~12 nL, in a temperature and 

humidity controlled chamber (Figure 2.1c, Figure 2.2). We used SYBR Green 

I to visualize the amplicons growing in real-time using an epifluorescent 

microscope (Figure 2.4). A random distribution of amplicons across the arrays 

was observed with ~10% of the wells containing amplicons, further confirming 

the parallel and localized amplification within individual microwells as well as 

the stochastic seeding of single cells.  After amplification in the microwells, we 

used a micromanipulation system to extract amplicons from individual wells for 

sequencing (Figure 2.1c). We estimated that the masses of the extracted 

amplicons ranged from 500 picograms to 3 nanograms.  These masses 

correspond to expected values of amplicons generated based on the minimal 

reaction volume, as there is a linear correlation between reaction volume and 

final amplicon mass.   

 When performing a single-cell amplification experiment, there are two 

potential sources of contamination that could result in an inaccurate 

characterization of the genome of the sample of interest.  These are 

exogenous contamination, in which samples are exposed to cell-free DNA 

from environmental sources or reagents, and cross-well contamination, in 

which DNA from one microwell diffuses into other microwells.  We ensured 

that neither form of contamination was occurring. To detect arrays that 
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contained exogenous contamination, we checked for a uniform increase of 

fluorescent signal across all microwells. Any samples that showed this high 

fluorescence across all wells were removed; thus, any samples exposed to 

cell-free DNA were simply not analyzed. To ensure that cross-well 

contamination was not occurring, we performed real-time fluorescent 

monitoring during the amplification procedure. Only single wells with single 

amplicons originating from a single point were extracted for analysis, 

preventing any cross-well contamination or selection of any wells containing 

more than one cell (Figure 2.5). If even a miniscule amount of DNA was 

diffusing out of a microwell, an increased fluorescence would be observed in 

adjacent wells owing to amplification occurring in every well16; this diffusion 

was not observed in any cases. To further confirm that cross-well 

contamination was not occurring, we loaded a mixture of human neuronal 

nuclei with two separate genomic backgrounds, one healthy line and one 

trisomy 21 line. After extraction, we confirmed that all extracted cells 

corresponded only to one background by looking for distinct copy numbers of 

chromosome 21 (Table 2.2).  Any variation in copy numbers was primarily due 

batch effects. 

 Following amplification in the microwells, the amplicons could be easily 

extracted using a micromanipulator.  As mentioned previously, we could 

monitor the amplification in real time, and correlate the imaging results to the 

initial cell seedings.  The micromanipulator was moved over wells that both 

initially contained cells and showed an increase in fluorescence over time.  



28 

	
  

After the removal of mineral oil, the pipette was lowered into the well, and 

negative pressure was applied to remove the ~12 nL of amplicon.  To test 

efficient extraction, we overloaded the wells with genomic DNA such that 

every well would amplify.  We then extracted from a single well.  While the 

fluorescence from this specific well was removed, the fluorescence of the 

surrounding wells remained constant (Figure 2.5).  This proved that extraction 

was localized and cross contamination during extraction was minimal. 

 To construct Illumina sequencing libraries from the extracted 

nanogram-scale DNA amplicons, we used a modified in-tube method based 

on the Nextera Tn5 transposase.  Previous studies have shown that Nextera 

transposase-based libraries can be prepared using as little as 10 picograms of 

genomic DNA25.  However, the standard Nextera protocol was unable to 

generate high-complexity libraries from MDA amplicons, resulting in poor 

genomic coverage.  Clonal PCR duplicates remained in very high proportion in 

the sequencing data.  We reasoned that the transposases were having 

difficulty accessing the complex, three-dimensional structure of the MDA 

amplicons.  We tried several strategies to reduce the amplicons to linear DNA.  

These included physical shearing, debranching with S1 nuclease followed by 

nick translation, denaturing followed by second strand synthesis with phi29 

polymerase, and denaturing followed by second strand synthesis with DNA 

polymerase I.  Ultimately, to address this issue, we used random hexamers 

and DNA Polymerase I to first convert the hyperbranched amplicons into 

unbranched double-stranded DNA molecules, which allowed effective library 
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construction using in vitro transposition (Figure 2.1d).  Enzymatic inactivation 

of the transposases removed a purification step, further increasing the 

efficiency of library construction.  In addition, we used a small reaction volume 

to further reduce the biases of library preparation. 

 Once the libraries were sequenced, we analyzed the biases of the 

libraries using the pipeline described in the methods section of this chapter.  

Both bacterial and mammalian single cell libraries amplified with MIDAS were 

compared to single cell libraries amplified using standard, in-tube MDA.  

Furthermore, an additional limited in-tube MDA library, in which MDA was 

limited to 3 hours, was analyzed. For mammalian cells, a bulk library derived 

from approximately 4,000 cells was used as a gold standard.  One can easily 

determine the extreme reduction in biases from the MIDAS derived libraries 

when compared to all in-tube MDA libraries, including the limited MDA library 

(Figure 2.6).  Where the in tube MDA libraries displayed many spikes 

throughout the genome, indicating regions of extreme amplification, in addition 

to regions with very little coverage, the coverage in the MIDAS derived 

libraries remained relatively constant throughout the entire genome.  In fact, 

the uniformity rivaled that seen in the bulk library.  The biases can be more 

easily visualized in a histogram.  For the in-tube MDA libraries, one can see a 

spike around 0, indicating that most bins have almost no coverage.  

Furthermore, a very long right tail exists indicating that that a few bins have 

very high coverages.  In contrast, the MIDAS derived libraries display a very 

tight, normal distribution of coverages, implicating that most regions of the 



30 

	
  

genome contain the same coverage.  Additionally, as the bin sizes increase, 

the MIDAS derived libraries’ distribution of coverages looks almost identical to 

the distribution in the bulk library (Figure 2.7) 

 We also desired to compare our data to previously published single cell 

whole genome amplification data as other single cell sequencing methods that 

reduce amplification bias and increase genomic coverage have been reported.  

One such method utilizes a microfluidic device to isolate single cells and 

perform whole genome amplification in a 60nL volume6.  Another method, 

MALBAC, incorporates a novel enzymatic strategy to amplify single DNA 

molecules initially through quasi-linear amplification to a limited magnitude 

prior to exponential amplification and library construction22. MALBAC has been 

performed in microliter reactions in conventional reaction tubes. MIDAS 

represents an orthogonal strategy that adapts MDA to a microwell array. We 

compared data generated from single neurons amplified with MIDAS to 

previously published data from combined (and therefore diploid) pools of two 

single sperm cells amplified using standard in-tube MDA54, the microfluidic 

device6 and MALBAC22, 23. To ensure a fair comparison, we normalized 

sequencing depth to an equal amount for each method and processed the raw 

sequencing data for each sample using an identical computational pipeline. 

We also compared MIDAS to a single SW480 cancer cell amplified by 

MALBAC. In this case, to ensure a fair comparison to the primarily diploid cell 

analyzed using MIDAS, we limited our analysis to regions consistently 

identified as diploid in the cancer cell (parts of chromosomes 1, 4, 6, 8, 10 and 
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15)22. MIDAS compares favorably to each amplification method (Figure 2.8, 

Figure 2.9), generating the lowest levels of bias across the genome.  In the 

above-mentioned figures, the in-tube MDA libraries show the most bias, 

followed by the low volume microfluidic MDA derived libraries. The microfluidic 

MDA based libraries underwent a second round of amplification to obtain 

enough template for standard Illumina library construction, which explains the 

high bias levels.  The MALBAC derived libraries display comparatively little 

bias, however, the MIDAS libraries are superior in terms of uniformity.  Thus, 

the MIDAS libraries prove to be the least biased single cell libraries to date. 

 

2.5:  Conclusions 
	
  

We have shown that we can reproducibly fabricate PDMS microwell 

arrays for use in MIDAS amplification.  Furthermore, we can randomly seed 

cells such that there are consistently less than two cells per well.  By adding in 

SYBR Green I to our amplification master mix, we can fluorescently monitor 

the amplicons growing in real time using an incubated epifluorescent 

microscope.  Additionally, this allows us to discern any exogenous or cross 

well contamination, as a large number of well would show fluorescence.  We 

can then reliably extract positive amplicons from the microwells using a 

micromanipulation system, and generate low input libraries using a 

transposase-based method. 
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 The resulting data proves superior to traditional, in-tube MDA.  While in-

tube MDA shows many regions of the genome with little to no coverage, and 

other regions with very high coverage, the MIDAS derived libraries display a 

uniform coverage throughout the genome, comparable to a gold standard bulk 

library.  Additionally, we compared MIDAS to previously published data 

derived from in-tube MDA, microfluidic MDA, and MALBAC based libraries.  

MIDAS compares favorably to each method, exhibiting very high coverage 

uniformity across the genome. 
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Figure 2.1:  Overall Process of MIDAS 
Microwell displacement amplification system. (a) Each slide contains 16 arrays 
of 255 microwells each.  Cells, lysis solution, denaturing buffer, neutralization 
buffer and MDA master mix were each added to the microwells with a single 
pipette pump.  Amplicon growth was then visualized with a fluorescent 
microscope using a real-time MDA system.  Microwells showing increasing 
fluorescence over time were positive amplicons.  The amplicons were 
extracted with fine glass pipettes attached to a micromanipulation system. (b) 
Scanning electron microscopy of a single E. coli cell displayed at different 
magnifications.  This particular well contains only one cell, and most wells 
observed also contained no more than one cell.  (c) A custom microscope 
incubation chamber was used for real time MDA.  The chamber was 
temperature and humidity controlled to mitigate evaporation of reagents. 
Additionally, it prevented contamination during amplicon extraction by self-
containing the micromanipulation system. An image of the entire microwell 
array is also shown, as well as a micropipette probing a well. (d) Complex 
three-dimensional MDA amplicons were reduced to linear DNA using DNA 
polymerase I and Ampligase. This process substantially improved the 
complexity of the library during sequencing.
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Figure 2.2:  Cell seeding in microwells 
Cells were stained with SYBR green and visualized under a microscope. 
Arrows point to single cells (green). Each image is a different position within 
an array. (a) Cells were seeded at 1 cell per well. Most wells contained only 1 
cell, with some containing more than 1 cell. (b) Cells were seeded at 0.1 cell 
per well. Most wells contained 0 cells, while a few contained 1 cell. No wells 
contained more than one cell.
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Figure 2.3:  SEM images of single cells 
SEM images were taken to confirm proper cell seeding. Cells clearly did not 
stick to each other, further confirming that the Poisson predictions for cell 
seeding density were accurate.
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Figure 2.4:  Real time MDA 
Images were taken every hour using a 488 nm filter. Amplicons were 
visualized beginning to grow at 1 hour and continuing to grow until they could 
not amplify due to limited space in the microwell. This saturation point usually 
occured within 5 to 6 hours. The amplicons appeared to be randomly 
distributed, further demonstrating random cell seeding, and no amplicons were 
in abutting wells.
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Figure 2.5:  Amplicon extraction 
Microwells were saturated with genomic DNA and MDA was performed such 
that every well contained an MDA amplicon. The fluorescence in the left image 
displays successful amplification. After amplification, a micropipette was 
lowered into a single well, designated by the arrow, and the amplicon was 
extracted. The right image shows a successful removal of the amplicon due to 
loss of fluorescence, without any disturbances in the contents of the nearby 
microwells.
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Figure 2.6: Genomic coverage of single bacterial and mammalian cells 
post MDA and MIDAS  
Genomic coverage of single bacterial (a,b) and mammalian (c,d) cells 
amplified by MDA in a tube and by MIDAS. The observed multi-peak profile for 
the MDA reactions implies that certain regions may have been amplified with 
exponentially greater bias compared to the majority of the genome. (a) 
Comparison of single E. coli cells amplified in a PCR tube for 10 hours (top), 2 
hours (middle) and in a microwell (MIDAS) for 10 hours (bottom).  Genomic 
positions were consolidated into 1 kb bins (x-axis), and were plotted against 
the log10 ratio (y-axis) of genomic coverage (normalized to the mean). (b) 
Distribution of coverage of amplified single bacterial cells.  The x-axis shows 
the log10 ratio of genomic coverage normalized to the mean. (c) Comparison 
of single human cells amplified using traditional MDA in a PCR tube for 10 
hours (top) or in a microwell (MIDAS) for 10 hours (middle) to a pool of 
unamplified human cells (bottom).  Genomic positions were consolidated into 
variable bins of approximately 60 kb in size previously determined to contain a 
similar read count42, and were plotted against the log10 ratio (y-axis) of 
genomic coverage (normalized to the mean). (d) Distribution of coverage of 
amplified single mammalian cells. The x-axis shows the log10 ratio of genomic 
coverage normalized to the mean.
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Figure 2.7:  Distribution of coverage of amplified single mammalian cells 
with larger bin size.  
The x-axis shows the log10 ratio of genomic coverage normalized to the 
mean. MIDAS (blue) showed a much tighter coverage distribution than an in-
tube MDA library (orange), regardless of bin size. MIDAS even approached 
the bias level of unamplified genomic DNA from multiple cells when using 
larger bin sizes of (a) ~120 kb, generated by merging pairs of adjacent bins 
together and (b) ~240 kb, generated by merging four adjacent bins together.
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Figure 2.8:  Comparison of MIDAS to in-tube MDA, microfluidic MDA, and 
MALBAC 
Comparison of MIDAS to previously published data for in-tube MDA35, 
microfluidic MDA10 and MALBAC36.for diploid regions of pools of two sperm 
cells and diploid regions of a single SW480 cancer cell processed using 
MALBAC34. Genomic positions were consolidated into variable bins of 
approximately 60 kb in size previously determined to contain a similar read 
count42, and were plotted against the log10 ratio (y-axis) of genomic coverage 
(normalized to the mean).  For the cancer cell data, non-diploid regions have 
been masked out (white gaps between pink) to remove the bias generated by 
comparing a highly aneuploid cell to a primarily diploid cell.
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Figure 2.9:  Comparison of distributions of coverage   
MIDAS neuron libraries compared to (a) in-tube MDA, (b) microfluidic MDA, 
and (c) MALBAC.
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Table 2.1:  Cost of library preparation per sample  
Costs were based on publicly available reagent prices found online. 
 

