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ABSTRACT OF THE DISSERTATION

Effects of nonlinear processing on information transfer

in the lateral geniculate nucleus

by

Kate Denning

Doctor of Philosophy in Biology / Specialization in Computational Neurobiology

University of California, San Diego, 2006

Professor Daniel E. Feldman, Chair

Visual neurons' spike trains represent a large variety of visual stimuli.  The 

local contrast varies across natural scenes, and the absolute luminance changes that 

define visual features during low-contrast stimuli are much smaller than during high-

contrast stimuli.  The contrast of the scene can remain relatively stable for an extended 

period of timing, suggesting that it would be advantageous for the neuron to adjust its 

coding strategy to the stimulus contrast.  However, the contrast can also rapidly 

change.  If the neuron utilizes different coding strategies during different stimulus 

conditions, it is imperative that the neuron be able to recognize when the statistics of 

the stimulus have changed.  We propose that neurons in the lateral geniculate nucleus 

(LGN) utilize nonlinear properties in order to encode visual information across a 

variety of stimulus conditions.  In Chapters 2 and 3, we find that bursts and single 
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spikes represent distinct stimuli, such that distinguishing between the bursts and single 

spikes provides information about the stimulus.  Because bursts only occur following 

prolonged hyperpolarization, this suggests a means by which the neuron can encode 

the stimulus context: bursts may provide information about whether a stimulus is 

surprising given the recent stimulus history.  In Chapter 4, we report the contrast 

normalization allows LGN neurons to encode information about stimuli across a wide 

range of local contrasts.  Cells exhibiting strongest contrast normalization are best able 

to preserve information across stimuli.  Furthermore, both the contrast normalization 

and the associated preservation of information could be reproduced by a non-adapting 

LGN model.  In Chapter 5, we report other contrast-dependencies of the model, show 

transient changes in the model responses following a contrast change, and describe 

why the model is able to exhibit contrast normalization.
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Chapter 1

Introduction
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Natural scenes 

Visual systems must be able to encode information about natural stimuli, but 

this is a difficult task, as there are a broad range of natural stimuli, characterized both 

by a wide range of light intensities and long temporal correlation (Figure 1.1A and 

Dong and Atick, 1995).  In Figure 1.2A, the range of intensities and the temporal 

correlations are shown for one time-varying natural-scene stimulus from (van Hateren, 

1997).  These stimuli were obtained by a person walking in natural environments 

wearing a photodetector with spatial resolution similar to a human cone.  We 

calculated the temporal contrast of this stimulus using 500-ms, non-overlapping bins, 

where contrast is defined as the standard deviation of the luminance divided by the 

mean.  We note that by this definition of contrast, the contrast is always positive and 

can be greater than 100%.  The correlations in addition to the rapid transitions in the 

stimulus intensity result in a variety of contrasts throughout the stimulus. 

Across nine hours of time-varying natural stimuli from van Hateren (1997), we 

calculated the distribution of contrasts (Figure 1.2A).  Most stimulus epochs were 

characterized by contrasts between 11% and 100% (Figure 1.2B).  This measurement 

depended slightly on the window size used to calculate the contrast: higher contrasts 

were more probable when longer windows were used (Figure 1.2C).

This analysis suggests that in order to effectively visualize natural scenes, 

neurons must be able to represent stimuli across a variety of luminance values and 

contrasts.  If the neuron uses a different coding strategy to represent stimuli of 

different statistics (i.e., contrast or luminance), then the neuron must be able to quickly 

recognize when the statistics of the stimulus has changed.
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Detecting stimulus changes

As neurons’ integration time is short (approximately 50 ms), one might 

imagine that it would be difficult to detect a change in stimulus.  However, thalamic 

relay cells have voltage-gated T-type calcium channels.  The state of these channels is 

influenced by longer stimulus epochs, and the state determines the type of spiking 

response that the neuron will elicit.

At depolarized membrane potentials, these channels are inactive, and the cell 

will respond to a reasonably large depolarization, such as a retinal EPSP, with a single 

spike.  After sustained hyperpolarization, the channels are de-inactivated, and the 

same depolarization will cause a calcium spike.  This calcium spike causes a high-

frequency burst of sodium spikes (Jahnsen and Llinas, 1984).

Thus, thalamic relay cells are equipped with a channel which enables 

downstream neurons to determine some details about the more extended stimulus 

history merely by recognizing whether the spiking response was a burst or a single 

spike.  If the response was a burst, then it could be inferred that the depolarizing 

activity occurred after an extended period of inactivity.  Perhaps the function of bursts 

is to ensure that information about excitatory stimuli (high luminance or high contrast) 

is transmitted when these stimuli are preceded by less-excitatory stimuli (low 

luminance or low contrast).  In this regard, it has been hypothesized that bursts may 

serve as a “wake-up call” (Sherman, 2001).

Indeed, the different response types are associated with different synaptic

efficacies (Swadlow and Gusev, 2001), suggesting the existence of parallel pathways.  
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In the lateral geniculate nucleus (LGN), it seemed plausible that visual stimuli would 

influence the channel’s state, but only 10% of synapses onto an LGN relay cell are 

from retinal ganglion cells, with the remainder coming from cortical feedback, 

interneurons, and non-visual sub-cortical areas (Erisir et al., 1997).  Although the 

timing of bursts had been shown to encode visual information (Reinagel et al., 1999), 

this may simply be the result that both bursts and spikes were triggered by retinal 

EPSPs.  Therefore, spikes and bursts may not encode distinct visual information.  

In order to investigate this possibility, we recorded extracellularly in the cat 

LGN to determine whether bursts and single spikes are reliably elicited by different 

visual stimuli.  In Chapter 2, we report that bursts are more frequent when natural 

stimuli are presented than when white- noise stimuli are presented.  Additionally, we 

report that bursts and single spikes do occur at distinct times within the stimuli and 

distinguishing between the responses does provide visual information.  In Chapter 3, 

we further investigate the state-information measure presented in Chapter 2, and 

discuss the information associated with distinguishing bursts from other, related 

patterns.

Effective coding across stimulus conditions

Because natural scenes include a variety of contrasts (Figure 1.2), it is 

important to be able to encode fluctuations in both situations.  Fluctuations in 

luminance can be caused by objects entering or exiting visual fields.  Contrast depends 

on the magnitude of the absolute variations in luminance within the stimuli: in high-
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contrast stimuli, large fluctuations occur, whereas in low-contrast stimuli, small 

fluctuations occur.

The reason that it is difficult for one neuron to encode stimuli at both contrasts 

can be illustrated by the following example.  Suppose that a cell responds to different 

luminance values by eliciting a different number of spikes.  At the lowest luminance 

value (Luminance=0), suppose it fires no spikes, and at the highest (Luminance=100), 

suppose is fires 25 spikes a second.  Suppose that the cell can never fire more than 25 

spikes a second.  For all intermediate values, the cell fires an intermediate number of 

spikes.  At high contrast, suppose the luminance values range from 0 to 100 and the 

cell’s spiking rate can be used to differentiate the luminance values into 25 categories.  

At low contrast, suppose the luminance values range from 45 to 55.  The more limited 

luminance range means that, at best, the cell would only fire three different spiking 

rates during the low-contrast stimulus.  Therefore, the cell’s spiking response could 

not capture much of the structure in the low-contrast stimulus.

Conversely, if the cell’s spiking range matched that of the low-contrast 

stimulus, such that it fired no spikes when Luminance=45 and 25 spikes a second 

when Luminance=55, then the spiking rate would be informative about the low-

contrast stimulus.  During the high-contrast stimulus, however, the spiking rate would 

be equal to zero for all luminance values below 45 and saturated at 25 spikes a second 

for all luminance values above 55.  Therefore, the cell’s spiking response could not 

capture much of the structure in the high-contrast stimulus.

Contrast normalization is one mechanism that addresses this problem in the 

early visual system (Enroth-Cugell and Robson, 1966; Shapley and Victor, 1978; 
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Shapley and Victor, 1979; Shapley and Victor, 1981; Shapley and Enroth-Cugell, 

1984; Ohzawa et al., 1985; Shapley, 1997; Benardete and Kaplan, 1999; Sanchez-

Vives et al., 2000a, b; Chander and Chichilnisky, 2001; Kim and Rieke, 2001; Rieke, 

2001; Baccus and Meister, 2002; Kim and Rieke, 2003; Solomon et al., 2004; 

Zaghloul et al., 2005).  The dependence of neurons’ spiking rates on luminance values 

varies with the stimulus contrast.  Although this seemed to be an advantageous 

strategy to encode multiple contrasts, no study had quantified how beneficial contrast 

normalization is.  Because spike timing can be as important as the firing rate (Reinagel 

and Reid, 2000), there is no guarantee that simply adjusting the dependence of the 

neuron’s firing rate on the stimulus would in fact improve the information that the 

neuron was able to encode about the stimulus.  The information rates depend on the 

reliability and precision of responses, in addition to the firing rate.  In Chapter 4, we 

show that LGN cells do exhibit contrast normalization.  Although the reliability and 

precision decrease as the contrast decreases across all cells, cells described by stronger 

contrast normalization are better able to preserve their information across contrasts.

Although there has been some investigation on active adaptive mechanisms 

that cause contrast normalization (Sanchez-Vives et al., 2000b; Kim and Rieke, 2001, 

2003), theoretical studies have also emphasized that stationary nonlinear properties of  

neurons can account for some properties of contrast normalization and adaptation 

(Borst et al., 2005; Yu and Lee, 2005; Yu et al., 2005).  In Chapter 4, we demonstrate 

that a non-adapting model exhibits contrast normalization, and the extent of contrast 

normalization is correlated with the degree of information preservation.  
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In Chapter 5, we determine how contrast normalization depends on model 

parameters and explore how the non-adapting model is able to exhibit contrast 

normalization.  We also show that the reliability, precision, and latency of the 

responses exhibit similar contrast-dependencies to those found in LGN neurons.  

Finally, we report that transient changes in responses following a contrast change do 

not imply an active adaptation process: our non-adapting model can exhibit transient 

changes in both its firing rate and information rate.

Conclusions

In my thesis, I have shown that intrinsic nonlinearities in LGN cells could 

enable cells to encode information about natural scenes, which are characterized by a 

variety of rapidly-varying stimulus contrasts.  I analyze in detail the information made 

available by state of the T-type calcium channels, which determines whether spiking 

responses will be single spikes or bursts of spikes (Chapter 2 and 3).  This channel 

may provide a mechanism by which downstream neurons are able to compare present 

stimuli to recent stimulus history.  I quantify the effect of contrast on reliability, 

precision, and information, and report that the degree of contrast normalization in 

LGN cells is correlated with information preservation across contrasts (Chapter 4).  

Finally, I found that both the contrast normalization and the information preservation 

can be described, at least in part, without any active adaptation (Chapter 4 and 5).  
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Figure 1.1:Range of luminance values observed in natural scenes.
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Figure 1.2:Natural-scene time course. A, A representative example of the time-
varying intensity of a natural scene stimulus from (van Hateren, 1997). B,
The contrast was calculated within 500-ms non-overlapping windows, 
where contrast was defined as the standard deviation of the intensity 
divided by the mean.
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Figure 1.3: Distributions of contrasts in natural scenes. A, The probability of contrast 
across all natural-scene stimuli from (van Hateren, 1997), where contrast 
was calculated for 500-ms windows.  B, The probability across stimuli that 
the contrast, calculated for 500-ms windows, was less than 11% (red bar), 
between 11% and 33% (green bar), between 33% and 100% (blue bar), or 
greater than 100% (black bar).  C, The probability that the contrast was less 
than 11% (red curve), between 11% and 33% (green curve), between 33% 
and 100% (blue curve), or greater than 100% (black curve) when contrast 
was calculated using a variety of window sizes.
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Chapter 2

Visual control of burst priming in the anesthetized

lateral geniculate nucleus
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Abstract

Thalamic relay cells fire bursts of action potentials. Once a long 

hyperpolarization primes (de-inactivates) the T-type calcium channel, a depolarizing 

input will trigger a calcium spike with a burst of action potentials. During sleep, bursts 

are frequent, rhythmic, and non-visual. Bursts have been observed in alert animals, 

and burst timing is known to carry visual information under light anesthesia. We 

extend this finding by showing that bursts without visual triggers are rare. 

Nevertheless, if the channel were primed at random with respect to the stimulus, then

bursts would have the same visual significance as single spikes.  We find, however, 

that visual signals influence when the channel is primed. First, natural time-varying 

stimuli evoke more bursts than white noise. Second, specific visual stimuli 

reproducibly elicit bursts whereas others reliably elicit single spikes. Therefore visual 

information is encoded by the selective tagging of some responses as bursts. The 

visual information attributable to visual priming (as distinct from the information 

attributable to bursts’ visual triggering) was 2 bits/burst on average. Although bursts 

are reportedly rare in alert animals, this must be investigated as a function of visual 

stimulus. Moreover, we propose methods to measure the extent of both visual 

triggering and visual priming of bursts. Whether or not bursts are rare, our methods 

could help determine whether bursts in alert animals carry a distinct visual signal.
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Introduction

Distinctive bursts of action potentials were noted in the earliest recordings in 

the LGN (Hubel and Wiesel, 1961). LGN relay cells fire isolated action potentials 

during wakefulness or REM sleep, and burst rhythmically during slow-wave sleep 

(Livingstone and Hubel, 1981; Hirsch et al., 1983; McCarley et al., 1983). Slow-wave 

sleep was also characterized by suppression of visual responses in cortex (Livingstone 

and Hubel, 1981) and hyperpolarization of LGN relay cells (Hirsch et al., 1983). 

Hyperpolarization de-inactivates (“primes”) the calcium channel that underlies bursts 

in these cells (Jahnsen and Llinas, 1984).  Several studies reported that bursts are rare 

in alert animals, comprising between 1-5% of spikes in the LGN (Guido and Weyand, 

1995; Ramcharan et al., 2000; Weyand et al., 2001).  These results suggest that bursts 

are not relevant to the transmission of visual information (Steriade, 2001).  

Much of the evidence for a visual function of bursts has come from 

anesthetized animals. The state of the LGN under anesthesia differs from either sleep 

or wakefulness. The LGN cells fire bursts, but unlike sleep, these bursts are 

arrhythmic and intermingled with single spikes (Guido et al., 1992; Guido et al., 1995; 

Guido and Weyand, 1995; Mukherjee and Kaplan, 1995; Reinagel et al., 1999).  These 

arrhythmic bursts do not occur at random times; they are triggered by visual stimuli. 

The receptive-field properties of bursts and single spikes are similar but distinct, both 

temporally and spatially (Guido et al., 1992; Reinagel et al., 1999; Kepecs and 

Lisman, 2003; Rivadulla et al., 2003; Lesica and Stanley, 2004; Alitto et al., 2005). 

Bursts provide better signal detection, while single spikes provide better signal 

discrimination (Guido et al., 1995). Bursts also transmit visual information with higher 
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coding efficiency than single spikes, though at higher metabolic cost (Reinagel et al., 

1999).  Therefore bursts may be important when signal-to-noise ratio is low, or may 

emphasize stimuli that are surprising in a given context (Sherman, 2001a).  These 

results suggest a visual function of bursts in alert animals, even if bursts are infrequent 

(see also Discussion).

LGN bursts are caused by calcium spikes via the T-type calcium channel. The 

channel is primed by prolonged hyperpolarization, but the calcium spike occurs only 

when triggered by a depolarizing input (reviewed in Perez-Reyes, 2003). Both priming 

and triggering may depend on both visual and non-visual inputs: only 10% of the 

synapses on an LGN relay cell come from retinal ganglion cells, the remainder coming 

from interneurons, cortical feedback, and non-visual sub-cortical areas (Erisir et al., 

1997).  Previous studies have established that bursts can be visually triggered, and 

suggest that bursts can also visually primed. Here we explicitly separate the question 

of visual priming from that of visual triggering.

We find that natural stimuli evoke more bursts than other stimuli, suggesting 

that visual inputs can influence priming. This paper examines the extent, specificity 

and reliability of the visual control of priming. Using information theory we estimate 

the visual information specifically attributable to the visual control of priming. Our 

results support a visual function for bursts, and suggest how this hypothesis could be 

better tested in alert animals. Preliminary results of this study have been reported in 

abstract form (Denning et al., 2003)
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Methods

Surgical preparation. Cats were initially anesthetized with ketamine HCl (20 

mg/kg, intramuscular) followed by sodium pentothal (2-4 mg/kg/hr intravenous, 

supplemented as needed).  The animals were then ventilated through an endotracheal 

tube.  EKG, EEG, temperature and expired CO2 were monitored continuously.  

Animals were paralyzed with Norcuron (0.3 mg/kg/hr, intravenous).  Eyes were 

refracted, fitted with appropriate contact lenses, and focused on a tangent screen.  

Electrodes were introduced through a 0.5 cm diameter craniotomy over the LGN.  All 

surgical and experimental procedures were in accordance with NIH and USDA 

guidelines and were approved by the Harvard Medical Area Standing Committee on 

Animals.

Electrical recording. Single LGN neurons in the A laminae of the LGN were 

recorded with either Parylene-coated tungsten electrodes (AM Systems, Everett, WA), 

or Quartz- coated platinum/tungsten electrodes (System Eckhorn, Thomas Recording, 

Marburg, Germany).  Recorded voltage signals were amplified, filtered, and passed to 

a PC running DataWave Discovery software (Longmont, CO) and spike times were 

determined to 0.1 ms resolution.  Preliminary spike discrimination was done during 

the experiment, but analysis is based on offline spike sorting after the experiment 

using custom software. Only well isolated single units were analyzed.  All cells used 

in this analysis were classified as X cells. All further analysis was performed with 

custom programs written in the Matlab programming environment (Mathworks, Inc., 

Natick, MA).
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Visual stimulation. Both natural and white-noise stimuli were spatially-

uniform (full-field) visual stimuli, modulated in time. Natural luminance time-series 

were obtained from (van Hateren, 1997). White-noise stimuli were obtained by 

drawing independent random samples from the distribution of luminance values in the 

natural stimulus, thereby eliminating the temporal correlations of the natural stimulus 

but preserving the distribution of the stimulus intensities. Stimuli were 8-32 seconds 

long and were repeated 128 times. Stimuli were presented either on a CRT monitor 

(128 frames/s, 8-bit grayscale, N=9 cells) or on a custom-made LED display (1200 

frames/s, 15-bit grayscale, N=6 cells). All results reported here were the same for both 

CRT and LED data, so both are shown and both are included in all averages we report. 

In particular, stimulus presentation method was not correlated with burst frequency in 

these experiments. 

Burst classification. We define a “burst” as a group of 2 or more action 

potentials separated by  ≤4 ms, preceded by a period of >100 ms without spiking 

activity.  This criterion was previously shown to reliably identify bursts that are due to 

low threshold (T-type) calcium spikes in LGN relay cells of the cat (Lu et al., 1992).  

Subsequent studies (Lu et al., 1993; Ramcharan et al., 2000) have found these 

classification criteria to be conservative. We repeated our analysis with a less stringent 

burst criteria (preceding interval <50 ms, internal interval <6 ms); this increased our 

estimated burst frequency only slightly and did not qualitatively change any of the 

results reported here.

Event classification. We presented the same dynamic stimulus repeatedly for 

128 trials, and accumulated a PSTH, which represents the probability of firing as a 
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function of time. We divided this PSTH into discrete firing events by the method of 

Berry et al, 1997.  Briefly, the PSTH was smoothed by a Gaussian filter with σ =10 

ms, which approximated the trial-to-trial jitter of spike timing for the most precise 

events. In this smoothed PSTH, minima that were deep compared to adjacent maxima 

were taken as boundaries between distinct events. Specifically, our algorithm required 

that the minimum was ≤2/3 of the square root of the product of the adjacent maxima.  

These boundaries were then used to divide to the original, unsmoothed PSTH into 

discrete intervals, such that all spikes were assigned to one and only one interval.  We 

excluded from further analysis any interval that contained spikes in fewer than 10% of 

the trials. We fit a Gaussian curve to each peak individually, and defined the time 

window of the event as the mean time ± 2σ of this best-fit Gaussian.  Spikes that did 

not fall within any event so defined, were classified as non-visual responses. In the 

analysis of Figure 2.2D only, we separately identified reliable firing events using the 

same method, but including only events that contained spikes in at least 80% of trials.

Burst probability and priming probability. We define the burst probability 

within a visual firing event as the percentage of trials containing a burst within the 

event time window. Conceptually we define the probability of priming within a firing 

event as the fraction of trials in which the T-type calcium channel was de-inactivated 

at the time of the event. Operationally, we estimated this from the fraction of all 

responding trials that contained a burst.

To determine reproducibility of burst probability, we divided the data from 

each cell and stimulus into two non-overlapping sets: the 64 odd-numbered trials and 
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the 64 even-numbered trials.  For each visual firing event as defined above, we 

determined the burst probability for each half of the data.  These two independent 

estimates are compared in Figure 2.4E.  We also computed the probability of priming 

separately in the two data sets; the estimates were similarly well correlated (not 

shown).

In Figure 2.5B and 2.5D, the priming probability was determined as a function 

of the preceding inter-spike interval, without reference to identified firing events. In 

this case, priming probability is defined as the percentage of all of the responses with a 

given preceding ISI that were bursts.

Information calculations. Our recorded neural data were represented as time-

binned spike trains; in this study a fixed bin size of δτ= 2 ms was used.  The value in a 

time bin was set to 0000 if no spikes occurred during that time interval, 1111 if a single spike 

occurred during that time interval, or 2222 if the first spike of a burst occurred during that 

time interval.  Only the first spike of each burst was represented.  Due to the refractory 

period of the cells, the occurrence of two spikes in the same time bin was so rare as to 

be negligible.

We calculated the visual information in spike trains by the direct method 

(Strong et al., 1998), implemented exactly as by Reinagel and Reid (2000). Briefly, we 

analyzed the information contained in words (short strings of bins), and varied the 

number of bins in the words, L.   For each word length, we measured two forms of 

word entropy: the average noise entropy, <Hnoise>, which reflects the trial-to-trial 

variability of words when the stimulus was fixed, and the average total entropy, 

<Htotal>, which reflects the variability of words across all stimuli in the ensemble. 
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Hnoise(t) was calculated from the distribution of words at a fixed time t relative to 

stimulus onset, in 128 repeats of the same sample of the stimulus. We performed a 

separate calculation of Hnoise(t) for many different values of t (separated by one bin) 

within the 8 or 32 sec stimuli. We then averaged over t to get the average noise 

entropy <Hnoise>. We performed equally many separate calculations of Htotal(i), but the 

set of words was instead selected using a different time t from each trial. We used 256 

words for each single estimate of Htotal(i), to compensate for the approximately 

twofold difference in entropy. We averaged over i get the average total entropy 

<Htotal>. Finally, the mutual information between the visual stimulus and the spike 

train is defined as I = <Htotal> - <Hnoise>. We computed information as a function of 

word length. We extrapolated to infinite word length from the linear part of the curve 

H versus 1/L as described by (Strong et al., 1998). 

Extrapolation to infinite word length should in principle provide the best 

estimate of the total information, but the linear part of the curve was difficult to 

identify in some of our data. Therefore we show results using a fixed word length of 

L=8. We obtained similar results for infinite word lengths using L=[6,8,12] as the 

basis for extrapolation.

Data adequacy for entropy calculations. For all entropy estimates that we 

computed, we determined how our estimate of H converged as we used increasing 

fractions of the data and then corrected for finite data size according to the method of 

(Strong et al., 1998). The correction is obtained by fitting a second-order polynomial 

to 1/(fraction of data) versus estimate. We are confident of our estimates when the 

total correction for finite data size was <10% and the second-order term of this 
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correction was negligible, <1%.  Results that passed these criteria are shown with 

filled symbols in Figure 2.6. For completeness we also show our results from cells that 

did not pass the criteria, open symbols in Figure 2.6.
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Results

We recorded from fifteen neurons in the LGN of barbiturate-anesthetized cats 

during presentation of two different full-field visual stimuli: one that varied according 

to a naturally recorded time sequence (natural); and one that flickered randomly (white 

noise). 

Throughout our analysis we will refer to a simplified model in which the T-

type calcium channels of a given LGN relay cell are either fully inactivated or fully 

primed.  Each relay neuron can therefore be described as having a binary state that is 

defined at each moment in time. In the unprimed state, if a depolarizing input (trigger) 

causes the neuron to cross threshold, the LGN cell will fire a single action potential.  

In the primed state, the same depolarization would trigger instead a calcium spike via 

the T-type calcium channel, and thus a burst of action potentials (Figure 2.1).  

Although this is an oversimplification, it allows us to clearly separate the question of 

the visual control of priming from the visual control of triggering.

Bursts occur and are visually triggered

Other studies have shown that bursts can be visually triggered. In LGN 

responses to white noise flicker, the average stimulus preceding a burst (the burst-

triggered average) reveals that bursts occur in response to luminance transients. Bursts 

and single spikes are triggered by similar features, with some significant differences 

(Reinagel et al., 1999; Kepecs and Lisman, 2003; Rivadulla et al., 2003; Lesica and 

Stanley, 2004; Alitto et al., 2005).  While reverse correlation can establish that many 

bursts are visually triggered, in general this method cannot exclude the presence of 
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additional, non-visual bursts. To determine what fraction of bursts are visually 

triggered it is necessary to determine for each individual burst whether it was visually 

evoked or random.

To answer this question we made use of the fact that we repeated the identical 

visual stimulus 128 times. We defined a visual firing event as a discrete time interval 

relative to the stimulus during which spikes occurred in at least 10% of trials (both 

open and closed diamonds in Figure 2.2A, 2.2B; see Methods).  We identified putative 

T-type calcium bursts in our recordings by conventional inter-spike interval criteria 

(Methods). In this paper we will use the term response to refer either to a single spike 

or an entire burst. In accordance with other studies in anesthetized animals, we found 

stereotyped bursts intermingled among single action potentials (Figure 2.2A,2.2B).

Averaging over both stimuli, 86±18% (mean±SD) of bursts occurred during a 

visual firing event as defined by our criterion (Figure 2.2C).  Similarly, 80±16% of 

single spikes occurred during a visual firing event.   Given that visual firing events 

comprised only 22±14 % of the time in the trial, we would expect only about 22% of 

bursts to fall in visual firing events by chance.  

In the data shown in Figure 2.2A,2.2B, all of the bursts occurred during 

particularly reliable firing events. To test the generality of this finding, we determined 

what fraction of bursts and single spikes were restricted to the most reliable visual 

firing events (stimulus-locked activity that occurred in >80% of trials, closed 

diamonds). For every cell in our sample, regardless of the visual stimulus, we 

consistently found that bursts were more likely than single spikes to occur during a 

high-reliability firing event (Figure 2.2D).  
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Burst frequency depends on visual stimulus

LGN cells fired more bursts per second during the natural visual stimulus than 

during the white noise stimulus (Figure 2.3A).  A similar result was found by others 

comparing spatio-temporal natural movies to spatio-temporal white noise (Lesica and 

Stanley 2004).  The increase in bursts during our natural stimulus was not due to a 

general increase in firing rate: a higher fraction of all responses were bursts when the 

natural stimulus was shown (Figure 2.3B). The fact that some types of stimuli elicit 

more bursts than others is strong evidence that visual inputs can influence the priming 

of the channel and thus the state of the cell, at least on average.

The burst state is primed at reproducible times

If the probability of priming is determined only by average stimulus properties, 

it should be roughly constant over time within a stimulus. Alternatively, if priming is 

determined by specific temporal features in the visual stimulus, we would expect that 

burst probability would vary across firing events. In our data we found that bursts 

occurred in a specific subset of firing events (Figure 2.4A, red curve; see also Figure

2.2A,2.2B, red points).  

Most firing events had a zero probability of a primed burst state at the time of 

the visual trigger. For example, the cell shown in Figure 2.4A,2.2B responded with 

163 stimulus-locked firing events over 8 seconds. Of these events, 104 excluded bursts 

(no bursts in 128 trials). In other firing events, the same cell had as high as 83% 

chance of being in the primed state when the visual trigger occurred (106 of 128 trials 
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had a burst within the time window of a single firing event).  Other visually triggered 

events had an intermediate, but reproducible, probability of the primed state (compare 

Figure 2.4A and Figure 2.4B).  Our findings are in agreement with other studies using 

different visual stimuli (Lesica and Stanley, 2004; Alitto et al., 2005). This result 

shows that the recent stimulus can reproducibly set the probability that the cell will be 

primed at the time of each visual trigger. 

To summarize the result for all cells in our population, we estimated the 

probability of the primed state during a given firing event by the proportion of the 

responses that were bursts (the number of trials that burst during the event divided by 

the number of all trials with any spikes during the event). Across all cells, most firing 

events had 0% probability of the primed state, but this probability was as high as 94% 

for some individual firing events (Figure 2.4D). As expected, more firing events 

contained bursts in the natural stimulus experiment (compare the two curves in Figure

2.4D).  The absolute probability of firing a burst within a firing event ranged from 0 to 

89% (Figure 2.4E). Two independent subsets of the data gave highly-correlated 

estimates of the burst probability (symbols lie near the line x=y in Figure 2.4E). The 

probability of the primed state (Figure 2.4D) was also reproducible in independent 

samples (not shown). 

Relation of burst rate to the frequency of long silences

Biophysically, priming of the T-type channel requires a prolonged 

hyperpolarization (50-100 ms without any action potentials). Operationally, our 

definition of a “burst” requires >100 ms with no spikes before the burst. The simplest 
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explanation for the increase of bursting during natural stimuli would be that the 

required long silences occurred more often. Alternatively, one could imagine that long 

inter-spike intervals were equally likely under both stimulus conditions, but that the 

probability of priming during that interval is higher during natural stimuli, for example 

because the cell was hyperpolarized more deeply and/or more continuously. A mixture 

of both causes is also possible. To test each of these possibilities, we examined the 

probability of long intervals as well as the conditional probability of priming given 

that a long interval has occurred.   

Our population of cells could be divided into three groups according to their 

burst frequency. The first group of cells had the highest burst frequencies in our 

population (0.75 < x < 1.08 bursts/s; N=4 cells). This group of cells was also 

distinguished by the fact that responses to natural stimuli had significantly more long 

inter-spike intervals than responses to white noise (average shown in Figure 2.5A). 

For these cells, the higher frequency of long intervals could explain the higher burst 

frequency observed with natural stimuli.  

The second group of cells had intermediate burst frequencies (0.095 < x < 0.75 

bursts/s; N=7 cells). In every cell in this group, the probability of long inter-spike 

intervals was similar under both stimulus conditions (average shown in Figure 2.5C). 

Therefore the frequency of long intervals could not explain the higher burst frequency 

of responses to natural stimuli. Instead, we found that under natural stimulation, these 

cells had a greater probability of bursting after a long silence (Figure 2.5D).  We 

observed a similar trend in the first (high-bursting) group, but the result was 

statistically significant only for a few interval lengths (Figure 2.5B). Shorter intervals 
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are not expected to show an effect (compare to Figure 2.5D) whereas longer intervals 

were too rare in white-noise responses (Figure 2.5A) to allow an accurate estimate.

Finally the third group consisted of the 4 cells with the lowest burst 

frequencies in our population (<0.095 bursts/s for our natural stimulus). This group 

was heterogeneous with respect to the relative likelihood of long inter-spike intervals 

in the two stimulus conditions (not shown). The conditional probability of bursting 

after a long interval could not be determined due to the rarity of the bursts.  

Visual information encoded by priming

The results presented above show that visual stimuli influence the probability 

of priming of the T-type channel in the LGN. It follows that some extra visual 

information is transmitted by the LGN as a result of having two states (primed and 

unprimed) with distinguishable outputs (bursts and single spikes).  To estimate how 

much visual information is specifically due to priming, we asked how much 

information is present in the LGN spike train when bursts and single spikes are 

distinguished, versus when they are not.  

First we identified the bursts in our recorded spike trains. We created a 

surrogate spike train in which each single spike was denoted by one symbol at the time 

of the spike, and each identified burst was denoted by a different symbol at the time of 

the first spike in the burst (Methods). This identified response train retains information 

about the time of the triggers, as well as information about the state of the neuron at 

the time of the trigger (i.e. which responses were bursts), but it contains no further 

information about the structure of the burst (number of spikes or inter-spike intervals 
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within the burst). For purposes of this analysis, we will neglect any additional 

information that might be contained in burst structure. We will consider the 

information in the identified response train to be the total information in the LGN 

spike train, Itotal.

We created a second control response train by randomizing which of the 

responses were labeled with the burst symbol.  The control response train is matched 

for the frequencies of the two symbols and thus has the same overall burst rate.  The 

control response train lacks any temporal information about the cell’s state (primed or 

unprimed), but retains all information about when responses occurred, i.e., when the 

triggering inputs occurred.  Therefore we interpret the information rate in this control 

response train as the information due to triggering alone, which we denote Itrigger.  

We define the state information as the amount of visual information that was 

lost when the distinction between single spikes and bursts was removed:  Istate = Itotal -

Itrigger. This is the information potentially transmitted to cortex solely by virtue of the 

ability of bursts to reveal the sub-threshold state of an LGN neuron, information that 

could not have been transmitted if bursts did not occur. 

We found that the state information Istate depended on the overall burst rate: 

cells with more bursts transmitted more information through the state variable (Figure

2.6A: larger symbols are farther from the origin).   The state information, Istate, was as 

high as 3.7 bits/s in experiments using the more natural stimuli.  We emphasize that 

this is the visual information bursts transmitted by reporting the state of the LGN cell 

(primed vs. unprimed), independent of and in addition to the information that bursts 

carried about triggering stimulus (response vs. no response).
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For most cells Istate was greater for natural stimuli than white noise stimuli 

(most symbols are above the diagonal; p<0.05 by Wilcoxon sign rank test).  The 

fraction of the total information carried by state (Istate / Itotal) was also greater for the 

natural stimuli (p<0.001).  We find that the state information Istate measured in 

bits/burst was comparable to the trigger information Itrigger measured in bits/response 

(Figure 2.6B). 
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Discussion

It has long been suggested that thalamic bursts may have a role in gating the 

flow of visual information to cortex (Singer, 1977; Crick, 1984; Sherman and Koch, 

1986; McCormick and Feeser, 1990; Guido and Lu 1995). It has remained 

controversial whether bursts occur or function during visual awareness (Steriade, 

2001; Sherman, 2001b). In this study we have analyzed the visual properties of bursts 

that occur intermingled with single spikes under conditions of light anesthesia.

Almost all bursts are visually triggered 

Previous studies have shown that the average spike and the average burst are 

visually triggered, as opposed to being triggered by non-visual inputs or noise 

(Reinagel et al., 1999; Kepecs and Lisman, 2003; Rivadulla et al., 2003; Lesica and 

Stanley, 2004; Alitto et al., 2005). Using binary white-noise visual stimuli, reverse-

correlation analysis revealed that almost every burst is preceded by a specific stimulus 

value at the peak spatial location and temporal delay, implying that few if any bursts 

are triggered by non-visual inputs (Alitto et al., 2005). In our study we used low-

contrast grayscale stimuli, and the average stimulus preceding a spike or burst was 

always an intermediate luminance at all latencies. In this case the spike-triggered 

average does not reveal the fraction of bursts that were visually triggered. Instead we 

defined a response as visually triggered if it occurred during a brief time window that 

contained reliable stimulus-locked firing events (Figure 2.2).  For both natural 

temporal flicker and white noise, most bursts were visually triggered by this criterion. 

Indeed bursts were even more likely than single spikes to occur within a visual firing 
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event.  This result further demonstrates that these bursts are not driven by anesthesia-

induced rhythms.

Visual stimuli influence the average probability of priming 

Even if every burst were triggered by a visual stimulus, bursts could be merely 

interchangeable with single spikes.  But if the priming of the T-type calcium channel

is visually controlled, a decoder could extract visual information by selectively 

responding to bursts. Thus, bursting could allow LGN neurons to multiplex two 

different streams of visual information in a single spike train. 

Consistent with the second possibility, other studies found average burst 

frequencies to depend on parameters of simple stimuli such as sinusoidal gratings 

(Grubb and Thompson, 2004) or flashing squares (Weyand et al., 2001). We report 

that LGN neurons are more likely to burst when visual stimuli contain temporal 

structure of natural scenes (Figure 2.3), compared to white noise stimuli (see also 

Lesica and Stanley, 2004).  Although we only tested one example of a natural 

stimulus, its spectrum was typical of natural stimuli in that power was inversely 

proportional to frequency (van Hateren, 1997). Random stimuli with a 1/f power 

spectrum caused intermediate burst frequencies (data not shown), showing that the 

phase alignment found in natural stimuli is important for the efficiency of priming.  

Our interpretation is that temporal stimulus features that prime the burst state (i.e., de-

inactivate the T-type calcium channel) are more prevalent in at least some natural 

scenes. The fact that some stimuli evoke more bursts than others is strong evidence 

that priming is visually controlled.
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Visual control of the timing of state transitions

For both stimuli tested, we found that bursts occurred during specific firing 

events and not others (Figure 2.4). We conclude that specific temporal sequences in 

the visual stimuli determine the probability of the primed state.  Thus, downstream 

cortical neurons could detect the internal state of pre-synaptic LGN neurons by 

detecting the stereotyped inter-spike intervals of bursts, just as we have done in our 

analysis.

An integrate-and-fire or -burst model predicts time-varying firing rates in the 

LGN relatively well, compared to a model that lacks bursts (Lesica and Stanley, 

2004). Nevertheless, we still cannot accurately predict the probability of priming at

each firing event. This will probably require taking into account additional nonlinear 

dependencies on the visual stimulus.

Our experiment does not address the spatial information encoded by bursting 

(but see Rivadulla et al., 2003; Alitto et al., 2005). We also have not determined the 

specific temporal stimulus features that predict the probability of priming. Others have 

shown that the average stimulus preceding a burst has a longer and stronger inhibitory 

phase preceding the excitatory trigger, consistent with the idea that inhibitory visual 

stimuli prime the T-type calcium channel (Lesica and Stanley, 2004; Alitto et al., 

2005).  Our approach is complementary to reverse-correlation analysis, which cannot 

separate whether bursts are visually primed, or whether the cell in the primed state has 

different triggering requirements. 



34

The length of the preceding interval is not sufficient to predict priming

Prolonged hyperpolarization is required to prime the burst state. All cells in our 

study burst more during natural stimuli than white noise stimuli.  We wondered if this 

could be accounted for by a higher likelihood of long periods without spikes during 

the more slowly modulated natural stimuli.

For all cells with high burst rates, natural stimuli evoked responses with more 

long silences (periods without spikes) (Figure 2.5A,2.5B). In cells with low burst 

rates, however, long silences were equally likely for both stimuli; instead the 

conditional probability of a burst given a long silence was higher if the stimulus had a 

natural time course (Figure 2.5C,2.5D). We conclude that the length of the preceding 

interval is not always sufficient to predict when bursts occur. We speculate that the 

natural stimulus either hyperpolarized the cells more deeply on average during the 

silent interval, or hyperpolarized them more continuously. A direct test of this 

hypothesis will require in vivo intracellular recording of the LGN during visual 

stimulation. 

Several cells essentially never fired bursts, regardless of the preceding 

interval’s duration. We cannot exclude the possibility that these units are inhibitory 

interneurons, though we have no specific reason to think so. Relay cells vary in their 

intrinsic tendency to burst (Weyand et al., 2001), perhaps due to different expression 

levels of the T-type calcium channel.

Information carried by state



35

Given that some visual stimulus sequences reliably prime the channel and 

others reliably prevent priming, the cell’s state necessarily encodes visual information. 

We found that up to 3.7 bits/s of visual information was carried by state as such, as 

distinct from and in addition to the information carried by the times of triggered spikes 

and bursts (Figure 2.6). This information is accessible for decoding because cortical 

neurons can differentially respond to bursts (Usrey et al., 2000; Swadlow and Gusev, 

2001).  

Not surprisingly, cells with higher burst frequencies carried more state 

information.  Responses to natural scenes had more bursts, and a greater fraction of 

the total visual information was carried in the state information compared to the 

responses to white noise.

Our analysis made the simplifying approximation that the neuron’s state is 

binary (Figure 2.1).  Intermediate priming states could be revealed by variability in 

burst structure (Kepecs and Lisman, 2003), potentially encoding even more 

information. Our cells, however, had relatively little variability in burst structure. 

The state presumably encodes information about the visual history preceding 

the triggering stimulus feature, as others have suggested.  Some information about 

visual history is encoded in the length of the preceding inter-spike interval.  Still, it 

may be easier for downstream cortical cells to detect bursts than to keep track of long 

silences. Moreover, the preceding interval is not sufficient to determine whether an 

LGN cell will fire a burst (Figure 2.5).  Therefore the state can encode additional 

information about the visual stimulus that could not be determined from the duration 

of the previous interval.
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Are bursts important for vision?

Our results do not settle whether bursts are used for visual processing. At least 

some bursts occur in the LGN of alert animals (Guido and Weyand, 1995; Ramcharan 

et al., 2000; Ramcharan et al., 2001; Weyand et al., 2001;  Martinez-Conde et al., 

2002). Bursts have also been observed in thalamic relays of other sensory pathways in 

alert animals (Fanselow et al., 2001; Massaux et al., 2004).  Although bursts are less 

frequent in alert than anesthetized animals, our results show that natural stimuli may 

be especially likely to elicit bursts. Therefore it will be important to measure burst 

frequency in alert animals during natural visual stimulation. Even if bursts are rare, 

they could be important signals when they occur.

We addressed only the visual information encoded by state. State could also 

encode behaviorally relevant non-visual information. Burst frequency correlates with 

global levels of arousal (Livingstone and Hubel, 1981; Hirsch et al., 1983; McCarley 

et al., 1983; Guido and Weyand, 1995; Weyand et al., 2001), but burst timing also 

correlates with specific behavioral states or events (Ramcharan et al., 2001; Martinez-

Conde et al., 2002).

The fact that bursts are visually triggered only establishes that the T-type 

calcium channel does not interfere with visual transmission. To claim that bursts serve 

a distinctive function, it must also be shown that bursts and single spikes represent 

distinct visual inputs or behavioral conditions. Our data show that visual stimuli can 

control the priming of T-type calcium channels in LGN relay cells of anesthetized 
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animals. If the same proves true in alert animals, bursts could serve a visual function 

by relaying information to cortex about sub-threshold states in the thalamus.
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Figure 2.1:A simplified conceptual model of LGN firing modes. Each LGN neuron at 
any given time is assumed to be in one of two binary states depending on 
whether the T-type calcium channels are primed or inactivated. When we 
observe an isolated action potential in an extracellular recording, we infer 
that a retinal synaptic input most likely triggered the response, and that the 
T-type calcium channels in the LGN cell were inactivated at the time. 
When we observe a burst of appropriate structure, we infer that a retinal 
input triggered a calcium spike, and therefore the T-type calcium channels 
must have been primed. We note that we are ignorant of both retinal inputs 
and the state of the T-type calcium channels at other times.
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Figure 2.2:Visually triggered bursts. A, Raster plot of responses of an LGN 
neuron to 128 repeats of the same full-field white noise stimulus. 
Each row represents a trial; each point represents the time of an 
action potential in that trial. Red points indicate the action 
potentials that were classified as being part of a burst (see 
Methods).  A representative 1-s from the middle of an 8-s trial is 
shown. Diamonds indicate the times at which we classified the 
response as a visually evoked firing event (cell responded in >10% 
of trials; see Methods). Filled diamonds indicate the subset of firing 
events that were highly reliable (cell responded during the event in 
>80% of trials). B, Responses of the same neuron to 128 repeats of 
a full-field stimulus with a time course recorded in nature, all 
symbols as in panel (A).  C, Percent of isolated spikes (x axis) vs. 
percent of bursts (y axis) that occurred during a visually evoked 
firing event, ◊ in panels (A) and (B). Each symbol represents results 
for a single cell’s response to either the natural stimulus (○) or the 
white noise stimulus (∆).  Dashed line indicates x=y. D, Percent of 
isolated spikes (x axis) vs. bursts (y axis) that occurred in a highly 
reliable visual event (♦ in panels A and B). Symbols as in panel (C). 
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Figure 2.3:Burst rate is higher for naturalistic stimulus.  Fifteen LGN neurons 
were presented two different stimulus ensembles, one having a 
natural temporal modulation (Natural Stimuli) and the other having 
a random modulation (White Stimuli). Both stimuli were spatially 
uniform across the visual field. Each symbol represents results for a 
single cell under the two stimulus conditions. A, Burst rate, in 
bursts per second. B, The fraction of all responses that were bursts, 
where a response is defined as either a single spike or an entire 
burst..
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Figure 2.4:Discrete firing events have reproducible, intermediate burst 
probabilities. A, PSTH of all spikes (thin, black curve) and of the 
subset of spikes that were classified as bursts (thick, red curve), 
derived from the 64 odd-numbered trials of the raster shown in 
Figure 2.2B. B, PSTH as in panel (A), but from the 64 even-
numbered trials. Events have a similar probability of bursting in 
both independent estimates. C, Luminance time course of the visual 
stimulus corresponding to the responses shown in (A) and (B). The 
stimulus was drawn from the natural ensemble, and the cell was an 
ON cell with a 29 ms latency to peak response. D, Distribution of 
priming probabilities of firing events, pooled over all cells (N=15). 
For each visual firing event (PSTH peak), the priming probability 
was defined as the probability of a burst given that any response 
was observed, P(Burst|Response) (see Methods). Results are shown 
for both the natural stimulus (○, N=3444 events) and the white 
noise stimulus (∆, N=2342 events). The broken axis and dashed 
lines are used to show the fraction of events with 
P(Burst|Response)=0, which cannot be shown on the log scale. E, 
The absolute probability of bursting for each firing event, P(Burst), 
is defined as the probability across trials of observing a burst within 
the time of the event.  Independent estimates from the odd trials (x 
axis) and even trials (y axis) are compared to assess reproducibility 
of our estimates.  If burst probability were perfectly reproducible, 
points would lie on the identity line (dotted line). The majority of 
firing events had no bursts in 128 trials and therefore are plotted at 
the origin (N=2575 events for natural, N=2087 events for white 
noise).
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Figure 2.5:Stimulus-dependent burst rate is explained by two causes.  A, The inter-
spike interval (ISI) distribution for all cells with high burst rates (N=4 cells 
with burst rates between 0.75 and 1.08 bursts/s in response to natural 
stimuli).  Probability is defined as the absolute probability of a given 
interval length among all intervals, excluding within-burst intervals.  
Distributions were averaged across cells for either natural stimuli (thin 
curve) or white noise stimuli (thick curve).  Only long intervals (>100 ms) 
are shown. Short intervals (≤100 ms) constituted 79% and 92% of intervals 
during the natural and white noise stimuli respectively.  Responses to 
natural scenes had many more of the long intervals required to prime the 
channel.   B, The probability of priming as a function of the previous ISI, 
for the cells shown in (A) (see Methods). C, ISI distribution as in panel (A) 
but for the group of all cells with intermediate burst rates (N=7 cells with 
burst rates between 0.095 and 0.75 bursts/s). Short inter-spike intervals 
(≤100 ms, not shown) constituted 54% and 53% of intervals during natural 
and white noise stimuli respectively.  There is no difference in ISI 
distribution to explain why the natural stimuli evoked more bursts. D, The 
probability of priming as a function of the previous ISI, as in panel B but 
for the cells shown in (C).  These cells were more likely to prime the T-
type calcium channel after a given period of inactivity if the stimulus had 
natural temporal structure, as opposed to white noise.
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Figure 2.6:Visual information encoded by the cell’s state.  A, The state information 
Istate is that visual information which can only be decoded by identifying 
which of the visually triggered responses were bursts (see Methods). Each 
symbol shows Istate in units of bits/s for one cell’s responses to the white 
noise stimulus (x-axis) versus the natural stimulus (y-axis).  The symbol 
size is proportional to the burst rate of the cell, averaged across the two 
stimulus conditions. Dotted lines indicate x=0, y=0, and x=y.  Information 
rate estimates were empirically corrected for finite data size (see Methods). 
Filled symbols indicate cells for which this correction was small and linear 
under both stimulus conditions. Open symbols indicate cells which did not 
pass this criterion. Results shown are for spike trains binned at 2ms 
resolution and words of length 8 bins; extrapolating to infinite word length 
gave qualitatively similar results.  B, The state information expressed in 
bits/burst (Istate in bits/s divided by burst rate in bursts/s), compared with 
the trigger information expressed in bits/response (Itrigger in bits/s divided 
by response rate in responses/s, where a response is either a single spike or 
an entire burst). Each symbol represents a single cell’s response to either 
the natural stimulus (○) or the white noise stimulus (∆).  The symbol size is 
proportional to the burst rate of the cell for that stimulus. Filled and open 
symbols defined as in (A). Calculation parameters as in (A). 
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Chapter 2, in full, is a republication of the material as it appears in 

Denning K.S., Reinagel P., Visual control of burst priming in the anesthetized lateral 

geniculate nucleus.  J Neurosci. 25, 3531-3538 (2005).  The dissertation author was 

the primary researcher and first author of this paper.
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Chapter 3

Basis of burst-specific s tate information in LGN neurons
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Abstract

Neurons in the lateral geniculate nucleus (LGN) can respond to depolarization 

either with a single spike or a burst of spikes.  The response type depends on the state 

of the T-type calcium channel.  Strong hyperpolarization de-inactivates the channels 

and causes cells to respond to excitatory stimuli with a burst of spikes.  It has been 

shown that bursts and spikes occur at distinct times within visual stimuli, indicating 

that visual stimuli can influence the state of the T-type calcium channel (Lesica and 

Stanley, 2004; Alitto et al., 2005; Denning and Reinagel, 2005).  Therefore, 

distinguishing between bursts and single spikes provides additional information about 

the visual stimuli.  In Denning and Reinagel (2005), we introduced a state-information 

measure to quantify this additional information.  Here, we first examine why this 

technique is superior to other information measures that could be used to examine the 

same question.  Secondly, we begin to investigate whether time-varying firing rates 

independent of the T-type calcium channel could reproduce the bursting patterns and 

the state information found in LGN neurons.  Thirdly, we and others identify putative 

low-threshold bursts from extracellular recordings by two inter-spike interval criteria: 

bursts must follow a long silence and spikes within the burst must be separated by 

short intervals.  We show that bursts convey visual information that is distinct from 

patterns identified using only one of the above criteria.  Finally, we report that the 

number of spikes within a burst is influenced by the stimulus, such that distinguishing 

between bursts of different sizes provides additional visual information.  We conclude 

that visual stimuli can influence the state of the T-type calcium channel, such that 

distinguishing between response types can provide additional visual information.
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Introduction

Sustained hyperpolarization will de-inactivate LGN cells’ T-type calcium 

channel.  When the channel is de-inactivated, an excitatory stimulus will then cause a 

burst of action potentials, whereas if the channel is inactive, an excitatory stimulus 

will cause a single action potential (Jahnsen and Llinas, 1984).  Several studies have 

reported that bursts are rare in alert animals (Guido and Weyand, 1995; Ramcharan et 

al., 2000; Weyand et al., 2001; Ruiz et al., 2006), which has caused speculation as to 

whether bursts are important for visual processing.  However, the information value 

provided by the T-type calcium channel can not be determined merely by the 

frequency of bursts.  Just as spikes act as a sparse code, bursts may provide an 

additional sparse code.

If the activation state of the T-type calcium channel was not influenced by 

visual stimuli, then the channel would be de-inactivated at random times with respect 

to the visual stimuli.  Although bursts would be triggered by visual inputs, such that

the timing of bursts and spikes would still convey visual information, identifying 

responses as either bursts or spikes would provide no additional visual information.  

This does not appear to be the case.  In anesthetized animals, bursts and spikes are 

reliably elicited by distinct stimuli (Alitto et al., 2005; Denning and Reinagel, 2005).  

In Denning and Reinagel (2005), we modified the direct method of Strong et al. 

(1998) in order to determine whether distinguishing between bursts and spikes 

provides additional information about visual stimuli.  
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The initial description of the state-information measure in Denning and 

Reinagel (2005) was brief and did not include a full analysis of the properties of the 

measure.  Here we explore differences between our state-information measure and 

other possible state-information measures, and we explain why our state-information 

measure is superior to other potential analyses.

In addition, we address two possible concerns about the measure.  The first is 

that by replacing all bursts by a single symbol, the analysis in Denning and Reinagel 

(2005) eliminates information within burst structure.  An ROC analysis performed on 

model data suggests that the number of spikes in a burst corresponds to the slope of 

the stimulus (Kepecs et al., 2002; Kepecs and Lisman, 2003).  Additionally, LGN 

bursts consisting of a large number of spikes are more likely to follow a micro-saccade 

(Martinez-Conde et al., 2002).  Results in the primary visual cortex led Martinez-

Conde et al. (2002) to speculate that the number of spikes in a burst would also be 

sensitive to other stimulus characteristics.  Here, we show that burst size does convey 

additional information about the stimulus.

Secondly, we investigate what aspect of the burst criteria is necessary for our 

results.  Bursts are identified using inter-spike interval (ISI) criteria (Lu et al., 1992, 

1993; Ramcharan et al., 2001).  A long interval of silence is required before the burst 

(>50-100 ms), and the spikes within a burst must have short ISI (<4-6 ms).  Therefore, 

perhaps although bursts are informative, they are no more informative than any high-

frequency spiking epoch or than any spike preceded by a long silence.  Or perhaps 

bursts are simply an epiphenomena explained by a time-varying stimuli, in which case 
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a time-varying Poisson spike train would encode the same amount of “state” 

information.  Here, we explore all of these possibilities. 
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Methods

Surgical preparation. Cats were first anesthetized with ketamine HCl (20 

mg/kg, i.m.), then by sodium pentothal (2– 4 mg • kg-1 • h-1, i.v., supplemented as 

needed). They were ventilated through an endotracheal tube. Electrocardiogram, 

electroencephalogram, temperature, and expired CO2 were continuously monitored. 

Animals were paralyzed with Norcuron (0.3 mg • kg-1 • h-1, i.v.). (Data in Figures 3.6 

and 3.7 was collected on un-paralyzed cats.)  The eyes were refracted, fit with 

appropriate contact lenses, and focused on a tangent screen. Electrodes were inserted 

through a 0.5 cm diameter craniotomy over the LGN. Surgical and experimental 

procedures were in accordance with National Institutes of Health and United States 

Department of Agriculture guidelines.  Procedures involving data from Figures 3.6 

and 3.7 were approved by the UCSD Institutional Animal Care and Use Committee; 

procedures involving data of all other figures were approved by the Harvard Medical 

Area Standing Committee on Animals.

Electrical recording. Either parylene-coated tungsten electrodes (AM 

Systems, Everett, WA) or Quartz-coated platinum/tungsten electrodes (System 

Eckhorn; Thomas Recording, Marburg, Germany) were inserted through a 0.5 cm 

diameter craniotomy over the LGN.  Recordings were amplified, filtered, and passed 

to a personal computer running either DataWave Technologies (Longmont, CO) 

Discovery software or Spike2, ver. 5.12a (Cambridge Electronic Design, Cambridge, 

UK); spike times were recorded with 0.1 ms resolution. Waveforms were analyzed 

offline to isolate single unit responses (Fee et al., 1996). Only well-isolated single unit 

responses with absolute refractory periods were analyzed further.  Figures 3.6 and 3.7
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contained both X (n=3) and Y cells (n=3), while all other figures contained only X 

cells.  Additional analysis was performed using custom programs written in the Matlab 

programming environment (Mathworks, Natick, MA).

Visual stimulation. Stimuli in Figures 3.6 and 3.7 were 5-second spatially 

uniform, binary, white-noise stimuli.  These stimuli were presented on a custom-built 

LED array (125 frames per second) at 100% contrast, and were repeatedly presented 

between 53 and 128 times.  All other stimuli were spatially uniform and presented 

either on a cathode ray tube (CRT) monitor (128 frames per second; eight-bit 

grayscale; n = 9 cells) or a custom-built LED array (1200 frames per second; 15-bit 

grayscale; n = 6 cells).  These stimuli were obtained by drawing independent random 

samples from the distribution of luminance values in natural luminance time series 

from van Hateren (1997), thereby eliminating the temporal correlations of the natural 

stimulus but preserving the distribution of the stimulus intensities. Stimuli were 8–32 s 

long and repeated 128 times. Results reported here were the same for both CRT and 

LED data, so both are shown and both are included in all averages we report.

Burst classification. We define a “burst” as a group of two or more action 

potentials separated by ≤6 ms, preceded by a period of >50 ms without spiking 

activity. This criterion was shown previously to reliably identify bursts that are 

attributable to low-threshold (T-type) calcium spikes in LGN relay cells of the cat (Lu 

et al., 1992, 1993; Ramcharan et al., 2001). We repeated our analysis with a more 

stringent burst criteria (preceding interval, >100 ms; internal interval, ≤4 ms); this 

decreased our estimated burst frequency only slightly and did not qualitatively change 

any of the results reported here.
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Information calculations. Our recorded neural data were represented as time-

binned spike trains; in this study, a fixed bin size of δτ = 2 ms was used. State

information values were calculated from binned representations of the actual spike 

trains (Iidentified) and compared to those calculated from binned representations of the 

response-shuffled spike trains (Irandomized).  Because the state of the T-type calcium 

channel determines whether a response will be a burst or a single spike, if 

distinguishing the bursts from the spikes is advantageous, then Istate should be positive.

Istate = Iidentified, – Irandomized

For calculations of Iidentified, the value of a time bin was set to 0000 if no spikes 

occurred during that time interval, 1111 if a single spike occurred during that time 

interval, or 2222 if a burst occurred in that time interval.  Each observed occurrence of a 

burst was represented by a single 2222 the time of the first spike within the burst.  This 

procedure was implemented both when calculating the noise entropy and the total 

entropy for Iidentified. 

For state-information calculations, used to determine whether it is informative 

to distinguish a burst from other spikes, we calculate the noise and total entropy as 

above, but we first shuffle the 2222’s and 1111’s across all non-0000 bins, thereby preserving the 

number of patterns and spikes.  Irandomized is again the difference between the total and 

noise entropies.  If bursts were interchangeable with single spikes, this shuffling 

should not change the information of the spike train.  

Entropy calculations. Once the spikes and patterns are in a binned 

representation, we calculated the visual information in spike trains by the direct 

method (Strong et al., 1998), implemented exactly as by Denning and Reinagel 
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(2005). Briefly, we analyzed the information contained in words (short strings of bins) 

and varied the number of bins in the words, L. For each word length, we measured two 

forms of word entropy: the average noise entropy, <Hnoise>, which reflects the trial-to-

trial variability of words when the stimulus was fixed, and the average total entropy, 

<Htotal>, which reflects the variability of words across all stimuli in the ensemble. 

Hnoise(t) was calculated from the distribution of words at a fixed time t relative to 

stimulus onset, in all repeats of the same sample of the stimulus. We performed a 

separate calculation of Hnoise(t) for many different values of t (separated by one bin) 

within the 8 or 32 s stimuli. We then averaged over t to get the average noise entropy 

< Hnoise>.We performed equally many separate calculations of Htotal(t), but the set of 

words was instead selected using a different time t from each trial. When estimating 

Htotal(t), we used twice the number of words used to estimate Hnoise(t) in order to 

compensate for the approximately twofold difference in entropy. We averaged over t 

get the average total entropy < Htotal>. Finally, the mutual information between the 

visual stimulus and the spike train is defined as I = < Htotal>-< Hnoise>.We computed 

information as a function of word length. We extrapolated to infinite word length from 

the linear part of the curve H versus 1/L as described by Strong et al. (1998).

Data adequacy for entropy calculations. For all entropy estimates that we 

computed, we determined how our estimate of H converged as we used increasing 

fractions of the data and then corrected for finite data size according to the method of 

Strong et al. (1998). The correction is obtained by fitting a second-order polynomial to 

1/(fraction of data) versus estimate. We are confident of our estimates when the total 

correction for finite data size was <10% and the second-order term of this correction 
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was negligible, <1%. Results that passed these criteria are shown with filled symbols. 

For completeness, we also show our results from cells that did not pass the criteria.  

For these cells, we estimated the entropy by fitting a first-order polynomial to 

1/(fraction of data) versus estimate.
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Results

Overview

In Denning and Reinagel (2005), we concluded that bursts reliably occur at 

distinct times within stimuli.  In the LGN cell shown in Figure 3.1A, a white-noise, 

time-varying, full-field, 8-second stimulus was repeatedly presented 128 times.  In 

Figure 3.1A, single spikes are identified by black symbols and bursts of spikes by red 

symbols.  As reported in Denning and Reinagel (2005), specific stimuli nearly always 

result in bursting responses, while other stimuli nearly always result in single-spiking 

responses.  We then shuffle the responses’ identity (as either a burst or single spike), 

in which case, the reliability of burst labels is eliminated (Figure 3.1B), indicating that 

the symbol identity is no longer informative about the stimulus.

The reliable occurrence of response types suggests that distinguishing between 

the response types can provide information about the stimulus.  One method used to 

quantify the information available within spike trains is the direct method (Strong et 

al., 1998).  The Direct Method begins by converting continuous spike trains into 

binary, binned responses.  Time bins are set to 1111 if a spike occurred within the bin and 

0000 if no spike occurred.   These binary representations are then divided into words, 

consisting of a binary string defined by the values of consecutive bins.  The mutual 

information between spike trains and visual stimuli is calculated by comparing the 

variability in the words when presented with the same, repeated stimulus (Hnoise), and 

the variability in the words when presented with many different stimuli (Htotal). 

Because, as words get longer, it is exponentially more difficult to estimate the 

probability of any given word, these calculations are typically performed using short 
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words.  Throughout this paper, we define the duration of our time bins (δτ) as 2ms and 

the length of our words (L) as 8 bins (16ms).  Although the utilization of short words 

removes information about longer spiking responses, one might imagine a decoding 

cell to only be sensitive to spiking responses along a similarly short timescale.

Distinguishing bursts and spikes provides visual information

We want to calculate the difference between the information available when 

bursts and single spikes can be correctly identified and the information available when 

the spiking responses cannot be correctly identified. We define this difference as the 

state information, because the state of the T-type calcium channel (either de-

inactivated or inactivated) determines the response type (either a burst or a single 

spike, respectively). When the voltage trace is binned into the original spiking 

response (Figure 3.2), not only can bursts be correctly identified, based on ISI criteria, 

but burst structure (e.g., ISIs within the burst and the number of spikes within the 

burst) is preserved.  Perhaps the simplest state-information calculation would be to 

calculate the information from the original representation and subtract from that the 

information from the unidentified representation (Figure 3.2), in which all bursts are 

replaced by single spikes.  Figure 3.3B illustrates that, indeed, the information from 

the original representation is greater than that from the unidentified representation, 

suggesting that distinguishing between bursts and single spikes is informative.  

However, because the original representation contains more spikes than the 

unidentified representation, it will be more difficult to estimate the probability 

distributions of words, subjecting the two calculations to a different bias.
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In Denning and Reinagel (2005), we define the identified representation as one 

in which each burst is replaced by a single symbol (Figure 3.2).  (In the binned 

representation, each burst is replaced by a 2222 at the time of the first spike within the 

burst.)  This representation eliminates any information within burst structure, but 

preserves any information within the response identity.  Because in this data set, there 

was little variability within the burst structure, the information rates from the original 

representation, Ioriginal, and the information rates from the identified representation, 

Iidentified, are approximately equal (Figure 3.3A).  Again, we could compare the 

information from this representation and the information from the unidentified 

representation, Iunidentified, (Figure 3.3C), but a larger number of words are still present 

in the identified representation due to the inclusion of the extra symbol; therefore, the 

biases are still different.  

If, instead, we merely shuffle the identity of the spiking responses to create a 

randomized representation (Figures 3.2 and 3.1B), then information within the 

response identity is lost, but the bias from the identified and randomized 

representations are roughly equal.  We define the state information, Istate, as the 

difference in the mutual information between the stimulus and the identified spike 

train, Iidentified, and the mutual information between the stimulus and the randomized 

spike train, Irandomized.  Because the information from the randomized spike train is less 

than that from the identified spike train (Figure 3.3D), the state information is positive, 

and we conclude that it is informative to distinguish between bursts and single spikes.

Entropy contributions to state information
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Positive state information values could be explained if the variability of words 

during unique stimuli was greater for the identified representation than the 

randomized, if the variability during repeated stimuli was less for the identified 

representation than the randomized, or a combination of the two.  Spike trains during 

both repeated and unique stimuli are converted to either identified or randomized 

representations in order to estimate the total (Htotal) and noise (Hnoise) entropies for 

both conditions (see Methods).  We first calculate the total entropy, Htotal.  This value 

measures the variability in words when many different stimuli are presented.  

Shuffling the burst symbols (2222) amongst the spikes’ symbols increased Htotal by a 

negligible amount (Figure 3.4A).  This small increase in entropy likely occurs because 

the randomized representation can contain words that are never observed in the 

identified representation.  For example, if two responses are separated by 10ms, the 

second response could never be a burst in the identified representation, as a burst must 

be preceded by long silence, but in the randomized representation, a burst symbol may 

be assigned to the second response.

Next, we calculate the noise entropy, Hnoise.  This value measures the 

variability in words across trials when the same stimulus is repeatedly presented.  In 

addition to the effect noted above for Htotal, Hnoise will increase to the extent that the 

response symbol is consistent across trials.  Shuffling the patterns’ symbol among the 

spikes’ symbols increased Hnoise (Figure 3.4B).  In addition to the effect noted above 

for Htotal, Hnoise increases to the extent that the response symbol is consistent across 

trials.  The null hypothesis that bursts are a random subset of responses predicts that 

Htotal and Hnoise will change by similar amounts.
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The amount of visual information, I, is equal to the total entropy, Htotal, minus 

the noise entropy, Hnoise, (see Methods).  Because the randomized representations were 

characterized by lower noise entropy values than the identified representation, the 

identified responses’ information, Iidentified, is larger than the randomized responses’ 

information, Irandomized (Figure 3.3D).  

The state information, Istate, is equal to the difference of the identified 

responses’ information, Iidentified, and the randomized responses’ information, Irandomized.  

In other words, how much more could a decoder know about the visual stimulus by 

knowing which responses are bursts, compared to one that only knows what fraction 

of responses are bursts.  As shown in Denning and Reinagel (2005), Istate depends on 

the frequency of bursts (Figure 3.4C).  The positive values of Istate indicate that it is 

informative to distinguish the bursts from single spikes.  The state information can 

contribute a substantial amount of information, up to 11% in this data set.

Contributions of time-varying firing rate to state information

One could imagine that a time-varying stimulus could be constructed such that 

a cell will frequently respond with a particular spiking pattern.  If the cell only fired 

one spike every time an excitatory stimulus was presented, then by presenting 

excitatory stimuli at precise times, a spiking pattern would be evident in the cell’s 

response.  

If apparent bursts were merely an artifact of time-varying firing rates, then a 

Poisson spike train should exhibit similar state information to that found in LGN cells.  

Therefore, for each LGN cell, we created rate-varying Poisson spike trains to match 
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the observed PSTH of the cell.  “Bursts” were identified by ISI criteria.  We observed 

more patterns meeting the burst criteria in the Poisson spike trains than in LGN data 

(Figure 3.5A).  We notice this difference to be particularly evident during imprecise 

firing events that contain only one spike in the majority of trials.  The imprecision of 

the events causes a broad peak in the probability of firing, causing multiple spikes 

within single trials of the Poisson spike trains.

We measure Istate as described above, and find that, for most cells, Istate in bits 

per second is greater for LGN cells than for Poisson spike trains (Figure 3.5B).  This is 

surprising, because in LGN cells we find that Istate increases as the burst frequency 

increases (Figure 3.5D and Denning and Reinagel, 2005).  

When Istate is measured in bits per burst, LGN state information is greater than 

Poisson spike trains’ state information for all cells (Figure 3.5C).  This indicates that 

the bursting pattern conveys more information than would be expected merely by the 

time-varying firing rate, and although Istate depends on the burst rate for both LGN 

data and Poisson data, the information rate corresponding to any given burst rate is 

greatest for LGN data (Figure 3.5D).  We note that many “burst” patterns observed in 

Poisson data arise since actual bursts provide burst-like structure to the time-varying 

firing rate.  Therefore, we believe that the Poisson comparison over-estimates the 

contribution of the state information that is due only to spiking patterns not caused by 

the T-type calcium channel.

Contributions of single-ISI criterion patterns to state information
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Bursts are identified by two inter-spike interval criteria: the burst must consist 

of at least two spikes, separated by short ISIs (≤6ms) and the burst must be preceded 

by a long ISI (≥ 50ms).  Alitto et al. (2005) reported that, although bursts and single

spikes differed in the average stimulus preceding the responses, the average stimulus 

preceding responses that satisfied only the long ISI criteria also differed from all other 

spikes.  Perhaps it is equally informative to distinguish between any response

following a long ISI (regardless of whether or not it was a burst) and other spikes as it 

is to distinguish between bursts and single spikes.

In order to test whether bursts are merely a random sub-set of long-ISI 

responses, we begin by calculating the state information, Istate, as described above.  

Next, instead of shuffling the burst symbols (2222) amongst all responses, as was 

described above, we only shuffle the bursts amongst the sub-set of responses (either 

bursts or single spikes) that were preceded by a long-ISI.  We define the information 

rate of this response representation as Ilong ISI shuf.  The long-ISI information rate, Ilong SI, 

is equal to Iidentified minus Ilong ISI shuf.  If similar stimuli cause bursts and spikes preceded 

by a long ISI, then Ilong ISI should be equal to zero.  Instead, we find that information is 

lost when bursts are shuffled amongst long-ISI responses (symbols to the right of the 

x=0 line in Figure 3.6A), indicating that it is informative to distinguish bursts and 

long-ISI single spikes.  However, not as much information is lost as when bursts are 

shuffled amongst all spikes (symbols above y=x line in Figure 3.6A), indicating that 

long-ISI responses are a distinct sub-set of other spikes and that some of the 

information obtained by distinguishing spikes from bursts (Istate) is due to the fact that 

bursts follow long-ISIs. 
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Similarly, we investigate whether bursts are a random subset of all responses 

satisfying the other short-ISI criterion.  This required the extra step of collapsing high-

firing rate epochs into singular “events” analogous to burst events.  First, we represent 

all bursts with a 2222.  Next, we represent all other high-firing rate epochs (multiple 

spikes separated by short ISIs but not preceded by a long ISI) with a single 1111.  All 

other spikes are represented by a 1111.  The modified identified information, Iidentified’, is 

then calculated in the same manner as described above, and this is compared to the 

information rate when the burst symbols are shuffled amongst all non-0000 symbols, 

Irandomized’.  Istate’ is then defined as Iidentified’minus Irandomized’.  Next, we shuffle the 

correctly-identified burst symbols amongst only responses satisfying the second, 

short-ISI criteria.  That is, the burst symbols are shuffled amongst the 2222’s and the 1111’s 

that represented the high-firing rate epochs and this shuffled information rate, 

Ishort ISI shuf, is calculated.  The short-ISI information rate, Ishort ISI, is equal to Iidentified’ 

minus Ishort ISI shuf.  As before, we find that information is lost when bursts are shuffled 

amongst short-ISI responses (symbols to the right of the x=0 line in Figure 3.6B), 

indicating that it is informative to distinguish putative low-threshold bursts from other

short-ISI spikes.  However, not as much information is lost as when bursts are shuffled 

amongst all spikes (symbols above y=x line in Figure 3.6B), indicating that short-ISI 

responses are a distinct sub-set of other spikes and that some of the information 

obtained by distinguishing spikes from bursts (Istate) is due to the fact that bursts 

include short-ISI spikes.

Burst size encodes information
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The state-information method represents all bursts by a 2222, thereby removing 

any information encoded by burst size (the number of spikes within a burst).  

However, in vitro studies have shown that the number of action potentials within a 

burst depends on the degree of hyperpolarization (Bevan et al., 2002). This suggests 

that the burst size (the number of spikes within a burst) could encode information

about the stimulus.  Additionally, theoretical results have suggested that the burst size 

is related to the magnitude of the slope of the input signal.

In the data used in Denning and Reinagel (2005) and in most of the LGN cells 

that we have recorded from, there was little variability in burst structure (data not 

shown).  However, for six cells, we observed a variety of burst sizes (Figure 3.7A).  

(We required at least 200 bursts with more than three spikes within the bursts in order 

for cells to be included in this analysis.)  This allowed us to determine whether burst 

size 

We calculated the spike-triggered averages for bursts of different sizes (Figure 

3.7B).  Across cells, as the burst size increased the magnitude of the suppressive phase 

increased, and the time to the excitatory maximum decreased (data not shown across 

cells).  This suggests that different stimuli trigger bursts of different sizes, and 

therefore burst size could encode information.

In order to explore this hypothesis, we represented each burst with an integer 

value equal to the burst size.  All other spikes were represented by a 1111.  The 

information rate of these responses was calculated; we subtracted from that the 

information rate obtained when the burst symbols were shuffled amongst all response 

symbols.  This difference was defined as IState Burst Size.
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We wanted to compare this information rate to that if bursts were not 

distinguished by their burst size.  In order to keep constant any bias introduced by the 

larger number of symbols, instead of representing all bursts by the same symbol, we 

shuffled all burst symbols amongst each other.  We calculated the information rate of 

these responses and subtracted from that the information rate obtained when burst 

symbols were shuffled amongst all response symbols, as before.  This difference was 

defined as IState Burst Size Shuf.

If burst size conveys information about the stimulus, then shuffling the burst 

symbols amongst each other will reduce the information, meaning that IState Burst Size Shuf

will be less than IState Burst Size.  Indeed, IState Burst Size Shuf  was less than IState Burst Size for all 

cells (Figure 3.7C and 3.7D).  

We compared the first ISI within a burst across bursts of different sizes.  We 

find that short ISIs are more probable if the burst contains many spikes (Figure 3.8).  

Therefore, we suspect that distinguishing between bursts with different ISIs would 

similarly provide visual information.
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Discussion

Bias and the state-information measure

Above, we demonstrate a technique which quantifies how informative it is to 

distinguish bursts from single spikes.  In Figures 3.2 and 3.3, we describe several 

methods by which this information value could be calculated.  Our method replaces 

the bursts and single spikes by two different symbols, calculates the information, and 

then calculates the information lost if the bursts’ symbols are shuffled amongst 

symbols from all responses.  An alternative method might calculate the information 

from the original binned representation and compare that to the information from a 

binned representation that replaces all burst spikes with a single spike.  In the latter 

method, the two information values compared in the latter method will include a 

different sampling bias; more words are possible within the original binned 

representation, thereby increasing the bias.  The state-information measure reduces the 

difference biases by including the burst symbol in both representations.

Our measure does not equalize the bias in both the identified and randomized 

representation.  By shuffling the burst symbol amongst all symbols in the randomized 

representation, some words are possible that could never exist in the identified 

representation.  For example, two spikes could be separated by 10 milliseconds.  In the 

identified representation, the second spike could never be identified as the first spike 

of a burst, as the preceding ISI is too short, given the burst criteria.  During the 

randomized representation, the second spike is as likely as any other to be assigned to 

a burst symbol.  Separate calculations revealed that if we restricted the randomly-
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assigned bursts to responses that would not result in “impossible words”, results 

presented above are unchanged (not shown).

Information in burst structure

In Figure 3.4, we show that specific visual stimuli trigger bursts containing 

different numbers of spikes.  The spike-triggered averages in Figure 3.7B suggest that 

when a cell is more hyperpolarized (by longer or stronger inhibitory stimuli), bursting 

responses will contain more spikes.  This is consistent with the in vitro study that has 

shown that the number of action potentials within a burst depends on the degree of 

hyperpolarization (Bevan et al., 2002).  We hypothesize that these cells contained 

multiple T-type calcium channel molecules and stronger inhibitory stimuli de-

inactivated more of these channels, resulting in larger calcium influx during the 

calcium spikes and therefore burst sizes.  Most other cells did not show much 

heterogeneity in burst size: bursts typically consisted of just two spikes.  We suspect 

that these cells did not have as many T-type calcium channels.

Information explained by time-varying firing rate

We found that Poisson spike trains generated from cells’ time-varying firing 

rate are characterized by positive “state” information (Figure 3.5).  This may suggest 

that some “state” information is merely because we are identifying spiking patterns 

caused by the stimulus and not the T-type calcium channel.  Unfortunately, bursts’ 

patterns contribute to the time-varying firing rate, such that many “bursts” in the 

Poisson data likely reflect real bursts in the LGN data.  
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In order to better test the above hypothesis, one might generate time-varying 

Poisson data using the unidentified representation.  This approach is slightly 

complicated by the fact that not all spikes within bursts may be correctly identified by 

ISI criteria, but increases the probability that all “bursts” within the Poisson data are 

artifactual bursts due to patterns not caused by the T-type calcium channels.  

Secondly, both this proposed analysis and the analysis presented in Figure 3.5 

should be repeated using time-varying Poisson data that incorporates a refractory 

period.  If the Poisson-refractory data of the unidentified representation is also 

characterized by positive “state” information, this could reveal a bias in our analysis, 

as many “bursting” patterns may be identified as T-type calcium bursts when, in fact, 

they were merely spiking patterns caused by the stimulus.

Information in long-ISI spikes and high-firing rate epochs

It is informative to distinguish both spikes following long-ISIs and high-firing 

rate epochs from single spikes.  However, bursts are not interchangeable with either of 

these patterns (Figure 3.6).  It remains to be determined whether the information 

associated with distinguishing bursts and single spikes can be explained by a 

combination of the information rates associated with the long-ISI spikes and high-

firing rate epochs.  These two patterns may encode redundant information, therefore 

adding the information values associated with each pattern 

Future directions
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Lesica and Stanley (2004) reported that a bursting mechanism had to be added 

to an integrate-and-fire model in order to accurately model LGN responses.  Here, we 

extend findings from Denning and Reinagel (2005) that bursts and single spikes 

respond to distinct stimuli.  Furthermore, in Figure 3.4, we illustrate that specific 

stimuli can elicit bursts of different sizes.  Because the integrate-and-fire-or-burst 

model can accurately reproduce much of the LGN responses, it would be interesting to 

apply our state-information measure to model data and compare the state information 

from LGN cells to that from their respective model data.  This should further our 

understanding of the influence of visual stimuli on de-inactivating the T-type calcium 

channel.

Other applications

We speculate that our state-information measure could be applied to other 

spiking patterns besides those caused by T-type calcium channels.  Instead of 

replacing bursts with a specific symbol, any arbitrary pattern could be replaced, and 

then calculations could proceed as above.  

For example, visual cortex neurons, prefrontal cortex neurons, superior 

colliculus neurons, lateral posterior nucleus neurons, lateral geniculate nucleus (LGN) 

neurons, mitral cells, and retinal ganglion cells (Strehler and Lestienne, 1986; 

Lestienne and Strehler, 1987; Mandl, 1993; Lestienne et al., 1999; Li et al., 2003) can 

exhibit distinct epochs of high-frequency spiking.  These high-frequency spiking 

epochs can include doublet or triplet spikes, depending on the cell type, but 

importantly, the same spiking pattern can be repeatedly observed throughout the cell’s 
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spiking response.  Although these patterns are observed more frequently than expected 

either by a Poisson-like process or a renewal process with the same inter-spike interval 

distribution as the cells (Lestienne and Tuckwell, 1998), it is unknown whether it is 

informative to distinguish these patterns from individual spikes.  

Not only could the measure determine whether it is informative to distinguish 

the spiking pattern from single spikes, but one could evaluate whether two spiking 

patterns are equivalent.  For example, we concluded that bursts of different sizes are 

not equivalent, as more information was present when bursts of different sizes were 

correctly and differently identified, versus when their identity was randomized.  The 

measure could be used to determine whether several different spiking rates are 

equivalent.

Finally, some analyses have suggested that spike correlations across neurons 

provides information about the stimulus (Eckhorn et al., 1988; Gray et al., 1989; Gray 

and Singer, 1989; Meister et al., 1995; Vaadia et al., 1995; deCharms and Merzenich, 

1996; Dan et al., 1998; Steinmetz et al., 2000; Hirabayashi and Miyashita, 2005), 

while other analyses have suggested that these correlations carry little to no 

information about the stimulus (Nirenberg et al., 2001; Oram et al., 2001; Panzeri et 

al., 2001; Petersen et al., 2001; Levine et al., 2002; Panzeri et al., 2002b; Panzeri et al., 

2002a; Petersen et al., 2002; Averbeck et al., 2003; Averbeck and Lee, 2003; Golledge 

et al., 2003).  We speculate that this technique may be able to determine whether 

correlated spikes in the retina are distinct from other non-correlated spikes.

Conclusion
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We demonstrate a state-information measure that indicates that distinguishing 

between bursts and single spikes in the LGN provides visual information.  Although in 

principle, our measure is equivalent to other measures, our measure is less sensitive to 

biases induced by finite data.  We find that the state information cannot be explained 

by structure caused by time-varying firing rate, and we find that bursts are not 

interchangeable with spikes following long silences or with spikes separated by short 

intervals.  Finally, we provide experimental evidence that different visual stimuli 

cause bursts with various numbers of spikes.  Therefore, burst size can also provide 

visual information.  We conclude that visual stimuli influence the T-type calcium 

channel, and the response type is able to provide additional information about the 

stimulus to downstream neurons.
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Figure 3.1:Binned representation of spikes and patterns.  A, Identified representation 
of a raster plot from a representative LGN neuron to 128 repeats of the 
same white-noise stimulus.  Each row represents a trial; each point 
represents the time of an action potential within that trial.  A 600ms 
segment from the middle the 8s trials is shown.  The red points indicate 
bursts, defined as a group of spikes following a silence of at least 50 ms 
and with inter-spike intervals less than or equal to 6 ms.  Black points 
indicate single spikes.  B, Randomized representation of the raster: the 
spike-pattern symbols are shuffled among the spikes.  That is, the red 
points in (A) are shuffled among the black points.
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Figure 3.2: Illustration of spike-train representations. The top row shows a fake voltage 
trace.  The original representation (second row) is the unprocessed spike 
train, such that the values of all time bins containing a spike (regardless of 
whether the spike was a single spike or part of a burst) are represented by a 
1111 (as shown with black lines).  The identified representation (third row) 
replaces all bursts with a 2222 (as shown with red lines).  The randomized 
representation (fourth row) shuffles the 1111 and 2222 symbols amongst each 
other.  The unidentified representation (fifth row) represents all bursts and 
all single spikes with a 1111 (as shown with black lines).
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Figure 3.3: Information from different spike-train representations. A, Information rates 
in bits per second from the identified and original representations are not 
significantly different (p=.016). B, Information rates from the original and 
unidentified representations are significantly different (p < 0.05). C,
Information rates from the identified and unidentified representations are 
significantly different (p < 0.05). D, Information rates from the identified 
and the randomized representations are significantly different (p < 0.001).
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Figure 3.4:Entropies and information rates associated with distinguishing bursts and 
spikes.  A, The noise entropy of cells’ identified rasters is compared to that 
of cells’ randomized rasters.  Each symbol represents data from one cell.  
Entropies and information values were calculated using δτ=2ms bins and 
L=8 bins.  Entropy estimates were empirically corrected for finite data size 
(see Methods).  Filled symbols indicate cells for which this correct was 
small and linear for both randomized and identified rasters.  Open symbols 
indicate cells that did not pass this criterion.  B, The total entropy is 
compared between cells’ identified and randomized responses.  Symbols as 
in (A). C, The state information rate, Istate, versus the burst frequency.  
Symbols as in (A). 
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Figure 3.5:State information of time-varying Poisson spike trains. A, The burst rate of 
LGN cells compared to that from time-varying Poisson spike trains, where 
bursts were identified using standard ISI criteria. Each symbol compares 
data from one LGN cell to data from Poisson spike trains, generated from 
the post-stimulus time histogram of the respective cell.  B, The information 
rate, measured in bits per second for LGN data versus Poisson data. 
Symbols as in (A). C, The information rate, measured in bits per burst for 
LGN data versus Poisson data. D, The information rate in bits per second 
versus the burst rate.  Circles represent data from LGN cells, while 
diamonds represents data from Poisson spike trains.
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Figure 3.6:State information not explained by single ISI criterion. A, The state 
information, Istate, is compared to Ilong ISI, as described in the text, in order to 
determine whether bursts were interchangeable with long-ISI responses.  
Each symbol represents data from one cell.  B, The modified state 
information, Istate’, is compared to Ishort ISI, as described in the text, in order 
to determine whether bursts were interchangeable with short-ISI responses. 
Symbols as in (A). 
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Figure 3.7: Information encoded by burst size.  A, The frequency of responses with the 
shown number of spikes per response.  A response is defined as either a 
burst or single spike, such that all responses with one spike in the response 
are defined as single spikes.  The frequencies of bursts with 2-5 spikes are 
also shown.  Six cells had sufficient data for this analysis.  The average 
response frequency for each given number of spikes is shown by the bars.  
B, The average stimulus preceding single spikes (red dashed curve) or 
bursts from one representative LGN cell.  The orange, green, blue, and 
purple spike-triggered averages correspond to the average stimulus 
preceding bursts consisting of 2, 3, 4, and 5 spikes, respectively. C, The 
state information, Istate, in bits/s when bursts were represented by an integer 
value corresponding to the number of the spikes per burst versus the state 
information when these integer values were randomly shuffled amongst all 
bursts.  Cells above the diagonal line indicate that burst size encodes visual 
information. Information rates were corrected for finite data size (see 
Methods).  Filled symbols indicate cells for which this correction was 
small and linear under both conditions.  Open symbols indicate cells that 
did not pass this criterion. D, Same as (C), where the state information is 
shown in bits/burst.
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Figure 3.8:The probability of a burst with a given first inter-spike interval.  Each panel 
represents data from a different cell.  The orange, green, blue, and purple 
ISI-probability curves indicate the probability of the ISI within bursts 
containing two, three, four, or five spikes, respectively.
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Chapter 4

Functional benefits of contrast normalization

 demonstrated in neurons and model cells
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Abstract

The large dynamic range of natural stimuli poses a challenge for neural coding: 

how is a neuron to encode large differences at high contrast while remaining sensitive 

to small differences at low contrast? Many sensory neurons exhibit contrast 

normalization: gain depends on the range of stimuli presented, such that firing-rate 

modulation is maintained across contrasts. Yet coding depends strongly on the 

precision of spike timing and the reliability of spike number, neither of which can be 

predicted from neural gain. We report that as contrast decreases, responses are more 

variable and encode less information. Nevertheless these changes can be small, and 

information transmission is even better preserved across contrasts than rate 

modulation. The preservation of information is correlated with the extent of contrast 

normalization, thereby establishing a functional consequence of normalization. We 

further show that a non-adapting model can exhibit both contrast normalization and 

the associated information preservation.
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Introduction

Given that a neuron can only produce a limited range of firing rates, the 

sensitivity of its firing rate to stimulus strength will determine the range of stimuli it 

can effectively discriminate. There is a broad range of contrasts present in natural 

scenes (Ruderman and Bialek, 1994; van Hateren, 1997) (see Figure 1.3), suggesting 

that it would be advantageous to adapt sensitivity to the prevailing contrast (Atick and 

Redlich, 1992; Schwartz and Simoncelli, 2001).  Contrast normalization has long been 

known to occur in the early visual system of mammals (Shapley and Victor, 1978, 

1981; Shapley and Enroth-Cugell, 1984; Benardete et al., 1992; Shou et al., 1996; 

Benardete and Kaplan, 1997; Smirnakis et al., 1997; Brown and Masland, 2001; 

Chander and Chichilnisky, 2001; Kim and Rieke, 2001; Kremers et al., 2001; Baccus 

and Meister, 2002; Kim and Rieke, 2003; Solomon et al., 2004; Jin et al., 2005). 

Analogously, adaptation to the variance of higher-order stimulus features is found in 

visual cortex (Ohzawa et al., 1985; Bonds, 1991; Heeger, 1992; Kohn and Movshon, 

2003) and many other sensory systems. For example, in the fly visual system, the 

sensitivity of H1 neurons to motion scales with motion contrast (Brenner et al., 2000; 

Fairhall et al., 2001; Heitwerth et al., 2005). Model simulations verify that this scaling 

optimizes the information available at the level of firing rate (Brenner et al., 2000).

The relationship between contrast normalization and neural coding remains 

unclear, however, because information is not coded only by firing rate. In the lateral 

geniculate nucleus (LGN), for example, the reliability and temporal precision of spikes 

are both essential for the encoding of high-contrast white-noise visual stimuli (Reich 

et al., 1997; Reinagel and Reid, 2000; Liu et al., 2001; Reinagel and Reid, 2002). As a 
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result of lower signal-to-noise ratio, one might expect responses to be less temporally 

precise, less reliable from trial to trial, and less informative as contrast decreases. It is 

difficult, however, to predict the magnitude and significance of these effects. Neural 

coding at low contrast could be either better or worse than predicted by contrast 

normalization alone.

It is also not known whether contrast normalization requires an active 

adaptation process. Response properties of neurons change gradually after a change in 

contrast, and the speed of these changes has attracted theoretical interest (DeWeese 

and Zador, 1998; Fairhall et al., 2001). The biophysical properties of neurons also 

change with stimulus contrast (Carandini and Ferster, 1997; Sanchez-Vives et al., 

2000; Kim and Rieke, 2001; Baccus and Meister, 2002).  On the other hand, there is 

experimental evidence that spike-generation mechanisms play a role in contrast 

normalization (Kim and Rieke, 2001, 2003; Zaghloul et al., 2005).  Recent theoretical 

results show that nonlinear systems can exhibit contrast normalization without any 

active changes; fixed nonlinear properties of the cell (such as the threshold and 

saturation) can be sufficient to produce contrast normalization (Borst et al., 2005; Yu 

and Lee, 2005; Yu et al., 2005). In the models previously shown to exhibit contrast 

normalization, optimization of information transfer across contrasts was either not 

tested or not found (Yu and Lee, 2005).  These studies used firing-rate models that do 

not consider the reliability and precision of real neurons, and information transmission 

was not analyzed at the level of spike timing.
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Results

In order to address these open questions, we recorded responses of LGN 

neurons to full-field flickering binary white-noise stimuli with each of three contrasts: 

100%, 33% or 11% (see Methods). We determined that this range is representative of 

temporal contrasts found in natural stimuli (see Figure 1.3).  The responses of one 

representative cell are shown in Figure 4.1. Consistent with previous reports (Reinagel 

and Reid, 2000; Liu et al., 2001), the high-contrast white-noise stimulus elicited sparse 

responses with discrete firing events separated by periods with no spiking activity 

(Figure 4.1A). When the same stimulus sequence was scaled to lower contrasts, the 

firing events appear to be weaker and noisier, as expected (Figure 4.1B and 4.1C). 

Nevertheless, even at 11% contrast, there are discrete and precise peaks in the time-

varying firing rate (Figure 4.1D). For this cell, both firing rate (Figure 4.1E) and rate 

modulation (Figure 4.1F) increase with contrast. Nevertheless LGN neurons’ rate 

modulation does not increase linearly, consistent with classically-described contrast 

gain control (Shapley and Victor, 1978; Benardete et al., 1992).

Contrast normalization in LGN neurons

We measured the gain of LGN neurons by fitting the data to a Linear-

Nonlinear cascade, in order to test whether cells matched their gain to the stimulus 

contrast. Contrast normalization in the retina has been extensively studied in this 

framework (Hunter and Korenberg, 1986; Chander and Chichilnisky, 2001; 

Chichilnisky, 2001; Kim and Rieke, 2001; Rieke, 2001; Baccus and Meister, 2002).  

In the analysis shown here, we estimated a linear filter F(t) for each cell in each 
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contrast condition by the normalized spike-triggered average stimulus (see Methods). 

Filters obtained from one Y OFF cell during high-contrast stimuli (red) and medium-

contrast stimuli (blue) are shown in Figure 4.2A. By scaling the linear filters to the 

same amplitude at all contrasts, we can estimate the gain, G, of the neuron from the 

slope of a sigmoidal input-output function (nonlinearity) that is empirically measured 

from the data (Figure 4.2B; see Methods).  The gain indicates how much the neuron’s 

probability of firing will increase for a given increase in stimulus strength. Therefore a 

higher gain corresponds to an increased neural sensitivity.

When the stimulus contrast was decreased, we found that the neurons’ gain 

increased (all symbols are above unity line in Figure 4.2C), indicating that the 

sensitivity (slope of the input-output function) increased.  Nevertheless, the gain 

changed by less than the change in contrast. In other words, a threefold drop in 

contrast was not compensated by an exactly threefold boost in gain (thin line, compare 

to circles and diamonds) and likewise for a 9-fold change in contrast (dotted line, 

compare to triangles). We defined a contrast normalization index, κ, such that κ =0 if 

there was no gain change and κ =1 if the neuron’s gain increased by the same factor 

that the stimulus contrast decreased (see Methods). The average contrast 

normalization, κ, was around 0.5, consistent with previous reports in the retina and 

LGN (Shapley and Enroth-Cugell, 1984; Benardete et al., 1992; Chander and 

Chichilnisky, 2001; Kim and Rieke, 2001; Kremers et al., 2001; Baccus and Meister, 

2002; Zaghloul et al., 2005). Some individual cells exhibited almost no gain change 

(κ ≈0), while others came close to compensatory scaling (κ ≈1). Even within cell type, 
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there was considerable variability across cells. The extent of gain change was 

comparable for X and Y subpopulations; OFF cells had significantly more contrast 

normalization than ON cells (see Supplementary Methods). 

Variability in number and timing of spikes

Contrast normalization is thought to help maintain sensitivity under different 

contrast conditions. However the gain change (which reflects the firing rate) cannot 

predict changes in the temporal precision of responses or the trial-by- trial variability in 

spike number, both of which are important for determining the rate of information 

transmission in the LGN (Reich et al., 1997; Reinagel and Reid, 2000; Liu et al., 

2001).

When a visual stimulus is presented repeatedly, there is some variability from 

trial to trial in the number of spikes within any time bin of the response.  It is known 

that this spike-count variability is lower during high instantaneous firing rates, due to 

the regularizing effects of refractoriness (Berry and Meister, 1998; Keat et al., 2001; 

Uzzell and Chichilnisky, 2004; Zaghloul et al., 2005). Given that both mean rate (in 

some cells) and response modulation (in all cells) increased with contrast, we 

predicted a decrease in variability at high contrast. Nevertheless this was not 

guaranteed to be the case; changes in the refractoriness of the system could either 

enhance or reduce the expected change (Berry and Meister, 1998; Kara et al., 2000).

To quantify the variability in spike count we calculated the Allan Factor of 

neural responses in the high (100%), medium (33%), and low (11%) contrast 

conditions. Like the more familiar Fano Factor, the Allan Factor has a value of zero 
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for a deterministic process, increases as variability increases, and has a value of one 

for a Poisson process (see Supplementary Methods). Consistent with previous 

observations (Kara et al., 2000; Reinagel and Reid, 2000), most LGN neurons had 

sub-Poisson variability at high contrast (Allan Factor<1). Responses to lower contrast 

stimuli had more spike-count variability (Allan Factor increased in 80/82 comparisons, 

p<0.001 by Wilcoxon sign rank test). Nevertheless most cells remained sub-Poisson 

even at 11% contrast (Figure 4.3A). This finding, based on within-cell comparisons, is 

consistent with recent results based on population comparisons in the primate retina 

(Uzzell and Chichilnisky, 2004).  

We measured the variability of spike timing by the temporal jitter of spikes 

across trials (see Supplementary Methods). In our data from 100% contrast stimuli, 

temporal jitter was less than 2 ms for 61% of cells and less than 1 ms for 29% of cells, 

comparable to the precision reported previously for high-contrast white-noise stimuli 

(Reinagel and Reid, 2002). As the contrast decreases, the decreasing signal-to-noise 

ratio might be expected to produce increasing jitter in spike timing. Compared to the 

jitter at high contrast, nearly all cells had more temporal jitter at 33% contrast (20/24 

comparisons, p<0.002) and still more at 11% contrast (p<0.002) (Figure 4.3B).  These 

results agree with those from the primate retina (Uzzell and Chichilnisky, 2004) that 

spike time precision increases with effective contrast at the population level. Note that 

in our data, most cells still had temporally precise responses (<10 ms jitter) even at the 

lowest contrast.  In a few cells (7%) sub-millisecond precision was retained even at 

11% contrast.
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Contrast normalization preserves information

In most cells, responses to lower contrast had a lower firing rate and an 

increased variability in both spike timing and spike number. Thus one might expect a 

decrease in the information rate, as measured by the Mutual Information between a 

stimulus and a neural response (Berry et al., 1997; Reich et al., 1997; Reinagel and 

Reid, 2000; Liu et al., 2001; Freed, 2005).  Depending on the detailed structure of the 

neural code, information transmission could be more or less robust to contrast 

changes. 

Therefore we measured the mutual information I for each cell at all three 

contrasts (Strong et al., 1998; Reinagel and Reid, 2000) (see Supplementary Methods). 

The information rate was significantly lower at lower contrasts, whether measured in 

bits/s (not shown) or in bits/spike (symbols are below the solid diagonal line in Figure 

4.4A).  Yet the information rate did not decrease by the same factor as the contrast 

(symbols are above their respective dashed lines).  The mutual information remained 

substantial at 11% contrast for some cells (as high as 30.8 bit/s or 3.1 bits/spike).  The 

extent to which information was preserved at low contrast varied considerably in our 

population, with no correlation to cell type.

It has long been known that contrast normalization mitigates the effect of 

contrast at the level of firing rate, such that rate modulation does not decrease by the 

same factor that contrast decreases. We asked whether the information rate of each 

cell was more or less preserved than its firing-rate modulation as contrast changed. To 

compare the information rate of the same cell at two contrasts we used the ratio of the 

rate at the lower contrast condition divided by that at higher contrast condition 
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(Information Ratio). Similarly, to compare the firing rate modulation (see Figure 4.1F) 

we define a Rate Modulation Ratio between the two contrasts. We find that 

information rates were less sensitive to contrast changes than were firing rate 

modulations (most symbols are above the diagonal line in Figure 4.4B; p<0.05 for 

filled symbols). Thus, information is more preserved across contrasts than was 

predicted by firing rate effects alone.

It is widely assumed that contrast normalization serves to maintain the fidelity 

of neural coding across contrasts. This does not follow because information 

transmission depends strongly on the temporal precision and trial-by- trial reliability of 

responses, which also change with contrast. We exploited the diversity among cells to 

test whether neurons with stronger contrast normalization were better able to preserve 

information transmission across contrasts. We find that the magnitude of contrast 

normalization, κ is significantly correlated with the conservation of information across 

contrasts (Figure 4.4C; R2 = 0.67 for filled symbols, p<0.001).  

Normalization in a non-adapting model

The results presented above are consistent with the hypothesis that cells 

actively adapt their sensitivity in order to optimize information transfer, but nonlinear 

systems with fixed parameters can also exhibit contrast normalization (Borst et al., 

2005; Yu and Lee, 2005; Yu et al., 2005).  We implemented a nonlinear model (see 

Figure 4.3) that has been shown to successfully reproduce responses of LGN neurons 

to white noise stimuli (Keat et al., 2001).  We created a large population of model cells 

by varying the model parameters (see Methods). We then presented the model with the 
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same stimuli presented to LGN neurons above. The parameters for each model cell 

remained fixed across all contrasts, in order to determine whether parameter changes 

were required for contrast normalization to occur.

We find that for this non-adapting model, the gain, G, increased as the contrast 

decreased (Figure 4.5A).  Depending on parameters, some model cells showed little or 

no contrast normalization (κ ≈0), whereas the gain of other model cells increased by 

nearly the same factor that the contrast decreased (κ ≈1).  Thus the range of contrast 

normalization we found in the LGN can also be produced by a fixed nonlinear system.

Like LGN cells, the model cells’ information rate also decreased when the 

contrast decreased (Figure 4.5B).  Again, the magnitude of this decline in information 

depended on the model parameters, such that some model cells lost nearly all 

information at low contrasts, while other model cells transmitted nearly the same 

information across contrasts. Across our population of model cells, we find that 

contrast normalization is correlated with the information ratio (Figure 4.5C; R2=0.86, 

p<0.0001).  This correlation is remarkably similar to the one observed in LGN cells 

(compare blue, black, and green symbols to grey symbols). Therefore, contrast 

normalization without active adaptation is a viable candidate mechanism for how LGN 

neurons preserve information transmission across contrasts.  A detailed exploration of 

how contrast normalization arises in this model will be presented elsewhere (K.D. & 

P.R., in preparation).
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Discussion

In conclusion, it is well known that contrast normalization exists in the early 

visual system and boosts responsiveness at low contrast. But in addition to firing rate, 

information transmission depends critically on the consistency of spike timing and 

spike number. It was not known how these properties would change with contrast, nor 

could these changes be predicted on the basis of gain changes. We show that both 

spike count and spike timing are more variable as contrast decreases. Nevertheless, 

many LGN cells have sub-Poisson variability and high temporal precision even at the 

lowest contrast tested. Average spike-timing jitter at low contrast was less than 2 ms in 

a third of our cells. Therefore reliable, precise spiking and efficient coding are not 

idiosyncratic to high-contrast visual stimuli.

It is often argued that neurons must adapt to contrast because they lack the 

dynamic range to discriminate both weak stimuli (low contrast) and strong stimuli 

(high contrast) simultaneously. Indeed our results show that contrast normalization is 

associated with maintenance of neural coding efficiency, as predicted on theoretical 

grounds.  Moreover, information transmission is better preserved than rate modulation, 

perhaps due to the changes in neural dynamics that are also associated with Contrast 

Gain Control (Shapley and Victor, 1978; Victor, 1987, 1999). Nevertheless our

modeling results challenge the assumption that an active process of adaptation is 

required for this function: at least one non-adapting model can exhibit normalization 

that is correlated with information preservation.
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Methods

Surgical preparation. Cats were anesthetized initially with ketamine HCl (20 

mg/kg, i.m.), followed by sodium pentothal (2-4 mg * kg-1 * h-1, i.v., supplemented as 

needed).  Animals were ventilated using an endotracheal tube.  Electrocardiogram, 

electroencephalogram, temperature, expired CO2, and oxygen in blood were 

continually monitored.  All surgical and experimental procedures were in accordance 

with National Institutes of Health and United States Department of Agriculture 

guidelines and were approved by the UCSD Institutional Animal Care and Use 

Committee.

Electrical recording. We report results from 41 LGN relay cells recorded 

from the A laminae of the LGN of anesthetized cats. We sampled the four main cell 

classes: ON X, OFF X, ON Y, and OFF Y.  Parylene-coated tungsten electrodes (AM 

Systems, Everett, WA) were inserted through a 0.5 cm diameter craniotomy over the 

LGN.  Recordings were amplified, filtered, and digitized at 10kHz sampling rate 

(CED micro 1401 and Spike2, ver. 5.12a; Cambridge Electronic Design, Cambridge, 

UK).  Waveforms were analyzed offline isolate single unit responses (Fee et al., 

1996). 

Visual stimulation. Stimuli were spatially uniform and presented on a custom-

built LED array.  To create matched stimuli at all contrasts, we began with a random 

binary stimulus of 125 frames/s for 10 s. The same binary sequence was scaled about 

the mean to obtain three contrast conditions (11%, 33%, and 100%, where contrast is 

defined as the standard deviation of the luminance over the mean.)  Stimuli of the 

three contrasts were interleaved and presented between 10 and 128 times each. We 
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analyzed only the last five seconds of the response to each 10-s stimulus. The mean 

luminance was the same at all contrasts and was well within the photopic range. We 

also presented cells with a 1-second, binary stimulus at 10 different contrasts, repeated 

40 times at each contrast (used in Figure 4.1E and 4.1F).  

Measure of spike count variability. The trial-by-trial variability in spike 

count was measured by the Allan Factor (AF):

µ2
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AF Eq. 1

where Ni is the spike count in trial i, µ is the mean spike count over all trials, and 

< ... > denotes the average result over a sliding 5-ms window. See Supplementary 

Methods for additional details.

Linear-Nonlinear Cascade. For each cell at each contrast, we began by 

estimating the filter as the spike-triggered average. The filters for the three contrasts 

were normalized by the amplitude of their first peaks. The stimulus was convolved by 

the corresponding filter to create a generator potential, g(t).  We compared this 

generator potential to the observed probability of spiking at each time bin.  For each 

cell, we fit the observed input-output function at 100% contrast to the following 

sigmoid equation:

)exp( SGxeAy +−−= Eq. 2

In Eq. 2, the variables A, G, and S describe the amplitude, slope, and horizontal offset 

of the nonlinear function, respectively.  We then fit the input-output functions at the 

other two contrasts holding the amplitude (A) constant for all contrast conditions for 
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each cell.  We excluded a data set from our analysis if there were less than 100 spikes 

observed in the response, or if the R2 value associated with the sigmoid fit was less 

than 0.90. For each cell at each contrast, we then define the Gain as G from Eq. 2.  

Our results did not depend critically on how the filters were scaled; similar results 

were found by normalizing by the peak-to-peak amplitude of the spike-triggered 

average. See Supplementary Methods for additional details.

Contrast Normalization Index. The greater the change in contrast, the larger 

change in gain (sensitivity) would be required to compensate. Thus we express the 

magnitude of gain change relative to the magnitude of contrast change and call this the 

contrast normalization index κ:
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where G is neural gain and C is stimulus contrast. 

Non-adapting LGN Model. Model cells were implemented as described in 

Keat et. al. (2001) (see schematic in Figure 5.1).  Briefly, the model first convolves the 

stimulus with a linear filter.  The generator potential is equal to the convolved stimulus 

plus noise; the amplitude and time-constant of this noise are defined by the model 

parameters σa and τA, respectively. A spike is generated whenever the generator signal 

crosses a threshold, θ.  Each time a spike occurs, a negative after-potential is added to 

the generator potential, such that the threshold is crossed repeatedly during sustained 

excitatory stimuli. The amplitude, time-constant, and variability in the amplitude of 

the negative after-potential are defined by the model parameters B, τP, and σb, 
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respectively. We generated a set of model cells using all possible combinations of the 

following parameters: θ = 0.1; B = 3, 5, or 7; τP = 20, 35, or 50; τA = 20; σa = 0.01, 

0.16, 0.31, or 0.61, σb = 0.02, 0.15, or 0.28; F = FX or FY.  The filter functions, FX and 

FY, were taken from the X ON and Y OFF cat LGN data in Figure 8C of Keat et. al.

(2001).
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Supplementary Methods

Comparisons between cell types. To classify cell types, spatiotemporal 

receptive fields were mapped using reverse correlations of responses to a white-noise 

(m-sequence) stimulus.  Most cells were also classified as X or Y based on 

observations of null phases or frequency doubling of contrast reversing stimuli 

modulated at 1, 2 or 4 Hz. We used both contrast-reversing sine gratings and contrast-

reversing bipartite field stimuli.  The latter consisted of two hemifields sinusoidally 

modulated in counterphase; the vertical division between the hemifields was varied, 

presenting ten cycles for each location of the division.  

Several studies have reported that different cell types of the early visual system 

differ in the degree of Contrast Gain Control. Experiments with sine grating stimuli 

found stronger Contrast Gain Control in Y cells than X cells of the cat retina (Shapley 

and Victor, 1978). Contrast Gain Control was reported to be stronger for OFF than ON 

cells in salamander retina, but stronger for ON cells in primate retina (Chander and 

Chichilnisky, 2001). Both rapid and slow forms of Contrast Gain Control were 

stronger in the primate magnocellular (M) pathway than in the parvocellular (P) 

pathway (Benardete et al., 1992; Benardete and Kaplan, 1999; Kremers et al., 2001; 

Solomon et al., 2004). In our data set, the distributions of contrast normalization 

indices were not significantly different between X and Y cells for any contrast 

combination.  Contrast normalization did differ between ON and OFF cells when 

comparing the high-medium and high-low contrast combination (p=0.028 and 

p=0.014, respectively): the average contrast normalization index, κ, of OFF cells 

(0.56±.25 and 0.41±.20, respectively) was higher than ON cells (0.37±.20 and 
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0.25±.12, respectively).  Contrast normalization indices were not significantly 

different between ON and OFF cells when comparing the medium and low contrast 

conditions (p=0.12).

Unlike the primate retina (Uzzell and Chichilnisky, 2004), we did not find any 

significant difference between ON and OFF cells in the cat LGN with respect to spike 

count variability or its dependence on contrast, nor with respect to the precision or the 

dependence of precision on contrast.

Alternative method of estimating gain. We replicated our entire using an 

alternative framework for estimation of the gain, namely, fixing the nonlinear function 

at all contrasts and scaling the filters as needed to match the empirical relation 

between g(t) and the observed probability of spiking (Chichilnisky, 2001). The two 

approaches are conceptually similar but subject to different practical limitations. Our 

results were qualitatively the same in both analyses; we prefer scaling the filters 

because the measured nonlinear functions can differ in offset as well as in gain. In our 

population of cells, the horizontal offset (S) increased as contrast increased for some 

cells, decreased for others, and remained constant for still others.  The offset change 

was not correlated with information preservation (not shown). 

Spike-count Variability Measure. The trial-by-trial variability in spike count 

can be estimated by the Fano Factor, which is defined as the variance divided by the 

mean number of spikes within some time window. The Allan Factor is related to the 

Fano Factor, but instead of calculating the variance as the average squared difference 

in spike count with respect to the average spike count across all trials, the numerator is 

the average difference in spike count with respect to the spike count during the 
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preceding trial. The Allan Factor is preferred because it is less sensitive than the Fano 

Factor to slow changes in neural activity.  All trends reported remained the same, 

however, if the Fano Factor was used instead of the Allan Factor (not shown).

Responses to repeated stimuli were divided into non-overlapping 5-ms bins.  

(Trends were the same using 10, 50, 100, 250, 500, and 1000-ms bins, not shown.)  

The Allan Factor was computed from the distribution of spike counts across trials 

separately in each time bin, and these values were averaged across time bins for each 

cell within each contrast condition.  

We performed similar analysis using firing events (Berry et al., 1997), such 

that instead of calculating the Allan Factor from the number of spikes within each bin, 

the calculation was performed on the number of spikes within each PSTH peak.  We 

either averaged the Allan Factors across firing events and compared the average across 

contrasts, or compared the Allan Factors between contrasts on a peak-by-peak basis 

(not shown). Both yielded similar results to the time-binned method.

To test whether the observed increase in mean firing rate (Figure 4.1E) or in 

rate modulation (Figure 4.1F) was sufficient to explain the observed decrease in 

variability at high contrast (Figure 4.3A), we also compared the Allan Factors for a 

subset of time bins from each contrast that fell within a narrow range of firing rates. 

This range was chosen separately for the high-medium and high-low contrast 

comparisons, as often there was one no firing rate sufficiently represented at all three 

contrasts. We required a minimum N=10 samples at each contrast. We used 5-ms bins, 

such that at most one PSTH peak was contained within a bin. Since the mean rates 

could not be perfectly matched between two contrasts, we erred in the direction of 
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including higher firing rate bins for the lower contrast, so that our bias if any would be 

to attribute less variability to low contrast responses. