Stability Analysis of a Bulk-Surface Reaction Model for Membrane-Protein Clustering
Skip to main content
eScholarship
Open Access Publications from the University of California

Stability Analysis of a Bulk-Surface Reaction Model for Membrane-Protein Clustering

  • Author(s): Stolerman, LM
  • Getz, M
  • Smith, SG Llewellyn
  • Holst, M
  • Rangamani, P
  • et al.

Published Web Location

https://arxiv.org/abs/1908.05214
No data is associated with this publication.
Abstract

Protein aggregation on the plasma membrane (PM) is of critical importance to many cellular processes such as cell adhesion, endocytosis, fibrillar conformation, and vesicle transport. Lateral diffusion of protein aggregates or clusters on the surface of the PM plays an important role in governing their heterogeneous surface distribution. However, the stability behavior of the surface distribution of protein aggregates remains poorly understood. Therefore, understanding the spatial patterns that can emerge on the PM solely through protein-protein interaction, lateral diffusion, and feedback is an important step towards a complete description of the mechanisms behind protein clustering on the cell surface. In this work, we investigate the pattern formation of a reaction-diffusion model that describes the dynamics of a system of ligand-receptor complexes. The purely diffusive ligand in the cytosol can bind receptors in the PM, and the resultant ligand-receptor complexes not only diffuse laterally but can also form clusters resulting in different oligomers. Finally, the largest oligomers recruit ligands from the cytosol in a positive feedback. From a methodological viewpoint, we provide theoretical estimates for diffusion-driven instabilities of the protein aggregates based on the Turing mechanism. Our main result is a threshold phenomenon, in which a sufficiently high recruitment of ligands promotes the input of new monomeric components and consequently drives the formation of a single-patch spatially heterogeneous steady-state.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item