 
 
 

Process MIDAS cost per array (15 
libraries) 

MDA cost per 15 in-tube 
reactions 

Microwell Fabrication 0.65 N/A 
MDA 15.80 237 
Amplicon Extraction 2.10 N/A 
Library Construction 148 302.40 
Bead Purifications 27.60 110.40 

Total $194.15 $649.80 
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Table 2.2:  Cross-well contamination is not present in mixed-sample 
MIDAS Microwells were loaded with a 1:1 mixture of down syndrome single 
neurons and healthy single neurons. After whole genome amplification, 
sequencing libraries were generated from four amplicons. The fraction of 
reads originating from chromosome 21 in each cell was measured and 
compared to that obtained during single sample MIDAS; the ploidy of 
chromosome 21 in each mixed-sample cell was estimated by interpolation. 
Out of the four tested cells, two were identified as clearly containing trisomy 21 
while the other two were clearly diploid; thus, no cross-well contamination 
occurred. 
 

Sample % of Reads from 
Chromosome 21 

Known 
Ploidy 

Estimated 
Ploidy 

Healthy Neuron, Cell 1 1.19% 2  
Healthy Neuron, Cell 2 1.20% 2  

Down Syndrome Neuron, 
Cell 1 

1.74% 3  

Down Syndrome Neuron, 
Cell 2 

1.70% 3  

Down Syndrome Neuron, 
Cell 3 

1.63% 3  

Down Syndrome Neuron, 
Cell 4 

1.74% 3  

    

Mixed-Sample Neuron, Cell 
1 

1.67%  2.94  3 

Mixed-Sample Neuron, Cell 
2 

1.09%  1.79  2 

Mixed-Sample Neuron, Cell 
3 

1.23%  2.07  2 

Mixed-Sample Neuron, Cell 
4 

1.59%  2.78  3 
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Chapter 3:  De Novo Assembly of Single E. Coli 

Cell Genomes 

3.1:  Abstract 
	
  
 We apply the MIDAS method for single cell whole genome amplification 

to single E. coli cells.  Following low input library construction and sequencing, 

we perform single cell de novo assembly using the updated SPAdes algorithm, 

which relies on paired De Brujin graphs.  We present data on 3 individual 

single cell assemblies, in which around 98% of the genome is covered by 

mapping to the reference E. coli genome, and over 90% is correctly 

assembled.  The assembled genomes are as much as 50% greater than any 

other previously assembled single cells genome.  Additionally, we show that 

increasing the sequencing efforts will most likely results in greater amounts of 

assembly. 

 

3.2:  Introduction 
	
  

Bacteria remain prevalent in various environments, including sea-

water33, soil27, and the human body28.  Unknown genes from rare bacteria 

continue to be explored as ways to increase productivity in chemical 

processes and improve human metabolism. Many of these species exist in 
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heterogeneous environments, symbiotically relying on other microbes to 

prosper.  The codependent relationships make it extremely difficult, if not 

impossible, to resolve the bacterial origins of these important and interesting 

genes from standard sequencing. 

 16S rRNA sequencing has allowed for a quick, inexpensive manner to 

determine the phyla of various environments33, 34.  The 16S rRNA gene exists 

in most bacterial species, and PCR amplification of this region followed by 

Sanger sequencing can easily determine the phyla residing in different 

environmental samples. In addition to 16S rRNA sequencing, metagenomic 

analysis has allowed researchers to delve into vast amounts of sequencing 

data from environmental microbial samples33, 34.  By shotgun sequencing an 

environmental sample, consisting of thousands or more of different bacterial 

species, without any preprocessing, scientists can explore various genes 

residing in these specific locations.  Genomic differences amongst different 

phyla allow for grouping sequences to specific phyla, though species are often 

too similar to be distinguished.  Recent algorithms, based on tetranucleotide 

frequency, allow for the resolution of metagenomic data to a species level for 

non-complex environments35.  These algorithms should continue to improve, 

though it may never be possible to determine individual genomes from very 

complex metagenomic data.  

 Single cell sequencing and de novo genome assembly allow for 

environmental microbial samples to be perused at the single species level.  

Single cells from an environmental sample can be isolated into individual 
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reactors to remove any exogenous contamination9, 12.  Whole genome 

amplification allows for the 5 femtograms of DNA to be amplified such that 

enough DNA exists for library construction and sequencing.  Although this 

method appears to be a viable alternative to metagenomic analysis, the 

complexities of single cell whole genome amplification create hurdles for de 

novo assembly.  First, the low amount of template allows for a great amount of 

contamination9.  Second, the extreme amplification biases generate obstacles 

in de novo assembly, as often certain regions of the genome have little to no 

coverage following amplification9, 12.  Third, the hyperbranching mechanism 

can create chimeric reads12, resulting in misassembiles.  Thus, despite the 

best previous efforts, only as much as 60% of a single cell genome has been 

properly assembled10. 

 Assembly software has recently been adapted for single cell genomes, 

and thus greatly improved assembly.  The algorithms now account for biases, 

reducing the minimum base coverage for assembly and allowing for smaller 

contigs to be scaffolded together.  Additionally, the algorithms can properly 

detect and remove chimeric junctions.  One such algorithm, known as 

SPAdes41, has greatly improved assembly statistics for single cell genomes.  

Namely, these are N50, the minimum contig size such that 50% of the total 

assembled bases are assembled after sorting the contigs based on size, 

maximum contig length, and total assembled bases.  Better assemblies 

involve greater number in all three of these statistics.  Additionally, QUAST55, 
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a program developed to help analyze assemblies, allows for easy quality 

control of individual assemblies by flagging any misassemblies. 

 In this chapter, we apply MIDAS to single E. Coli cells for use in de 

novo assembly.   Using the same techniques described in chapter 2, we 

amplify, create libraries, and sequence 3 single cells.  Following data 

processing, we use SPAdes to assemble the genomes of these cells, and 

QUAST to analyze the assemblies.  The assemblies prove a significant 

improvement on previously published data, with over 90% of the genome 

assembled.  These same techniques can be applied to environmental samples 

such that new genomes can be properly assembled with draft quality. 

 

3.3:  Methods 
 

3.3.1 Bacterial Preparation 
	
  

E. coli K12 MG1655 was cultured overnight in LB Broth, collected in 

log-phase, and washed 3x in PBS.  After quantification using a Nanodrop 

spectrophotometer, the solution was diluted to 10 cells/µL in PBS. 
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3.3.2 Amplification and Library preparation 
 

The cells were loaded into the microwells and amplified using the 

MIDAS method described in chapter 2.  Extraction and library construction 

was performed similaray as in chapter 2 as well. 

 

3.3.3 Mapping and De Novo Assembly of Bacterial Genomes 
	
  

Bacterial libraries were size selected into the 300-600 bp range and 

sequenced in an Illumina MiSeq using 100 bp paired end reads.  

Approximately 2-8 million reads were sequenced for each cell.  E. coli data 

was both mapped to the reference genome and de novo assembled.  For the 

mapping analysis, libraries were mapped as single end reads to the reference 

E. coli K12 MG1655 genome using default Bowtie52 parameters with removal 

of any reads with multiple matches.  Contamination was analyzed by 

determining the mapping rate to the reference genome.  Contamination was 

further analyzed by selecting approximately 1000 reads, mapping the nt 

database using BLAST56, and visualizing the clusters of organisms using 

MEGAN57.  For non-contaminated libraries, clonal reads were removed using 

SAMtools53’ rmdup function.  Chimeras were analyzed by flagging paired 

reads on the same strand or paired reads with a mismatched orientation. 

Chimeric junctions were defined as the number of chimeric reads divided by 

the total number of mapped bases.  
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For the de novo assembly, paired end reads with a combined length 

less than 200 bp were first joined and treated as single end reads.  All 

remaining paired end reads and newly generated single end reads were then 

quality trimmed, and any remaining Illumina adapter sequences were 

removed.  De novo assembly was performed using SPAdes41 v. 2.4.0.  

Corrected reads were assembled with kmer values of 21, 33, and 55. The 

assembled scaffolds were mapped to the NCBI nt database with BLAST56, 

and the organism distribution was visualized using MEGAN57.  Obvious 

contaminants (e.g., human) were removed from the assembly and the 

assembly was analyzed using QUAST55.  The remaining contigs were 

annotated using RAST58 and KAAS59. 

 

3.3.4 Data Analysis 
	
  

Mapped and assembled data was further analyzed and visualized in 

CIRCOS.  For the mapped data, mapped reads were imported into CIRCOS 

for visualization.  The assembled scaffolds were also imported into CIRCOS to 

picture assembled regions of the genome.  Last, histograms were made after 

binning the reads as described in chapter 2 for bacterial libraries, using the 

average coverage across a given bin, and this was correlated to the 

assembled and unassembled regions of the genome.  Histograms were also 

made using the average mapped coverage of each scaffold. 
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3.4:  Results 
	
  

We used MIDAS to sequence three single E. coli cells separated by 

diluting to one cell for every ten wells and seeding into the microwells.  Single 

cells were confirmed with fluorescent microscopy, and a contamination was 

discounted by observing amplification in distinct wells, ultimately seeing a 

digital amplification profile.  We then generated 2-8 million paired-end reads of 

100 base pairs in length for each library using an Illumina MiSeq.  The MiSeq 

was chosen due to its fast turnaround time.  As the E. coli genome is only 

approximately 4.6 million bases, many reads were not needed to obtain 

significant coverage.  Thus, the final genomic coverage ranged from 87-364x.  

Comparatively, previous single cell genome assemblies were performed with 

coverages much greater than 1,000x10. 

 We first mapped the reads to the reference E. coli genome to determine 

the amount of the genome covered.  From this data, we found that 98-99% of 

the genome was recovered at >1x coverage.  We then sought to test the limits 

of minimum sequencing coverage needed to still obtain a significant 

percentage of the genome.  We therefore down-sampled the coverage to 

much lower depths, and found that even with as little as 10x coverage, we 

could recover around 90% of the genome for each library (Figure 3.1).  

Consequently, the amplification proved extremely uniform such that much of 

the genome was represented in the sequencing data. 

 Next, we sought to determine the chimeric rate of the sequenced reads.  

Chimeras occur often during multiple displacement amplification.  The single 
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stranded displaced DNA can anneal to other single strands from completely 

different regions of the genome.  Hence, a false bridge between the regions 

was created, and this can lead to incorrect assemblies.  We also found, based 

on personal experience, that increasing the ligation time following Polymerase 

I treatment greatly increased the number of chimeric junctions.  Although 

Ampligase should be limited to nick sealing, disparate fragments were also 

ligating to each other.  Thus, ligation time was limited to a minimum.  

Previously published data found approximately 1 chimeric junction per every 

4-10 kilobases10.  Since we were performing reactions in small volumes, the 

rate could be higher since differing fragments would be closer in special 

location.  We found, however, the chimeric rate to be approximately 1 junction 

per every 5 kilobases, a range consistent with previously published data 

(Table 3.1). 

 After we determined the samples were viable for assembly, we desired 

to assemble the libraries de novo.  First, many preprocessing steps were 

necessary to avoid misassemblies and limit computational power necessary.  

The Nextera method is prone to adding adapter sequences to different areas 

of the reads, and these are not always removed by the sequencing analysis 

scripts.  Thus, they first were computationally removed.  Furthermore, low 

quality sequences can easily result in false scaffolds, and hence low quality 

bases were computationally removed as well.  Additionally, Nextera library 

construction creates a very broad range of fragments, which cannot be 

controlled.  Thus, even after size selection, many paired end reads are less 
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than a combined 200 bases. The resulting paired reads were joined if they 

were less than a total of 200 bases into a single long read, as these often 

cause the assembler to crash due to lack of available memory.  If any 

additional single read less than 100 bases remained, it was also removed from 

further analysis.   

 After attempting de novo assembly with several algorithms, SPAdes 

was determined to be the most efficient.  In brief, both general assemblers, 

including SOAPdenovo60, ABySS61, and Velvet62, and single cell assemblers, 

including Velvet-SC and SPAdes, were used to assemble the single cells 

libraries.  The single cell assemblers were found to perform much better than 

the general assemblers.  The single cell assemblers allowed for a sliding, and 

not fixed, minimum coverage, allowing for more reads to be used in assembly.  

This implement is extremely important for any biased library.  Therefore, 

Velvet-SC and SPAdes were used for a majority of the assemblies.  Both 

assemblers directly or indirectly require error correction, further removing and 

correcting low quality bases.  Again, this step was necessary for efficient 

assembly.  SPAdes was found to produce superior assemblies than Velvet-

SC, as it implements paired De Brujin graphs compared to singular De Brujin 

graphs. These graphs combined mate pair reads into the actual De Brujin 

graphs, instead of into post processing steps.  Furthermore, SPAdes efficiently 

combined assemblies from several kmers into unique scaffolds, ultimately 

increasing the important assembly statistics such as N50 and max contig 

length. 
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 SPAdes was thus used for assembly for the single cell libraries 

following preprocessing and error correction.  With the same sequencing 

coverage as mentioned previously (2-8 million reads), we assembled 88-94% 

of the E. coli genome (Figure 3.2).  We determined an N50 of 2,654-27,882 

base pairs, and a max contig length of 18,645-132,037 base pairs (Table 3.2).  

The disparate values directly correlated to the sequencing coverages, as the 

higher coverage libraries resulted in larger N50s and max contig lengths.  

These relationships were further investigated.  By comparing the assembled 

contigs to the average read depth throughout the genome, we found that 

areas with less overall coverage did not assemble as well as areas with 

greater coverage (Figure 3.3).  This resulted in very small gaps in the 

assembly, often less than one kilobase.  When the sequencing depth 

increased, these smaller gaps tended to be assembled, resulting in an order of 

magnitude greater N50 and max contig length (Figure 3.2, Table 3.2).  

Therefore, we believe that sequencing these genomes to an even higher 

coverage will help assemble an even larger percentage of the genome. 

 In comparison to previously published data sets41, we were able to 

assemble much larger percentages of the genome.  Namely, our assemblies 

constructed greater than ninety percent of the genome, compared to just over 

sixty percent.  The previous data, however, reported much greater N50’s and 

max contig lengths.  We thus decided to investigate this further.  We reasoned 

that the bias during standard MDA resulted in regions with very high coverage, 

which could be easily assembled, and these regions could be hundreds of 
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kilobases in length.  Furthermore, if a smaller amount of total bases 

assembled existed, the N50’s could be skewed towards larger values.  

Therefore, an assembly with large contigs in addition to large gaps was 

observed.  In comparison, MIDAS derived assemblies had very small gaps 

with moderately sized contigs (Figure 3.4). 

 Following assembly, the contigs were analyzed for contamination using 

BLAST.  The resulting mapped organisms were visualized in MEGAN.  Even 

though many different organisms are displayed, an overwhelming majority of 

the assembled bases, over 80%, map to E. coli.  Much of the remaining bases 

map to small regions in known MDA contaminants, such as Delftia and 

Acidovorax63. Additionally, many very small contigs were unmappable, and 

most likely were the result of junk DNA.  Even though some human contigs 

were assembled, these could be easily removed from future analysis.  Thus, 

the assemblies proved relatively clean. 

 Finally, we annotated the genome using the RAST and KAAS 

annotation servers.  Scaffolds mapping strictly to E. coli were extracted and 

uploaded to the individual servers.  Following annotation, over 96% of E. coli 

genes were either partially or fully covered in the assembly.  Major 

biosynthetic pathways, including glycolysis and the citric acid cycle, were also 

present.  Furthermore, pathways for amino acid synthesis and tRNA 

development were covered.  MIDAS was thus able to assemble an extremely 

large portion of the genome from a single cell with comparatively minimal 

sequencing. 
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3.5:  Conclusions 
	
  

We have shown that we can assemble genome from single microbial 

cells at unprecedented levels.  Over 90% of the E. coli genome was 

assembled, a 50% improvement over previously published data.  Since 

around 98% of the genome was covered in mapping, we believe that larger 

sequencing efforts will fill in some of the small gaps in assembly in order to 

increase the total bases assembled, N50, and max contig sizes.  The resulting 

assemblies were relatively contamination free, and contained chimeric junction 

rates similar to previously published data.  The assemblies contained all major 

biosynthetic pathways, and well as pathways for amino acid development. 

 In the scope of this thesis, we only applied MIDAS to single E. coli cells.  

However, MIDAS can be easily implemented with environmental samples.  

Clean harvesting of cells remains crucial, as cell free contaminant DNA can 

easily permeate individual reactors.  FACS sorting of the cells into clean PBS 

should help with this issue.  Furthermore, cell integrity is a looming issue, as 

many bacterial cells, especially those from sea-water, lyse easily in solution.  

Care must be taken to avoid cell lysis during storage.  Several strategies, 

including storing in glycerol, performing MIDAS immediately after cell sorting, 

and visually checking cellular integrities, must be implemented.  Last, lysis 

varies from cell to cell, but a combination of freeze/thaw and lysozyme 

treatment should effectively lyse all cell types.  As long as a methodical 

approach is applied to environmental samples, MIDAS should help to 
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assemble many previously unknown, and potentially important, single cell 

genomes of rare organisms. 
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Figure 3.1:  Coverage vs depth plots.   
Sequencing data was downsampled to various depths for each of the E. coli 
libraries.  A significant portion of the genome was covered even at low 
sequencing depth in each sample.

0.5 
0.55 

0.6 
0.65 

0.7 
0.75 

0.8 
0.85 

0.9 
0.95 

1 

0 20 40 60 80 100 120 

Fr
ac

tio
n 

of
 G

en
om

e 
C

ov
er

ed
 a

t 1
x 

Sequencing Depth (x) 

Cell 1 

Cell 2 

Cell 3 



59 

	
   	
  

 
 
 
Figure 2:  Depth of coverage of assembled contigs aligned to the 
reference E. coli genome 
Three single E. coli cells were analyzed using MIDAS. Between 88% and 94% 
of the genome was assembled from 2–8M paired-end 100bp reads. Each 
colored circle is a histogram of the log2 of average depth of coverage across 
each assembled contig for one cell. Gaps are represented by blank 
whitespace in between colored contigs.
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Figure 3.3:  Comparison of assembly to mapped reads across genome 
The outer track displays the assembled contigs mapping to E. coli.  The 
middle track shows the raw reads mapping to E. coli.   The inner track 
presents the coverage of the reads.  Lower coverage is present in mapped 
regions where contigs were not assembled, indicating that additional 
sequencing depth could fill in gaps between contigs
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Figure 3.4:  Assembly Comparison to an In-tube MDA Derived Library 
The outer black track represents the assembled contigs of a MIDAS derived 
library.  Most of the gaps are very small in the assembly.  The inner green 
track represents an in-tube MDA derived library10.  Although the contigs are 
large, so are the gaps, indicating a highly biased amplification. 
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Table 3.1:  Chimera statistics 
Chimeric reads and non-paired reads are reported for each library.  Some 
non-paired reads may have been chimeric, while others may have been 
contamination.  The prochlorococcus sample is a previously published in-tube 
MDA data set, and was used as a control2.  The chimeric junction rate is 
defined as number of chimeric reads divided by total number of mapped 
bases. MIDAS had a similar chimeric junction rate as traditional in-tube MDA. 

Sample Cell 1 Cell 2 Cell 3 Prochlorococcus 
Correct 1,826,328 1,970,804 9,636,520 12,211,036 

Chimeric 71,840 86,508 476,250 665,952 
Single 100,307 118,898 773055 484,641 

Total Mapped 1,998,475 2,176,210 10,885,825 13,361,629 
% Correct 91.39 90.56 88.52 91.39 

% Chimeric 3.59 3.98 4.37 4.98 
% Single 5.02 5.46 7.1 3.63 

Junctions/bp 1 junction/5,238 bp 1 junction/5,383 bp 1 junction/4,477 bp 1 junction/4,301 bp 
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Table 3.2:  Single E. coli assembly statistics 
Total number of reads, number of contigs mapping to E. coli, N50, maximum 
contig length, total base pairs assembled to E. coli K12 MG1655 genome, 
percent of E. coli K12 MG1655 covered in assembly, complete and partial 
genes covered, and percent of genome covered by mapped reads are 
reported for each library.  Total number of reads refers to all sequencing 
reads, including non-mapping and clonal reads. 
 

Cell 
# 

Total # 
of 

reads 

# contigs 
greater 

than 500 
bp 

N50 
(bp) 

Max 
contig 

(bp) 

Total 
(bp) 

% Genome 
Covered In 
Assembly 

Complete/ 
Partial 
Genes 

Covered 

% 
Genome 
Covered 

by 
Mapping 

1 2,019,89
2 

1,172 6,416 32,552 4,283,7
77 

92.33% 3,308/775 98.91% 

2 3,884,95
0 

2,102 2,654 18,465 4,065,0
96 

87.62% 2,313/1,683 98.57% 

3 8,482,57
3 

765 27,882 132,03
7 

4,368,2
54 

94.15% 3871/185 98.71% 
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Chapter 4:  Identification of Copy Number 

Variants in Single Neurons 

4.1:  Abstract 
	
  

We applied MIDAS to single neuronal nuclei to investigate copy number 

variations (CNVs).  We began by looking at single neuronal nuclei from 

patients with Down’s Syndrome, which thus contain three copies of 

chromosome 21.  After positively identifying the trisomy, computational spike-

ins of small regions from chromosome 21 into diploid chromosomes were 

performed to test the limits of the CNV calling algorithms.  We found an 

identification rate of 99% with 2 megabase spike-ins, and 70% with 1 

megabase spike-ins.  No spike-ins at these levels were correctly identified 

using traditional, in-tube MDA.  We next compared the CNVs called on the 

single neuronal nuclei to those called in a bulk sample, and found that 75% of 

the CNVs called in the bulk were also called in the single neurons.  

Additionally, many “somatic” CNVs were called in the individual single cell 

libraries that were not called in the bulk library. 

4.2:  Introduction 
	
  

Human genomes contain two copies of each autosomal chromosomes, 

one copy from each parent, in addition to two X chromosomes for females or 
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one X and one Y chromosome for males.  Any aberration from the diploid copy 

number is referred to as a copy number variation, or CNV.  CNVs can be as 

large as an entire chromosome, or as small as a single gene. One of the most 

well characterized CNVs is three copies of chromosome 21 in people with 

Down’s Syndrome64.  This CNV causes devastating effects such as severe 

mental retardation, round faces, and heart issues.  Other such large 

chromosomal CNVs include trisomy 13, trisomy 18, and XXY syndrome65.  

With the exception of CNVs of the sex chromosomes, most other trisomies 

result in very short life spans.  Smaller CNVs can also create severe 

consequences in humans.  A copy number increase of the APP gene, an 

approximately 300 kb segment in chromosome 21, occurs with high frequency 

in Alzheimer’s disease patients66.   

 Until recently, scientists have only studied CNVs on a bulk cell 

population level.  This had led to many technical variations and 

inconsistencies when calling CNVs using both microarray and sequencing 

techniques.  Many of the CNVs, perhaps existing on smaller populations of 

cells, were averaged out, and thus many false negative occurred.  If scientists 

could probe into and sequence single cells, CNVs could be called more 

accurately. 

 Therefore, researchers began to devise methods for calling CNVs from 

single cells7, 22, 42.  Cancer cells were first chosen, as they were known to have 

different populations of cells originating from a single tumor.  Each population 

of cells would have a distinct genome with distinct CNVs, which could possibly 



66 

	
  

be distinguished at the single cell level.  Furthermore, due to a cancer cell’s 

inability to correct errors, these CNVs would be large in terms of both number 

of bases and copy number, thus making them easier to accurately call.  

Scientists at the Cold Spring Harbor National Lab thus dissected tumors into 

small cell populations7.  Following FACS sorting into individual tubes, whole 

genome amplification, and library construction, the genomes were sequenced 

to determine specific copy number variations.  An ingenious algorithm to bin 

reads, removing all mapping biases, and combine bins with similar numbers of 

reads was designed to accurately call CNVs of the single cancer cells42. 

 More recently, scientists have been interested in accurately calling 

CNVs in non-cancerous single cells.  Most interestingly, FACS sorting has 

shown DNA content variation in single neuronal nuclei of up to 10% from 

neurons residing in the same regions of human brains44-50.  These variations 

were found to be more prominent in neurons derived from brains of 

neurologically diseased patients, such as Alzheimer’s disease and 

schizophrenia.  These CNVs, however, have yet to be accurately called, 

mainly arising from the amplification biases in whole genome amplification 

techniques.  Unlike CNVs in cancer cells, these CNVs are thought to be small 

in terms of number of base pairs and copy.  The biases in MDA lead to many 

false positive and false negative CNV calls, extremely hampering the ability to 

accurately call CNVs in non-cancerous cells. 

 In this chapter, we apply MIDAS to single neuronal nuclei to generate 

unbiased sequencing libraries.  We present data on both neurons from healthy 
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patients and neurons from Down’s syndrome patients.  Following modifications 

to the CNV calling script, we show accurately called CNVs at the whole 

chromosome level.  Using a computational spike-in method, we test the limits 

of the CNV calling algorithm to determine the minimum CNV size that can be 

accurately called with a single copy number increase.  Finally, we compare 

CNVs called in single cell libraries to CNVs called in bulk libraries, and 

establish a concordance rate on very small CNVs. 

 

4.3:  Methods 
	
  

4.3.1 Neuron Preparation 
	
  

Human neuronal nuclei were isolated as previously described8, 50 and 

fixed in ice-cold 70% ethanol.  Nuclei were labeled with a monoclonal mouse 

antibody against NeuN (1:100 dilution) (Chemicon, Temecula, CA) and an 

AlexaFluor 488 goat anti-mouse IgG secondary antibody (1:500 dilution) (Life 

Technologies, San Diego, CA). Nuclei were counterstained with propidium 

iodide (50ug/ml) (Sigma, St. Louis, MO) in PBS solution containing 50 µg/ml 

RNase A (Sigma) and chick erythrocyte nuclei (Biosure, Grass Valley, CA). 

Nuclei in the G1/G0 cell cycle peak, determined by propidium iodide 

fluorescence, were electronically gated on a Becton Dickinson FACS-Aria II 

(BD Biosciences, San Jose, CA) and selectively collected based on NeuN+ 

immunoreactivity.   
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4.3.2 Amplification and Library preparation 
	
  

The cells were loaded into the microwells and amplified using the 

MIDAS method described in chapter 2.  Extraction and library construction 

was performed similaray as in chapter 2 as well. 

 

4.3.3 Identification of CNVs in MIDAS and MDA data 
	
  

Mammalian single-cell libraries were sequenced in an Illumina Genome 

Analyzer IIx or Illumina HiSeq using 36 bp single-end reads.  The CNV 

algorithm previously published by Cold Spring Harbor Laboratories7 was used 

to call copy number variation on each single neuron, with modifications to 

successfully analyze non-cancer cells.  Briefly, for each sample, reads were 

mapped to the genome using default parameters in Bowtie, while removing 

reads mapping to multiple places in the genome.  Clonal reads resulting from 

Polymerase Chain Reaction artifacts were removed using samtools, and the 

remaining unique reads were then assigned into 49,891 genomic bins of 

approximately 60 kb in size that were previously determined such that each 

would contain a similar number of reads after mapping42. Each bin’s read 

count was then expressed as a value relative to the average number of reads 

per bin in the sample, and then normalized by GC content of each bin using a 

weighted sum of least squares algorithm (LOWESS).  Circular binary 

segmentation was then used to divide each chromosome’s bins into adjacent 

segments with similar means.  Unlike the previously published algorithm, in 
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which a histogram of bin counts was then plotted and the second peak chosen 

as representing a copy number of two, it was assumed, due to samples not 

being cancerous and thus being unlikely to contain significant amounts of 

aneuploidy, that the mean bin count in each sample would correspond to a 

copy number of two.  Each segment’s normalized bin count was thus 

multiplied by two and rounded to the nearest integer to call copy number.  

MIDAS data clearly showed a CNV call designating Trisomy 21 in all Down 

Syndrome single cells, while the traditional MDA-based method was not able 

to call Trisomy 21. 

 

4.3.4 Identification of Artificial CNVs in MDA and MIDAS data 
	
  

In order to test the ability of the CNV algorithm described above to call 

small CNVs, artificial CNVs were computationally constructed.  Prior to circular 

binary segmentation, in each Down Syndrome sample, one hundred random 

genomic regions across chromosomes 1-22 were chosen, each consisting of 

either 17 or 34 bins of approximately 60 kb in size, thus corresponding to 

either 1 megabase or 2 megabases.  Each region was replaced with an 

equivalently sized region from chromosome 21, to represent copy number 3, 

or chromosome 4, to be used as a control (Supplementary Table 5).  The 

above algorithm was then run on each “spiked-in” sample, and the number of 

new CNV calls in each sample that matched each spike-in was tallied.  For the 

chromosome 21 spike-ins, MIDAS was able to accurately call up to 99% of 
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spiked-in CNVs at the 2 Mb level and 80% of spiked-in CNVs at the 1 Mb 

level, while the traditional MDA-based method was not able to call any spiked-

in CNVs.  As expected, spike-ins of chromosome 4 did not result in any 

additional CNV calls. 

 

4.3.5  Identification of true CNVs in MIDAS data 
	
  

The above algorithm was run on the original MIDAS derived single 

neuronal nucleus libraries in addition to a bulk library created with 

approximately 4,000 neuronal nuclei.  CNVs were directly compared between 

the bulk and single cell libraries.  CNVs less than 1 megabase could not be 

called with confidence, however, if they overlapped between the bulk and 

single cell libraries, they were called as CNVs.  Any further discrepancies were 

not clarified, as it is unclear whether these are true somatic CNVs, false 

positive, or false negative CNV calls.  Following CNV calling, the CNVs were 

analyzed and sorted based on function using the UCSC genome browser. 

 

4.4:  Results 
	
  

We applied MIDAS to the characterization of copy number variation in 

single mammalian cells. The higher cognitive function of the human brain is 

supported by a complex network of neurons and glia. It has long been thought 

that all cells in a human brain share the same genome. Recent evidence 

suggests that individual neurons could have non-identical genomes owing to 
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aneuploidy44-47, active retrotransposons48, 49 and other DNA content 

variation50. However, the presence of somatic genetic variation in individual 

neurons has not been conclusively demonstrated at the single-genome scale.  

 To demonstrate the viability of MIDAS as a tool for investigating copy 

number variation in single primary human neurons, we prepared nuclei from 

one post-mortem brain sample from a healthy female donor and a second 

post-mortem brain sample from a female individual with Down Syndrome.  We 

purified cortical neuronal nuclei by flow sorting based on neuron-specific NeuN 

antibody staining. We generated six sequencing libraries (two disease-free 

and four Down Syndrome) from individual nuclei using MIDAS, and analyzed 

the data using a method based on circular binary segmentation to call copy 

number variation (CNV)42 (Table 4.1). Raw sequencing reads were divided 

into 49,891 genomic bins ~60 kb in size, each of which had been previously 

determined to contain a similar number of sequencing reads in a fully diploid 

cell42.  Although clonal read counts arising from PCR duplication appeared 

relatively high, this is a consequence of the low-input Nextera library 

construction protocol; because the amplification is limited, the amount of initial 

molecules is smaller, leading to more duplicates. However, the reduction in 

bias compensated for the apparent decrease in usable read count.  We 

similarly observed a marked reduction of amplification bias in the MIDAS 

libraries when compared to the conventional in-tube MDA-based method (Fig. 

2.6c,d). However, both MIDAS and in-tube MDA had higher levels of 

sequencing bias and variability than data generated from unamplified genomic 
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DNA from 4,000 mammalian cells, though the bias in MIDAS was only slightly 

higher.  We desired to determine the minimum bin size such that MIDAS 

derived single neuronal could approximated bulk libaries.  Using a larger bin 

size of ~240kb (which results in a lower-resolution analysis) allowed MIDAS to 

match the level of bias from unamplified genomic DNA. 

 We next sought to characterize the sensitivity of detecting single copy-

number changes. It was not possible to distinguish true copy number 

differences from random amplification bias for the conventional single-cell 

MDA data, even with aggressive binning into large genomic regions. However, 

the uniform genome coverage in the MIDAS libraries allowed clear detection of 

Trisomy 21 in each of the Down Syndrome nuclei, where trisomy could not be 

detected in any in-tube MDA based library (Figure 4.1a, b).  The extreme 

biases, indicated by large spikes followed by regions of little coverage, 

additionally lead to many small false positive CNV calls.   

Rigorous validation of single-cell sequencing methods has been 

extremely challenging, primarily because any single cell might have genomic 

differences that are not detectable in the bulk cell population. Hence, there is 

no reference genome that single-cell data can be compared to.  To determine 

the CNV detection limit of MIDAS, we computationally simulated sequencing 

data sets containing reference CNV events 1 or 2 Mb in size. We randomly 

selected 1 or 2 Mbps regions of either chromosome 21 (to simulate the gain of 

a single copy, the smallest possible copy number change) or chromosome 4 

(as a negative control), and computationally transplanted these regions into 
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100 other random genomic locations (Table 4.2).  This computational 

approach, similar to a strategy previously used for assessing sequencing 

errors67, yielded data sets containing reference CNVs at known positions 

without affecting the inherent technical noise in the data. We identified 99/100 

of 2 Mb T21 insertions and 80/100 of 1 Mb T21 insertions in the simulated 

data set from Down Syndrome Cell 1, indicating that MIDAS is able to call 

copy number events at the megabase-scale with high sensitivity (Figure 4.1c, 

Table 4.2). As expected, detection levels in the other data sets were similar for 

libraries with sufficient sequencing depth (80/100 for Down Syndrome Cell 2, 

99/100 for Down Syndrome Cell 4), while libraries with insufficient sequencing 

depth could not be used for accurate small CNV calling (32/100 for Down 

Syndrome Cell 3).  However, this issue can be easily solved by increasing the 

sequencing depth.  As expected, the insertion of diploid chromosome 4 

regions did not generate any copy number calls.  High-fidelity CNV calling 

(96%) at the 2 Mb level was retained even when 20% additional random 

technical noise was applied to the read count results (Figure 4.2).  Therefore, 

batch effects in library preparation should cause little changes in accurately 

calling CNVs.  When the same simulation was performed with data from 

traditional in-tube MDA libraries, no T21 insertions were detected due to the 

large amounts of biases and variations in the libraries, indicating that at this 

level of sequencing depth, traditional MDA-based methods are unable to call 

small CNVs (Figure 4d), and thus prove insufficient in for non-cancerous 

single cell CNV calling.  
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 We next performed CNV calling on each individual neuron using the 

parameters calibrated by the T21 transplantation simulation. MIDAS called 9–

18 copy number events in each neuron (Table 4.3). Only 8/60 called CNV 

events were larger than 2 Mb, and only 13/60 were larger than 1 Mb.  It 

remained unclear whether the remaining events represented true copy number 

changes or whether they were false positives owing to the small size of most 

of the calls.  It was also unclear which CNV calls represented somatic copy 

number variation and which represented germline CNV calls that might have 

been missed in one sample.   

To address these issues and further probe the ability of MIDAS to 

identify germline and de novo CNV events, we performed library construction 

and sequencing on unamplified genomic DNA from two pools of ~4,000 

neuronal nuclei from the healthy donor, and compared the results to those 

obtained from the same donor’s single neuronal nuclei (Table 4.3).  We 

identified 22 CNV events in the unamplified libraries, of which only two were 

not shared between the two pools, further confirming the accuracy of the CNV 

calling algorithm. The discordant CNVs are likely false positive or false 

negative CNV calls in one sample.  However, no CNV events identified in the 

pools were larger than 1 Mb. This finding is not surprising, as germline CNV 

events with size greater than 1 Mb do not commonly occur43.  Although 

MIDAS does not have sufficient specificity when calling CNVs smaller than 1 

Mb, we investigated how many small germline CNVs could be identified in the 

single cell libraries, and found that 75% were detected.  Overall, based on the 
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T21 computational transplantation results, it appears that the six human 

neurons contain an average of 2.2 regions each with a somatic gain of one 

copy at the megabase scale, and that several smaller CNV events might also 

be present. Following analysis using the UCSC genome browser68, it was that 

many of the genes found to have CNVs in the single neuronal nuclei are 

involved in protease inhibition, vesicle formation, and coagulation (Table 4.4).  

At this point, it is unclear whether the smaller, sub-megabase, CNVs are true 

somatic CNVs, or false positive/false negative CNVs.  Higher depth 

sequencing might further improve the resolution of the CNV calling algorithm 

such that CNVs smaller than 1 megabase can be accurately called. 

It should also be noted that a Hidden Markov Model (HMM) was also 

employed to call CNVs, which found little success.  Although previously used 

to call CNVs on single cancer cell data22, we found several issues with the 

HMM method.  First, the model required a control cell for comparison.  As 

cancer samples can easily use non-cancerous cells from the sample subject 

as a control, we did not have that luxury, as only brain cells were available.  

Secondly, the numbers reported in the transmissions and emission matrices 

seemed somewhat arbitrary, and could vary greatly amongst samples.  We did 

not have any method to accurately determine these numbers, and by varying 

the numbers slightly, the results drastically changed.  Last, due to the nature 

of HMMs, a slight increase in read count for a given bin could result in a copy 

number change.  As a 33% change is needed for a copy number increase 

from 2 to 3, and a 50% change is needed for a copy number decrease from 2 
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to 1, we found that as little as a 10% change in read count for a given bin 

resulted in a false copy number increase or decrease. 

 

4.5:  Conclusions 
	
  

We have shown that the minimal biases created in MIDAS derived 

libraries result in the ability to undoubtedly call CNVs at the whole 

chromosome level.  Comparisons to a standard in-tube MDA derived libraries 

clearly display vast improvements in CNV calling, since these in-tube MDA 

libraries cannot even be used to call whole trisomy in chromosome 21.  

Furthermore, the amplification biases resulted in several small false positive 

CNV calls, which were minimized in the MIDAS derived libraries. 

 The computational spike-ins allowed us to determine the specificity of 

the CNV calling algorithm for both the MIDAS and in-tube derived libraries.  

Positive CNVs were simulated by swapping bins with copy number 3 into 

those with copy number 2 in random chromosomal positions.  Due to minimal 

biases and noise throughout the whole genome, the CBS based algorithm was 

able to accurately call up to 99% of 2 megabase spike-ins, and up to 80% of 1 

megabase spike-ins in the MIDAS derived libraries.  The diploid spike-in (from 

chromosome 4) caused no false positive CNV calls.  Furthermore, technical 

noise was computationally added, and with up to 20% technical variability, 

CNVs could accurately be called.  Thus, amplification and library construction 

could be conceivably performed multiple times with little change in the results. 
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 Although the modified CBS algorithm could accurately call CNVs 

greater than 1 megabase, most of the CNVs called in the single neuronal 

libraries were smaller than 1 megabase, and thus could not be called with any 

certainty.  To address this issue, we compared CNVs across the single 

neuronal libraries to those found in bulk libraries.  As much as 75% of the 

CNVs found in the bulk libraries were also found in the single cell libraries.  As 

previously mentioned, it is unclear whether the remaining 25% are true 

somatic CNVs or false negatives.  Additionally, many novel CNVs were 

observed in each single cell library, and it is also unclear whether these are 

somatic CNVs or false positives.  Further analysis and sequencing is 

necessary to accurately and efficiently determine true CNVs that are less than 

1 megabase. 
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Figure 4.1:  Detection of copy number variants using MIDAS and in-tube 
MDA. 
(a) Copy number variation in a Down Syndrome single cell analyzed with 
MIDAS.  The x-axis shows genomic position, while the y-axis shows (on a log2 
scale) the estimated copy number as a red line. (b) Copy number variation in a 
Down Syndrome single cell analyzed with traditional in-tube MDA.  The x-axis 
shows genomic position, while the y-axis shows (in a log2 scale) the estimated 
copy number as a red line. (c) Copy number variation in a Down Syndrome 
single cell with Trisomy 21 “spike-ins.”  The x-axis shows genomic position, 
while the y-axis shows (in a log2 scale) the estimated copy number as a red 
line.  At each arrow, prior to CNV calling, data from a randomly determined 2 
Mb section of Trisomy chromosome 21 was computationally inserted into the 
genome, simulating a small gain of single copy event.  At each location, a 
copy number variant was called, showing that MIDAS can detect 2 Mb copy 
number variation accurately. (d) Copy number variation in a Down Syndrome 
single cell with Trisomy 21 “spike-ins.”  The x-axis shows genomic position, 
while the y-axis shows (on a log2 scale) the estimated copy number as a red 
line.  
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Figure 4.2:  MIDAS identifies 2 Mb spike-in CNVs even with 20% 
additional technical noise   
Random noise was generated using a uniform distribution ranging between 
±(scaling factor × mean), where the scaling factor was varied.  MIDAS was 
able to tolerate approximately 20% additional random technical noise in terms 
of read counts and still accurately call 2 Mb spike-in CNVs. 
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Table 4.1:  Single neuron and unamplified neuron cellular pool 
sequencing statistics  
Total number of reads, uniquely mapped reads, clonal reads, and usable 
reads are reported for each neuronal library.  Reads mapping to more than 
one position in the human genome were excluded from analysis. 

Cell 
Total 

Number of 
Reads 

# of Uniquely Mapped 
Reads (%) # of Clonal Reads (%) # of Usable 

Reads 

Normal 1 9,624,192 7,013,494 (72.87) 3,122,574 (44.52) 3,890,920 
Normal 2 11,975,698 9,121,607 (76.17) 2,770,985 (30.38) 6,350,622 
Down 
Syndrome 1 33,467,888 21,917,127 (65.49) 16,517,878 (75.37) 5,399,249 
Down 
Syndrome 2 31,036,314 19,834,388 (63.91) 17,559,742 (88.53) 2,274,646 
Down 
Syndrome 3 17,251,349 10,740,824 (62.26) 9,406,037 (87.57) 1,334,787 
Down 
Syndrome 4 25,273,979 15,349,190 (60.73) 11,803,624 (76.9) 3,545,566 
Normal Pool 
1 24,008,671 18,192,924 (75.78) 348,668 (1.92) 17,844,256 

Normal Pool 
2 18,924,248 14,391,747 (76.05) 240,103 (1.67) 14,151,644 
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Table 4.2:  Artificial CNV transplantation statistics  
Each genomic location used for calling of artificial CNVs is shown, along with 
whether or not MIDAS was able to call the artificial CNV. Only spike-ins of 
Trisomy Chromosome 21 from MIDAS samples generated CNV calls; spiking 
in either MIDAS Chromosome 4 or Trisomy Chromosome 21 from the 
traditional MDA-based method did not result in any artificial CNV calls. 

2 Mb Spike-in 
Region 

1 Mb Spike-in 
Region 

chr21 2 Mb 
Spike-in 

chr21 1 Mb 
Spike-in 

2 Mb 
Spike-in 

Detected? 

1 Mb 
Spike-in 

Detected? 
chr1:35,953,938-
37,889,989 

chr1:35,953,938-
36,992,975 

chr21:15,869,057-
17,759,721 

chr21:15,869,057-
16,841,316 Yes Yes 

chr1:91,042,930-
93,048,451 

chr1:91,042,930-
92,070,940 

chr21:35,733,857-
37,620,466 

chr21:35,733,857-
36,687,022 Yes Yes 

chr1:98,284,802-
100,167,143 

chr1:98,284,802-
99,236,989 

chr21:31,329,048-
33,234,529 

chr21:31,329,048-
32,284,116 Yes Yes 

chr1:101,720,184-
103,622,384 

chr1:101,720,184-
102,680,542 

chr21:15,549,571-
17,439,036 

chr21:15,549,571-
16,523,267 Yes Yes 

chr1:158,948,121-
160,904,574 

chr1:158,948,121-
159,956,586 

chr21:43,947,454-
45,973,419 

chr21:43,947,454-
45,032,873 Yes Yes 

chr1:180,612,063-
182,538,641 

chr1:180,612,063-
181,604,263 

chr21:18,144,565-
20,109,045 

chr21:18,144,565-
19,193,040 Yes No 

chr1:219,167,316-
221,099,504 

chr1:219,167,316-
220,161,764 

chr21:37,382,817-
39,338,993 

chr21:37,382,817-
38,415,585 Yes No 

chr1:241,304,468-
243,539,334 

chr1:241,304,468-
242,305,206 

chr21:45,256,736-
47,160,835 

chr21:45,256,736-
46,250,492 Yes Yes 

chr2:47,279,743-
49,257,602 

chr2:47,279,743-
48,315,884 

chr21:43,895,354-
45,919,088 

chr21:43,895,354-
44,976,485 Yes Yes 

chr2:51,016,978-
52,900,279 

chr2:51,016,978-
51,977,475 

chr21:28,485,490-
30,475,416 

chr21:28,485,490-
29,548,591 Yes Yes 

chr2:120,917,453-
122,818,393 

chr2:120,917,453-
121,860,157 

chr21:20,701,039-
22,557,692 

chr21:20,701,039-
21,663,245 Yes Yes 

chr2:139,284,812-
141,151,575 

chr2:139,284,812-
140,248,942 

chr21:21,715,029-
23,559,945 

chr21:21,715,029-
22,661,749 Yes No 

chr2:151,537,791-
153,484,681 

chr2:151,537,791-
152,544,463 

chr21:19,016,794-
20,913,230 

chr21:19,016,794-
20,003,839 Yes No 

chr2:175,346,199-
177,271,180 

chr2:175,346,199-
176,315,579 

chr21:17,384,295-
19,361,384 

chr21:17,384,295-
18,362,470 Yes No 

chr2:204,550,336-
206,420,645 

chr2:204,550,336-
205,511,965 

chr21:46,087,520-
47,989,191 

chr21:46,087,520-
47,051,166 Yes No 

chr2:240,935,763-
242,873,950 

chr2:240,935,763-
241,911,231 

chr21:45,534,869-
47,430,139 

chr21:45,534,869-
46,517,024 Yes Yes 

chr3:21,457,475-
23,388,030 

chr3:21,457,475-
22,429,886 

chr21:17,384,295-
19,361,384 

chr21:17,384,295-
18,362,470 Yes No 

chr3:29,794,211-
31,649,290 

chr3:29,794,211-
30,766,280 

chr21:32,609,078-
34,563,159 

chr21:32,609,078-
33,620,107 Yes Yes 

chr3:64,759,471-
66,748,898 

chr3:64,759,471-
65,729,410 

chr21:25,797,240-
27,686,265 

chr21:25,797,240-
26,755,429 Yes Yes 

chr3:94,728,396-
96,639,499 

chr3:94,728,396-
95,718,372 

chr21:29,548,591-
31,432,266 

chr21:29,548,591-
30,529,736 Yes Yes 

chr3:131,350,124-
133,321,647 

chr3:131,350,124-
132,355,013 

chr21:20,380,269-
22,240,402 

chr21:20,380,269-
21,341,117 Yes Yes 

chr3:169,532,039-
171,494,322 

chr3:169,532,039-
170,559,996 

chr21:43,312,554-
45,314,840 

chr21:43,312,554-
44,279,997 Yes Yes 

chr3:190,659,728-
192,553,633 

chr3:190,659,728-
191,648,743 

chr21:45,699,913-
47,592,766 

chr21:45,699,913-
46,673,526 Yes Yes 

chr4:26,717,043-
28,591,712 

chr4:26,717,043-
27,687,706 

chr21:34,563,159-
36,473,184 

chr21:34,563,159-
35,575,904 Yes Yes 
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Table 4.2:  Artificial CNV transplantation statistics (continued) 
 

2 Mb Spike-in 
Region 

1 Mb Spike-in 
Region 

chr21 2 Mb 
Spike-in 

chr21 1 Mb 
Spike-in 

2 Mb 
Spike-in 

Detected? 

1 Mb 
Spike-in 

Detected? 
chr4:41,807,132-
43,732,453 

chr4:41,807,132-
42,806,118 

chr21:46,195,641-
48,129,895 

chr21:46,195,641-
47,160,835 Yes No 

chr4:47,152,041-
52,814,683 

chr4:47,152,041-
48,136,122 

chr21:41,811,953-
43,737,990 

chr21:41,811,953-
42,776,109 Yes Yes 

chr4:55,036,501-
56,991,161 

chr4:55,036,501-
56,032,590 

chr21:38,137,201-
40,021,631 

chr21:38,137,201-
39,127,553 Yes Yes 

chr4:59,922,675-
61,851,268 

chr4:59,922,675-
60,922,058 

chr21:41,100,954-
43,045,476 

chr21:41,100,954-
42,076,268 Yes Yes 

chr4:62,174,303-
64,098,264 

chr4:62,174,303-
63,153,820 

chr21:39,759,243-
41,648,348 

chr21:39,759,243-
40,718,810 Yes Yes 

chr4:68,752,406-
70,866,031 

chr4:68,752,406-
69,818,131 

chr21:20,965,576-
22,821,144 

chr21:20,965,576-
21,926,708 Yes Yes 

chr4:120,492,349-
122,402,672 

chr4:120,492,349-
121,477,609 

chr21:26,012,981-
27,901,092 

chr21:26,012,981-
26,970,320 Yes Yes 

chr4:122,895,270-
124,846,586 

chr4:122,895,270-
123,899,166 

chr21:31,013,874-
32,887,206 

chr21:31,013,874-
31,960,666 Yes Yes 

chr4:147,655,266-
149,580,558 

chr4:147,655,266-
148,648,700 

chr21:33,344,236-
35,307,614 

chr21:33,344,236-
34,350,216 Yes Yes 

chr5:42,837,955-
44,872,058 

chr5:42,837,955-
43,916,598 

chr21:25,960,034-
27,848,628 

chr21:25,960,034-
26,918,132 Yes Yes 

chr5:75,108,161-
77,082,347 

chr5:75,108,161-
76,129,009 

chr21:23,559,945-
25,429,916 

chr21:23,559,945-
24,529,659 Yes Yes 

chr5:87,692,054-
89,588,135 

chr5:87,692,054-
88,655,990 

chr21:16,576,891-
18,476,000 

chr21:16,576,891-
17,549,158 Yes Yes 

chr5:103,446,408-
105,320,978 

chr5:103,446,408-
104,415,213 

chr21:37,328,729-
39,286,544 

chr21:37,328,729-
38,356,392 Yes No 

chr5:112,313,258-
114,258,965 

chr5:112,313,258-
113,297,312 

chr21:36,161,668-
38,084,299 

chr21:36,161,668-
37,109,297 Yes Yes 

chr5:138,855,793-
140,840,449 

chr5:138,855,793-
139,867,090 

chr21:17,264,941-
19,246,363 

chr21:17,264,941-
18,248,286 Yes No 

chr5:143,451,255-
145,392,608 

chr5:143,451,255-
144,448,400 

chr21:37,972,811-
39,864,943 

chr21:37,972,811-
38,971,124 Yes Yes 

chr5:151,514,438-
153,460,134 

chr5:151,514,438-
152,525,509 

chr21:40,127,624-
42,024,470 

chr21:40,127,624-
41,100,954 Yes Yes 

chr6:42,942,145-
44,895,345 

chr6:42,942,145-
43,948,491 

chr21:27,952,868-
29,915,446 

chr21:27,952,868-
28,908,233 Yes Yes 

chr6:46,028,017-
47,924,616 

chr6:46,028,017-
46,996,571 

chr21:24,257,335-
26,118,999 

chr21:24,257,335-
25,216,223 Yes Yes 

chr6:55,721,707-
58,501,072 

chr6:55,721,707-
56,691,195 

chr21:43,947,454-
45,973,419 

chr21:43,947,454-
45,032,873 Yes Yes 

chr6:79,811,072-
81,774,818 

chr6:79,811,072-
80,802,629 

chr21:34,402,142-
36,316,410 

chr21:34,402,142-
35,416,887 Yes No 

chr6:137,141,139-
139,051,493 

chr6:137,141,139-
138,109,997 

chr21:25,271,009-
27,132,790 

chr21:25,271,009-
26,223,918 Yes Yes 

chr7:27,905,786-
29,810,788 

chr7:27,905,786-
28,850,665 

chr21:45,145,316-
47,051,166 

chr21:45,145,316-
46,142,620 Yes Yes 

chr7:37,524,768-
39,414,023 

chr7:37,524,768-
38,513,924 

chr21:41,212,176-
43,151,199 

chr21:41,212,176-
42,183,940 Yes Yes 

chr7:56,531,510-
63,813,298 

chr7:56,531,510-
62,248,786 

chr21:29,759,604-
31,643,582 

chr21:29,759,604-
30,743,560 Yes Yes 
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Table 4.2:  Artificial CNV transplantation statistics (continued) 
2 Mb Spike-in 

Region 
1 Mb Spike-in 

Region 
chr21 2 Mb 

Spike-in 
chr21 1 Mb 

Spike-in 

2 Mb 
Spike-in 

Detected? 

1 Mb 
Spike-in 

Detected? 
chr8:78,929,030-
80,820,600 

chr8:78,929,030-
79,895,407 

chr21:18,248,286-
20,218,830 

chr21:18,248,286-
19,304,425 Yes No 

chr9:1,055,886-
2,968,704 

chr9:1,055,886-
2,053,043 

chr21:45,145,316-
47,051,166 

chr21:45,145,316-
46,142,620 Yes Yes 

chr9:26,653,725-
28,577,848 

chr9:26,653,725-
27,652,274 

chr21:45,200,702-
47,107,423 

chr21:45,200,702-
46,195,641 Yes Yes 

chr9:78,438,145-
80,383,381 

chr9:78,438,145-
79,427,903 

chr21:29,602,048-
31,485,060 

chr21:29,602,048-
30,583,583 Yes Yes 

chr9:85,352,360-
87,347,753 

chr9:85,352,360-
86,341,914 

chr21:36,473,184-
38,415,585 

chr21:36,473,184-
37,439,834 Yes Yes 

chr9:108,943,484-
110,868,831 

chr9:108,943,484-
109,924,645 

chr21:30,027,091-
31,908,111 

chr21:30,027,091-
31,013,874 Yes Yes 

chr9:136,054,731-
138,033,870 

chr9:136,054,731-
137,134,437 

chr21:27,357,146-
29,249,735 

chr21:27,357,146-
28,326,314 Yes No 

chr9:138,851,087-
140,884,555 

chr9:138,851,087-
139,905,741 

chr21:41,432,175-
43,366,620 

chr21:41,432,175-
42,401,776 Yes Yes 

chr10:37,235,643-
43,386,249 

chr10:37,235,643-
38,367,612 

chr21:29,438,499-
31,329,048 

chr21:29,438,499-
30,420,106 Yes Yes 

chr10:50,517,442-
53,244,584 

chr10:50,517,442-
52,259,071 

chr21:41,265,140-
43,202,177 

chr21:41,265,140-
42,236,377 Yes Yes 

chr10:84,733,418-
86,669,139 

chr10:84,733,418-
85,709,427 

chr21:30,027,091-
31,908,111 

chr21:30,027,091-
31,013,874 Yes Yes 

chr11:1,155,181-
3,103,945 

chr11:1,155,181-
2,197,444 

chr21:32,662,136-
34,618,144 

chr21:32,662,136-
33,675,918 Yes Yes 

chr11:60,102,184-
62,149,657 

chr11:60,102,184-
61,169,073 

chr21:33,454,741-
35,416,887 

chr21:33,454,741-
34,454,555 Yes Yes 

chr11:87,270,689-
89,838,290 

chr11:87,270,689-
88,321,483 

chr21:27,572,323-
29,548,591 

chr21:27,572,323-
28,537,710 Yes Yes 

chr11:90,997,546-
92,889,388 

chr11:90,997,546-
91,975,942 

chr21:38,031,056-
39,916,751 

chr21:38,031,056-
39,023,029 Yes Yes 

chr11:109,670,892
-111,573,136 

chr11:109,670,892
-110,675,346 

chr21:32,174,455-
34,132,773 

chr21:32,174,455-
33,174,429 Yes Yes 

chr11:116,094,960
-118,005,159 

chr11:116,094,960
-117,087,728 

chr21:21,017,554-
22,872,356 

chr21:21,017,554-
21,979,621 Yes Yes 

chr11:125,026,409
-126,921,222 

chr11:125,026,409
-126,022,156 

chr21:28,695,036-
30,689,040 

chr21:28,695,036-
29,759,604 Yes Yes 

chr12:49,227,100-
51,283,876 

chr12:49,227,100-
50,281,689 

chr21:45,145,316-
47,051,166 

chr21:45,145,316-
46,142,620 Yes Yes 

chr12:52,063,249-
54,036,936 

chr12:52,063,249-
53,042,314 

chr21:44,467,407-
46,465,237 

chr21:44,467,407-
45,534,869 Yes Yes 

chr12:93,762,836-
95,714,509 

chr12:93,762,836-
94,755,100 

chr21:22,083,898-
23,935,965 

chr21:22,083,898-
23,028,045 Yes No 

chr12:105,555,128
-107,478,702 

chr12:105,555,128
-106,536,849 

chr21:34,509,021-
36,421,675 

chr21:34,509,021-
35,521,899 Yes Yes 

chr12:125,199,005
-127,114,720 

chr12:125,199,005
-126,193,374 

chr21:41,265,140-
43,202,177 

chr21:41,265,140-
42,236,377 Yes Yes 

chr13:20,265,706-
22,292,811 

chr13:20,265,706-
21,295,812 

chr21:21,286,351-
23,135,668 

chr21:21,286,351-
22,240,402 Yes Yes 

chr13:72,352,465-
74,251,208 

chr13:72,352,465-
73,311,492 

chr21:32,067,733-
34,023,166 

chr21:32,067,733-
33,061,883 Yes No 

chr13:111,996,474
-114,071,865 

chr13:111,996,474
-113,130,054 

chr21:30,475,416-
32,337,385 

chr21:30,475,416-
31,432,266 Yes Yes 
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Table 4.2:  Artificial CNV transplantation statistics (continued) 
2 Mb Spike-in 

Region 
1 Mb Spike-in 

Region 
chr21 2 Mb 

Spike-in 
chr21 1 Mb 

Spike-in 

2 Mb 
Spike-in 

Detected? 

1 Mb 
Spike-in 

Detected? 
chr14:40,383,400-
42,297,026 

chr14:40,383,400-
41,368,453 

chr21:16,421,666-
18,309,003 

chr21:16,421,666-
17,384,295 Yes No 

chr14:47,205,765-
49,129,974 

chr14:47,205,765-
48,164,135 

chr21:36,842,693-
38,809,659 

chr21:36,842,693-
37,864,928 Yes No 

chr14:49,785,308-
51,764,266 

chr14:49,785,308-
50,827,716 

chr21:34,618,144-
36,526,570 

chr21:34,618,144-
35,629,603 Yes Yes 

chr14:54,010,611-
55,940,946 

chr14:54,010,611-
54,992,372 

chr21:16,317,320-
18,197,321 

chr21:16,317,320-
17,264,941 Yes Yes 

chr14:58,280,794-
60,215,080 

chr14:58,280,794-
59,282,961 

chr21:20,808,528-
22,661,749 

chr21:20,808,528-
21,768,367 Yes Yes 

chr14:65,798,341-
67,757,790 

chr14:65,798,341-
66,798,253 

chr21:45,087,470-
46,993,898 

chr21:45,087,470-
46,087,520 Yes Yes 

chr14:69,993,123-
71,950,871 

chr14:69,993,123-
70,999,014 

chr21:40,718,810-
42,616,819 

chr21:40,718,810-
41,704,149 Yes Yes 

chr14:79,855,300-
81,757,060 

chr14:79,855,300-
80,828,708 

chr21:26,970,320-
28,855,428 

chr21:26,970,320-
27,952,868 Yes Yes 

chr15:34,986,155-
36,878,959 

chr15:34,986,155-
35,976,285 

chr21:31,643,582-
33,561,518 

chr21:31,643,582-
32,609,078 Yes Yes 

chr15:79,683,541-
81,583,565 

chr15:79,683,541-
80,679,599 

chr21:40,551,918-
42,454,621 

chr21:40,551,918-
41,542,378 Yes Yes 

chr16:47,776,123-
49,696,183 

chr16:47,776,123-
48,790,979 

chr21:40,127,624-
42,024,470 

chr21:40,127,624-
41,100,954 Yes No 

chr16:73,420,082-
75,485,559 

chr16:73,420,082-
74,472,527 

chr21:23,935,965-
25,797,240 

chr21:23,935,965-
24,896,759 Yes Yes 

chr17:4,089,647-
6,142,294 

chr17:4,089,647-
5,192,301 

chr21:36,421,675-
38,356,392 

chr21:36,421,675-
37,382,817 Yes Yes 

chr17:13,450,820-
15,379,070 

chr17:13,450,820-
14,460,546 

chr21:46,195,641-
48,129,895 

chr21:46,195,641-
47,160,835 Yes Yes 

chr17:37,373,102-
39,387,990 

chr17:37,373,102-
38,433,119 

chr21:35,307,614-
37,163,621 

chr21:35,307,614-
36,264,921 Yes Yes 

chr17:42,946,627-
45,535,886 

chr17:42,946,627-
44,092,717 

chr21:39,023,029-
40,887,012 

chr21:39,023,029-
39,970,006 Yes Yes 

chr17:62,034,684-
64,166,903 

chr17:62,034,684-
63,235,801 

chr21:23,770,888-
25,639,505 

chr21:23,770,888-
24,739,139 Yes Yes 

chr18:42,248,309-
44,139,666 

chr18:42,248,309-
43,192,657 

chr21:36,900,623-
38,861,882 

chr21:36,900,623-
37,919,721 Yes No 

chr19:24,366,238-
29,680,778 

chr19:24,366,238-
28,755,127 

chr21:20,965,576-
22,821,144 

chr21:20,965,576-
21,926,708 Yes Yes 

chr20:47,231,329-
49,203,437 

chr20:47,231,329-
48,237,944 

chr21:16,630,136-
18,541,644 

chr21:16,630,136-
17,604,225 Yes Yes 

chr22:49,539,479-
51,909,988 

chr22:49,539,479-
50,562,673 

chr21:30,361,934-
32,231,305 

chr21:30,361,934-
31,329,048 Yes Yes 
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Table 4.3:  Copy number events called in each single neuron or pooled sample 
All identified copy number events in each sample are listed, along with the size of the 
CNV in actual base pairs and number of base pairs in the CNV that were non-
repetitive according to a previously published algorithm8. Unique CNVs are presented 
in black text, while CNVs shared between one or more samples are presented in red 
(if a CNV call was partially identified in another sample) or bold (if a CNV call was 
fully identified in another sample).  Aside from Trisomy 21 (identified in all three Down 
Syndrome cells), most CNV calls were fairly small in both size and non-repetitive size.  
No germline CNVs above 1 Mb in size were detected in the pools of unamplified cells 
from the healthy donor.  Despite this, MIDAS was able to call 75% of these smaller 
germline CNVs in the single cells. DS refers to Down Syndrome. 

Sample CNV 
# Chr. Start End Copy 

# Size 
Size 

(Valid Genomic 
Regions) 

CNV 
Type 

Normal 
1 1 1 16,949,551 17,257,431 5 307,881 120,000 Germline 

Normal 
1 3 1 147,802,093 149,049,044 3 1,246,952 120,000 Germline 

Normal 
1 4 2 133,000,723 133,135,043 4 134,321 120,000 Germline 

Normal 1 7 3 75,275,861 76,035,772 3 759,912 420,000 Germline 
Normal 

1 11 4 190,664,845 191,154,276 4 489,432 240,000 Germline 

Normal 
1 16 6 32,526,395 32,645,736 1 119,342 120,000 Germline 

Normal 
1 18 8 39,308,029 39,363,306 1 55,278 60,000 Germline 

Normal 
1 24 10 47,008,316 47,538,599 4 530,284 180,000 Germline 

Normal 
1 30 11 48,858,583 48,959,202 4 100,620 60,000 Germline 

Normal 1 32 11 122,887,817 123,010,937 1 123,121 120,000 Somatic 
Normal 

1 37 15 34,761,777 34,873,738 1 111,962 60,000 Germline 

Normal 1 38 16 3,762,009 3,818,563 1 56,555 60,000 Somatic 
Normal 1 39 16 32,340,630 34,746,226 3 2,405,597 1,140,000 Germline 
Normal 

1 40 16 71,141,287 71,246,392 7 105,106 60,000 Germline 

Normal 
1 44 17 21,257,685 21,374,155 3 116,471 120,000 Germline 

Normal 1 46 17 77,452,319 77,652,085 4 199,767 60,000 Somatic 
Normal 1 54 20 29,449,066 29,811,435 4 362,370 120,000 Germline 
Normal 

2 1 1 16,949,551 17,257,431 4 307,881 120,000 Germline 

Normal 2 2 1 34,347,191 34,666,699 3 319,509 360,000 Somatic 
Normal 

2 3 1 147,802,093 149,049,044 4 1,246,952 120,000 Germline 

Normal 2 4 2 132,846,449 133,135,043 3 288,595 180,000 Germline 

Normal 2 7 3 75,803,231 75,901,346 4 98,116 60,000 Germline 
Normal 2 8 3 195,457,070 195,525,025 3 67,956 60,000 Somatic 
Normal 2 14 6 0 358,119 3 358,120 180,000 Germline 
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Table 4.3:  Copy number events called in each single neuron or pooled sample 
(continued) 

Sample CNV 
# Chr. Start End Copy 

# Size 
Size 

(Valid Genomic 
Regions) 

CNV 
Type 

Normal 2 39 16 34,410,499 34,746,226 3 335,728 360,000 Somatic 
Normal 

2 40 16 71,141,287 71,246,392 9 105,106 60,000 Germline 
Normal 

2 44 17 21,257,685 21,374,155 3 116,471 120,000 Germline 

Normal 2 47 18 59,103,041 59,431,597 3 328,557 360,000 Somatic 
Normal 2 53 20 25,753,877 29,868,184 3 4,114,308 420,000 Somatic 
Normal 2 55 20 35,971,800 36,129,265 3 157,466 180,000 Somatic 

DS 1 11 4 190,664,845 191,154,276 5 489,432 240,000 Germline 
DS 1 18 8 39,308,029 39,363,306 0 55,278 60,000 Germline 
DS 1 19 8 133,002,438 133,213,163 3 210,726 240,000 Somatic 
DS 1 20 8 133,849,747 134,259,686 4 409,940 480,000 Somatic 
DS 1 23 10 38,869,769 42,858,972 7 3,989,204 240,000 Germline 
DS 1 24 10 47,008,316 50,466,755 3 3,458,440 2,040,000 Germline 
DS 1 26 10 69,854,431 70,514,102 1 659,672 660,000 Somatic 

DS 1 28 11 42,988,580 43,047,328 1 58,749 60,000 Somatic 
DS 1 29 11 47,457,209 48,298,148 1 840,940 840,000 Somatic 
DS 1 40 16 71,141,287 71,246,392 12 105,106 60,000 Germline 
DS 1 41 16 75,196,555 75,609,280 1 412,726 420,000 Somatic 
DS 1 42 16 82,709,545 82,811,813 1 102,269 120,000 Somatic 
DS 1 43 17 10,708,923 12,583,225 3 1,874,303 2,040,000 Somatic 

DS 1 54 20 29,449,066 29,868,184 6 419,119 180,000 Germline 
DS 1 56 20 42,392,899 43,933,855 3 1,540,957 1,680,000 Somatic 
DS 1 57 21 14,432,540 22,240,402 3 7,807,863 7,800,000 Germline 
DS 1 57 21 23,455,005 37,620,466 3 14,165,462 15,600,000 Germline 
DS 1 57 21 37,684,932 48,129,895 3 10,444,964 11,340,000 Germline 
DS 2 5 2 229,504,954 230,098,069 4 593,116 660,000 Somatic 

DS 2 11 4 190,664,845 191,154,276 6 489,432 240,000 Germline 
DS 2 23 10 38,869,769 42,858,972 11 3,989,204 240,000 Germline 
DS 2 25 10 65,820,124 67,011,981 3 1,191,858 1,320,000 Somatic 
DS 2 39 16 34,002,234 34,220,262 11 218,029 60,000 Germline 
DS 2 49 19 29,082,056 29,963,452 3 881,397 960,000 Somatic 
DS 2 51 19 53,713,097 54,039,720 1 326,624 300,000 Germline 

DS 2 54 20 29,449,066 29,927,709 7 478,644 240,000 Germline 
DS 2 57 21 14,432,540 17,707,137 3 3,274,598 2,820,000 Germline 
DS 2 57 21 17,817,443 17,434,016 3 -383,426 33,600,000 Germline 
DS 3 4 2 133,000,723 133,135,043 12 134,321 120,000 Germline 
DS 3 15 6 30,059,760 31,464,153 1 1,404,394 1,440,000 Somatic 
DS 3 21 9 26,272,740 26,876,123 1 603,384 660,000 Somatic 

DS 3 22 9 108,142,068 108,196,729 0 54,662 60,000 Somatic 
DS 3 23 10 38,869,769 42,858,972 11 3,989,204 240,000 Germline 
DS 3 27 10 79,878,358 87,104,049 3 7,225,692 7,680,000 Somatic 
DS 3 39 16 34,002,234 34,344,606 7 342,373 180,000 Germline 
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Table 4.3:  Copy number events called in each single neuron or pooled sample 
(continued) 

Sample CNV 
# Chr. Start End Copy 

# Size 
Size 

(Valid Genomic 
Regions) 

CNV 
Type 

DS 3 40 16 71,141,287 71,518,003 5 376,717 360,000 Germline 

DS 3 52 20 21,609,652 23,522,517 3 1,912,866 2,100,000 Somatic 
DS 3 54 20 29,449,066 29,868,184 10 419,119 180,000 Germline 
DS 3 57 21 14,432,540 48,129,895 3 33,697,356 36,180,000 Germline 
DS 3 59 22 27,293,111 30,701,252 3 3,408,142 3,600,000 Somatic 
DS 4 6 3 38,811,680 38,866,011 21 54,332 60,000 Somatic 
DS 4 9 4 0 145,219 4 145,220 120,000 Somatic 

DS 4 11 4 190,664,845 191,154,276 5 489,432 240,000 Germline 
DS 4 12 5 1,048,280 1,262,100 1 213,821 240,000 Somatic 
DS 4 13 5 55,307,969 55,487,243 1 179,275 180,000 Somatic 
DS 4 18 8 39,251,762 39,363,306 0 111,545 120,000 Germline 
DS 4 23 10 38,869,769 42,858,972 8 3,989,204 240,000 Germline 
DS 4 24 10 47,008,316 47,538,599 5 530,284 180,000 Germline 
DS 4 33 12 840,332 1,126,445 1 286,114 300,000 Somatic 
DS 4 34 12 2,120,721 4,014,749 3 1,894,029 2,100,000 Somatic 
DS 4 36 14 23,787,120 25,915,695 3 2,128,576 2,220,000 Somatic 
DS 4 39 16 34,002,234 34,220,262 7 218,029 60,000 Germline 
DS 4 40 16 71,141,287 71,246,392 5 105,106 60,000 Germline 
DS 4 48 19 21,989,226 22,253,600 1 264,375 240,000 Somatic 

DS 4 50 19 42,581,327 42,914,555 4 333,229 360,000 Somatic 
DS 4 51 19 53,115,972 54,939,873 1 1,823,902 1,680,000 Germline 
DS 4 54 20 29,449,066 29,868,184 7 419,119 180,000 Germline 
DS 4 57 21 14,432,540 48,129,895 3 33,697,356 36,180,000 Germline 

Bulk 1 1 1 16,949,551 17,257,431 4 307,881 120,000 Germline 
Bulk 1 3 1 147,802,093 149,049,044 3 1,246,952 120,000 Germline 
Bulk 1 4 2 133,000,723 133,135,043 3 134,321 120,000 Germline 
Bulk 1 7 3 75,803,231 76,035,772 3 232,542 180,000 Germline 
Bulk 1 10 4 69,452,451 69,520,814 1 68,364 60,000 Germline 
Bulk 1 11 4 190,720,786 191,154,276 7 433,491 180,000 Germline 
Bulk 1 14 6 0 410,962 3 410,963 240,000 Germline 
Bulk 1 16 6 32,526,395 32,645,736 1 119,342 120,000 Germline 
Bulk 1 17 7 152,002,940 152,125,223 3 122,284 120,000 Somatic 
Bulk 1 18 8 39,308,029 39,363,306 1 55,278 60,000 Germline 
Bulk 1 23 10 38,869,769 42,858,972 4 3,989,204 240,000 Germline 
Bulk 1 24 10 47,008,316 47,538,599 4 530,284 180,000 Germline 
Bulk 1 31 11 50,720,119 51,180,004 4 459,886 60,000 Germline 
Bulk 1 35 12 38,103,488 38,173,312 3 69,825 60,000 Germline 
Bulk 1 37 15 34,761,777 34,873,738 1 111,962 60,000 Germline 
Bulk 1 39 16 32,499,141 34,220,262 3 1,721,122 540,000 Germline 
Bulk 1 40 16 71,141,287 71,246,392 7 105,106 60,000 Germline 
Bulk 1 44 17 21,257,685 21,374,155 3 116,471 120,000 Germline 
Bulk 1 54 20 29,449,066 29,868,184 4 419,119 180,000 Germline 
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Table 4.3:  Copy number events called in each single neuron or pooled sample 
(continued) 

Sample CNV 
# Chr. Start End Copy 

# Size 
Size 

(Valid Genomic 
Regions) 

CNV 
Type 

Bulk 1 58 22 0 17,024,456 3 17,024,457 120,000 Germline 

Bulk 2 1 1 16,949,551 17,257,431 4 307,881 120,000 Germline 
Bulk 2 3 1 147,802,093 149,049,044 3 1,246,952 120,000 Germline 
Bulk 2 4 2 133,000,723 133,135,043 3 134,321 120,000 Germline 
Bulk 2 10 4 69,452,451 69,520,814 1 68,364 60,000 Germline 
Bulk 2 11 4 190,664,845 190,720,786 6 55,942 60,000 Germline 
Bulk 2 11 4 190,720,786 191,154,276 7 433,491 180,000 Germline 
Bulk 2 14 6 0 410,962 3 410,963 240,000 Germline 
Bulk 2 16 6 32,526,395 32,645,736 1 119,342 120,000 Germline 
Bulk 2 18 8 39,251,762 39,415,337 1 163,576 180,000 Germline 
Bulk 2 23 10 38,869,769 42,858,972 4 3,989,204 240,000 Germline 
Bulk 2 24 10 47,008,316 47,538,599 4 530,284 180,000 Germline 
Bulk 2 30 11 48,858,583 48,959,202 4 100,620 60,000 Germline 
Bulk 2 31 11 50,720,119 51,180,004 4 459,886 60,000 Germline 
Bulk 2 35 12 38,103,488 38,173,312 3 69,825 60,000 Germline 
Bulk 2 37 15 34,761,777 34,873,738 1 111,962 60,000 Germline 
Bulk 2 39 16 32,499,141 34,220,262 3 1,721,122 540,000 Germline 
Bulk 2 40 16 71,141,287 71,246,392 7 105,106 60,000 Germline 
Bulk 2 44 17 21,257,685 21,374,155 3 116,471 120,000 Germline 
Bulk 2 45 17 44,204,426 44,350,738 3 146,313 240,000 Somatic 
Bulk 2 54 20 29,449,066 29,868,184 4 419,119 180,000 Germline 
Bulk 2 58 22 0 17,289,008 3 17,289,009 240,000 Germline 



90 

	
   	
  

 
Table 4.4: List of genes identified to possess somatic copy number changes in 
single neurons 
Each gene was identified as part of a somatic CNV detected by MIDAS in a single 
neuron; gene expression of each could be affected by the copy number gain.  A 
majority of gains were identified in Down Syndrome Cell 3.  Manual annotation 
revealed several genes involved in protease inhibition, vesicle formation, and 
coagulation. 

Cell CNV # Gene Copy Number 
Down Syndrome 1 43 TMEM220-AS1 3 
Down Syndrome 1 43 PIRT 3 
Down Syndrome 1 43 SHISA6 3 
Down Syndrome 1 43 DNAH9 3 
Down Syndrome 1 43 ZNF18 3 
Down Syndrome 1 43 MAP2K4 3 
Down Syndrome 1 43 MIR744 3 
Down Syndrome 1 43 LINC00670 3 
Down Syndrome 1 43 MYOCD 3 
Down Syndrome 1 56 TOX2 3 
Down Syndrome 1 56 JPH2 3 
Down Syndrome 1 56 OSER1 3 
Down Syndrome 1 56 OSER1-AS1 3 
Down Syndrome 1 56 GDAP1L1 3 
Down Syndrome 1 56 FITM2 3 
Down Syndrome 1 56 R3HDML 3 
Down Syndrome 1 56 HNF4A 3 
Down Syndrome 1 56 MIR3646 3 
Down Syndrome 1 56 TTPAL 3 
Down Syndrome 1 56 SERINC3 3 
Down Syndrome 1 56 PKIG 3 
Down Syndrome 1 56 ADA 3 
Down Syndrome 1 56 LOC79015 3 
Down Syndrome 1 56 WISP2 3 
Down Syndrome 1 56 KCNK15 3 
Down Syndrome 1 56 RIMS4 3 
Down Syndrome 1 56 YWHAB 3 
Down Syndrome 1 56 PABPC1L 3 
Down Syndrome 1 56 TOMM34 3 
Down Syndrome 1 56 STK4-AS1 3 
Down Syndrome 1 56 STK4 3 
Down Syndrome 1 56 KCNS1 3 
Down Syndrome 1 56 WFDC5 3 
Down Syndrome 1 56 WFDC12 3 
Down Syndrome 1 56 PI3 3 
Down Syndrome 1 56 SEMG1 3 
Down Syndrome 1 56 SEMG2 3 
Down Syndrome 1 56 SLPI 3 
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Table 4.4: List of genes identified to possess somatic copy number changes in 
single neurons (continued) 

Cell CNV # Gene Copy Number 
Down Syndrome 1 56 MATN4 3 
Down Syndrome 2 25 ANXA2P3 3 
Down Syndrome 3 15 TRIM31 1 
Down Syndrome 3 15 TRIM40 1 
Down Syndrome 3 15 TRIM10 1 
Down Syndrome 3 15 TRIM15 1 
Down Syndrome 3 15 TRIM26 1 
Down Syndrome 3 15 HCG17 1 
Down Syndrome 3 15 HLA-L 1 
Down Syndrome 3 15 HCG18 1 
Down Syndrome 3 15 TRIM39 1 
Down Syndrome 3 15 TRIM39-RPP21 1 
Down Syndrome 3 15 RPP21 1 
Down Syndrome 3 15 HLA-E 1 
Down Syndrome 3 15 GNL1 1 
Down Syndrome 3 15 PRR3 1 
Down Syndrome 3 15 ABCF1 1 
Down Syndrome 3 15 MIR877 1 
Down Syndrome 3 15 PPP1R10 1 
Down Syndrome 3 15 MRPS18B 1 
Down Syndrome 3 15 ATAT1 1 
Down Syndrome 3 15 C6orf136 1 
Down Syndrome 3 15 DHX16 1 
Down Syndrome 3 15 PPP1R18 1 
Down Syndrome 3 15 NRM 1 
Down Syndrome 3 15 MDC1 1 
Down Syndrome 3 15 TUBB 1 
Down Syndrome 3 15 FLOT1 1 
Down Syndrome 3 15 IER3 1 
Down Syndrome 3 15 DDR1 1 
Down Syndrome 3 15 MIR4640 1 
Down Syndrome 3 15 GTF2H4 1 
Down Syndrome 3 15 VARS2 1 
Down Syndrome 3 15 SFTA2 1 
Down Syndrome 3 15 DPCR1 1 
Down Syndrome 3 15 MUC21 1 
Down Syndrome 3 15 MUC22 1 
Down Syndrome 3 15 HCG22 1 
Down Syndrome 3 15 C6orf15 1 
Down Syndrome 3 15 PSORS1C1 1 
Down Syndrome 3 15 CDSN 1 
Down Syndrome 3 15 PSORS1C2 1 
Down Syndrome 3 15 CCHCR1 1 
Down Syndrome 3 15 TCF19 1 
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Table 4.4: List of genes identified to possess somatic copy number changes in 
single neurons (continued) 

Cell CNV # Gene Copy Number 
Down Syndrome 3 15 POU5F1 1 
Down Syndrome 3 15 PSORS1C3 1 
Down Syndrome 3 15 HCG27 1 
Down Syndrome 3 15 HLA-C 1 
Down Syndrome 3 15 HLA-B 1 
Down Syndrome 3 15 MICA 1 
Down Syndrome 3 15 HCP5 1 
Down Syndrome 3 15 HCG26 1 
Down Syndrome 3 27 LINC00856 3 
Down Syndrome 3 27 LINC00595 3 
Down Syndrome 3 27 ZMIZ1-AS1 3 
Down Syndrome 3 27 ZMIZ1 3 
Down Syndrome 3 27 PPIF 3 
Down Syndrome 3 27 ZCCHC24 3 
Down Syndrome 3 27 EIF5AL1 3 
Down Syndrome 3 27 SFTPA2 3 
Down Syndrome 3 27 SFTPA1 3 
Down Syndrome 3 27 BEND3P3 3 
Down Syndrome 3 27 NUTM2B 3 
Down Syndrome 3 27 LOC642361 3 
Down Syndrome 3 27 LOC100288974 3 
Down Syndrome 3 27 MBL1P 3 
Down Syndrome 3 27 SFTPD 3 
Down Syndrome 3 27 TMEM254-AS1 3 
Down Syndrome 3 27 TMEM254 3 
Down Syndrome 3 27 PLAC9 3 
Down Syndrome 3 27 ANXA11 3 
Down Syndrome 3 27 LINC00857 3 
Down Syndrome 3 27 MAT1A 3 
Down Syndrome 3 27 DYDC1 3 
Down Syndrome 3 27 DYDC2 3 
Down Syndrome 3 27 FAM213A 3 
Down Syndrome 3 27 TSPAN14 3 
Down Syndrome 3 27 SH2D4B 3 
Down Syndrome 3 27 NRG3 3 
Down Syndrome 3 27 GHITM 3 
Down Syndrome 3 27 C10orf99 3 
Down Syndrome 3 27 CDHR1 3 
Down Syndrome 3 27 LRIT2 3 
Down Syndrome 3 27 LRIT1 3 
Down Syndrome 3 27 RGR 3 
Down Syndrome 3 27 LINC00858 3 
Down Syndrome 3 27 CCSER2 3 
Down Syndrome 3 52 PAX1 3 
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Table 4.4: List of genes identified to possess somatic copy number changes in 
single neurons (continued) 

Cell CNV # Gene Copy Number 
Down Syndrome 3 52 LOC100270679 3 
Down Syndrome 3 52 LOC284788 3 
Down Syndrome 3 52 LINC00261 3 
Down Syndrome 3 52 FOXA2 3 
Down Syndrome 3 52 SSTR4 3 
Down Syndrome 3 52 THBD 3 
Down Syndrome 3 52 CD93 3 
Down Syndrome 3 52 LINC00656 3 
Down Syndrome 3 52 NXT1 3 
Down Syndrome 3 52 GZF1 3 
Down Syndrome 3 52 NAPB 3 
Down Syndrome 3 52 CSTL1 3 
Down Syndrome 3 52 CST11 3 
Down Syndrome 3 52 CST8 3 
Down Syndrome 3 52 CST13P 3 
Down Syndrome 3 59 MN1 3 
Down Syndrome 3 59 PITPNB 3 
Down Syndrome 3 59 TTC28-AS1 3 
Down Syndrome 3 59 MIR3199-1 3 
Down Syndrome 3 59 MIR3199-2 3 
Down Syndrome 3 59 TTC28 3 
Down Syndrome 3 59 CHEK2 3 
Down Syndrome 3 59 HSCB 3 
Down Syndrome 3 59 CCDC117 3 
Down Syndrome 3 59 XBP1 3 
Down Syndrome 3 59 ZNRF3 3 
Down Syndrome 3 59 ZNRF3-AS1 3 
Down Syndrome 3 59 C22orf31 3 
Down Syndrome 3 59 KREMEN1 3 
Down Syndrome 3 59 EMID1 3 
Down Syndrome 3 59 RHBDD3 3 
Down Syndrome 3 59 EWSR1 3 
Down Syndrome 3 59 GAS2L1 3 
Down Syndrome 3 59 RASL10A 3 
Down Syndrome 3 59 AP1B1 3 
Down Syndrome 3 59 MIR3653 3 
Down Syndrome 3 59 SNORD125 3 
Down Syndrome 3 59 RFPL1S 3 
Down Syndrome 3 59 RFPL1 3 
Down Syndrome 3 59 NEFH 3 
Down Syndrome 3 59 THOC5 3 
Down Syndrome 3 59 NIPSNAP1 3 
Down Syndrome 3 59 NF2 3 
Down Syndrome 3 59 CABP7 3 
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Table 4.4: List of genes identified to possess somatic copy number changes in 
single neurons (continued) 

Cell CNV # Gene Copy Number 
Down Syndrome 3 59 ZMAT5 3 
Down Syndrome 3 59 UQCR10 3 
Down Syndrome 3 59 ASCC2 3 
Down Syndrome 3 59 MTMR3 3 
Down Syndrome 3 59 HORMAD2 3 
Down Syndrome 3 59 LIF 3 
Down Syndrome 3 59 OSM 3 
Down Syndrome 3 59 GATSL3 3 
Down Syndrome 3 59 TBC1D10A 3 
Down Syndrome 4 34 CACNA1C 3 
Down Syndrome 4 34 CACNA1C-AS4 3 
Down Syndrome 4 34 CACNA1C-IT3 3 
Down Syndrome 4 34 CACNA1C-AS1 3 
Down Syndrome 4 34 LOC283440 3 
Down Syndrome 4 34 FKBP4 3 
Down Syndrome 4 34 ITFG2 3 
Down Syndrome 4 34 NRIP2 3 
Down Syndrome 4 34 LOC100507424 3 
Down Syndrome 4 34 FOXM1 3 
Down Syndrome 4 34 RHNO1 3 
Down Syndrome 4 34 TULP3 3 
Down Syndrome 4 34 TEAD4 3 
Down Syndrome 4 34 TSPAN9 3 
Down Syndrome 4 34 PRMT8 3 
Down Syndrome 4 34 EFCAB4B 3 
Down Syndrome 4 34 PARP11 3 
Down Syndrome 4 36 BCL2L2-PABPN1 3 
Down Syndrome 4 36 PABPN1 3 
Down Syndrome 4 36 SLC22A17 3 
Down Syndrome 4 36 EFS 3 
Down Syndrome 4 36 IL25 3 
Down Syndrome 4 36 CMTM5 3 
Down Syndrome 4 36 MYH6 3 
Down Syndrome 4 36 MIR208A 3 
Down Syndrome 4 36 MYH7 3 
Down Syndrome 4 36 MIR208B 3 
Down Syndrome 4 36 NGDN 3 
Down Syndrome 4 36 THTPA 3 
Down Syndrome 4 36 ZFHX2 3 
Down Syndrome 4 36 AP1G2 3 
Down Syndrome 4 36 JPH4 3 
Down Syndrome 4 36 DHRS2 3 
Down Syndrome 4 36 DHRS4-AS1 3 
Down Syndrome 4 36 DHRS4 3 
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Table 4.4: List of genes identified to possess somatic copy number changes in 
single neurons (continued) 

Cell CNV # Gene Copy Number 
Down Syndrome 4 36 DHRS4L2 3 
Down Syndrome 4 36 DHRS4L1 3 
Down Syndrome 4 36 LRRC16B 3 
Down Syndrome 4 36 CPNE6 3 
Down Syndrome 4 36 NRL 3 
Down Syndrome 4 36 PCK2 3 
Down Syndrome 4 36 DCAF11 3 
Down Syndrome 4 36 FITM1 3 
Down Syndrome 4 36 PSME1 3 
Down Syndrome 4 36 EMC9 3 
Down Syndrome 4 36 PSME2 3 
Down Syndrome 4 36 RNF31 3 
Down Syndrome 4 36 IRF9 3 
Down Syndrome 4 36 REC8 3 
Down Syndrome 4 36 IPO4 3 
Down Syndrome 4 36 TM9SF1 3 
Down Syndrome 4 36 TSSK4 3 
Down Syndrome 4 36 CHMP4A 3 
Down Syndrome 4 36 MDP1 3 
Down Syndrome 4 36 NEDD8-MDP1 3 
Down Syndrome 4 36 NEDD8 3 
Down Syndrome 4 36 GMPR2 3 
Down Syndrome 4 36 TINF2 3 
Down Syndrome 4 36 TGM1 3 
Down Syndrome 4 36 RABGGTA 3 
Down Syndrome 4 36 DHRS1 3 
Down Syndrome 4 36 NOP9 3 
Down Syndrome 4 36 CIDEB 3 
Down Syndrome 4 36 LTB4R2 3 
Down Syndrome 4 36 LTB4R 3 
Down Syndrome 4 36 ADCY4 3 
Down Syndrome 4 36 RIPK3 3 
Down Syndrome 4 36 NFATC4 3 
Down Syndrome 4 36 NYNRIN 3 
Down Syndrome 4 36 CBLN3 3 
Down Syndrome 4 36 KHNYN 3 
Down Syndrome 4 36 SDR39U1 3 
Down Syndrome 4 36 CMA1 3 
Down Syndrome 4 36 CTSG 3 
Down Syndrome 4 36 GZMH 3 
Down Syndrome 4 36 GZMB 3 
Down Syndrome 4 36 STXBP6 3 
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Chapter 5:  Discussion and Future Directions 
 

5.1:  Discussion 
	
  

Owing to the extreme bias caused by whole-genome amplification from 

a single DNA molecule, genomic analysis of single cells has remained a 

challenging task.  A large amount of sequencing resources is required to 

produce a draft-quality genome assembly or determine a low-resolution copy 

number variation profile owing to amplification bias and coverage dropout.  

MIDAS addresses this issue through the use of nanoliter-scale spatially 

confined volumes to generate nanogram-scale amplicons and the use of a 

low-input transposon-based library construction method.  Compared to the 

conventional single-cell library construction and sequencing protocol, MIDAS 

provides a more-uniform, higher-coverage approach to analyze single cells 

from a heterogeneous population. 

We applied MIDAS to single E. coli cells and resolved nearly the entire 

genome with relatively low sequencing depth.  Additionally, using de novo 

assembly, greater than 90 percent of the genome was assembled with far less 

sequencing effort than traditional MDA-based methods.  These results suggest 

that applying MIDAS to an uncultivated organism would provide a draft quality 

assembly.  Currently, a majority of unculturable bacteria are analyzed using 

metagenomics, as part of a mixed population rather than individually.  
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Metagenomics has only recently allowed for the assembly of genomes 

frosingle cells, and doing so requires a sample with limited strain 

heterogeneity35. Through the use of MIDAS on heterogeneous environmental 

samples, novel single-cell organisms and genes can be easily discovered and 

characterized in a high-throughput manner, allowing a much higher-resolution 

and more complete analysis of single microbial cells than is possible through 

previous methods. 

We also applied MIDAS to the analysis of copy number variation in 

single human neuronal nuclei.  With less than 0.4x sequencing coverage, we 

used MIDAS to call single copy number changes of 1–2 million base pairs or 

larger in size.  It has been shown recently that, in human adult brains, post-

mitotic neurons in different brain regions exhibit various levels of DNA content 

variation (DCV)50. The exact genomic regions that associate with DNA content 

variation have been difficult to map to single neurons because of the 

amplification bias with existing MDA-based methods. CNVs in single tumor 

cells have been successfully characterized with a PCR-based whole-genome 

amplification method7. However, tumor cells tend to be highly aneuploid and 

exhibit copy number changes of larger magnitude, which are more easily 

detected. The applicability of a PCR-based strategy to other primary cell types 

with more subtle CNV events remains unclear. We have demonstrated that 

MIDAS greatly reduces the variability of single-cell analysis to a level such that 

a 1–2 Mb single-copy change is detectable, allowing characterization of much 

more subtle copy number variation. With additional improvements in 
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sequencing methods, the use of MIDAS might enable the identification of even 

smaller CNVs, as currently 75% of smaller germline CNVs below the detection 

limit of MIDAS are still identifiable. Thirteen somatic gain of single copy events 

at the megabase level were identified in single neurons, and it appeared that 

several protease inhibitors, genes involved in vesicle formation, and genes 

involved in coagulation could be affected. A majority of gene copy changes 

occurred in one single cell, indicating that gene copy number might greatly 

vary across individual neurons.  MIDAS can be used to simultaneously probe 

the individual genomes of many cells from patients with neurological diseases, 

and thus will allow identification of a range of structural genomic variants and 

eventually allow accurate determination of the influence of somatic CNVs on 

brain disorders in a high-throughput manner. 

Last, we compared MIDAS to other single cell sequencing methods that 

reduce amplification bias and increase genomic coverage.  As described 

previously, one such method utilizes a microfluidic device to isolate single cells 

and perform whole genome amplification in a 60nL volume6.  Another method, 

MALBAC, incorporates a novel enzymatic strategy to amplify single DNA 

molecules initially through quasi-linear amplification and reports 

unprecedented levels of uniformity. MIDAS represents an orthogonal strategy 

that adapts MDA to a microwell array. We demonstrated that data generated 

from single neurons amplified with MIDAS compares very favorably to 

previously published data from combined (and therefore diploid) pools of two 

single sperm cells amplified using standard in-tube MDA54, the microfluidic 
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device6 and MALBAC22, 23,	
  as well as a single cancer cell amplified with 

MALBAC. To ensure a fair comparison, we normalized sequencing depth to an 

equal amount for each method and processed the raw sequencing data for 

each sample using an identical computational pipeline. MIDAS generates the 

lowest levels of bias across the genome.  

 

5.2:  Future Directions 
	
  

Several aspects of MIDAS could be technologically improved to 

increase success rate and efficiency. First, the current efficiency of 

amplification is limited to 10%, owing to the use of a low cell loading density to 

avoid having more than one cell per microwell. This efficiency could be 

improved 3 to 5 fold by increasing the cell loading density, imaging the 

microwell arrays containing fluorescently stained cells prior to amplification, 

and excluding the wells with more than one cell from further analyses. Thus, a 

much greater percentage of the microwells would result in positive single sell 

amplifications.  Second, amplicon extraction by micromanipulation is currently 

performed manually at a speed of ~10 amplicons per hour. This number could 

be improved by at least one order of magnitude by implementing robotic 

automation.  Several automated micromanipulation systems are currently 

employed by several labs throughout the country69, 70, and many companies 

have made these commercially available.  Directly relating to the automation is 

the improvement of visually calling positively amplified wells.  The calling 
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scripts can be further optimized, and then implanted into the automated 

micromanipulator such that the system can automatically call and extract 

positive amplicons once the fluorescence reaches a certain threshold. Third, 

the PDMS microwell arrays used for cell loading are highly customizable but 

require access to a microfabrication facility for standard oxygen plasma 

treatments. Routine practice of MIDAS will depend on the commercial 

availability of hydrophilic microwell arrays.  Finally, although each single cell is 

physically segregated into one microwell, the cells are not in total fluidic 

isolation. Thus, there may be the potential for cross-contamination between 

wells, and fluorescent imaging is required throughout amplification to ensure 

only single cell amplicons are used.  Ideally, an adaptation of MIDAS could 

use only a single initial image for background subtraction, and a final image.  

This implementation would limit the need for a custom microscope incubation 

chamber and an automated fluorescent microscope. 

In addition to technological improvements, the future of MIDAS relies on 

its implementation using several sample types.  First, as previously described, 

MIDAS can be executed on environmental microbial samples.  The same 

library preparations and data analysis methods used on single E. coli cells can 

be implemented.  We are currently collaborating with a lab to provide us with 

clean, robust bacterial samples.  Again, these samples must be sorted to 

remove any contaminating DNA, and must be stored carefully to prevent any 

degradation.  With great care, researchers can analyze MIDAS derived 
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libraries to potentially determine rare bacteria residing in the ocean or human 

gut, opening up vast opportunities for studying energy and metabolism. 

As alluded to earlier, researchers can also use MIDAS to study neurons 

from complex neurological disorders, from Alzheimer’s disease to depression.  

The unbiased nature of amplification leads to great prospects in determining 

the subtle copy number variations resulting in the 250 megabase DNA content 

variations observed amongst single neurons in FACS.  A great first step is to 

study the APP gene, which is found to show a copy number increase in 

Alzheimer’s disease.  The large gene of about 300 kilobases has potential to 

be called in MIDAS derived libraries.  Thus, many neurological diseases can 

be studied in new and exciting manners. 

Obviously, scientists can study tumor cells using MIDAS.  Although 

much work has already been done in this field, and the large size and copy 

number changes do not necessitate MIDAS for accurate CNV calling, the 

reduced cost of MIDAS can help researchers to study many more cancerous 

cells.  Thus, new relationships between tumor cells can be established. 

Finally, MIDAS can be employed on single chromosomes for use in 

human haplotyping. Many complex diseases involve a multiple of genes 

interacting with each other71.  Since every human contains 2 copies of each 

autosomal chromosome, specific chromosomal locations (i.e., on the maternal 

or paternal chromosome) of mutations prove important, since both copies of a 

gene could potentially be inactivated.   Thus, scientists can use MIDAS to 

seed condensed, metaphase chromosomes into the microwells.  More than 
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one chromosome can be in each well as long as it is not the same 

chromosome. The amplification and library construction procedures would be 

exactly the same, with the exception of a protease step for histone removal.  

Since MIDAS produces the most uniform libraries, researchers could 

potentially construct end-to-end haplotypes, thus assisting in complex disease 

study. 
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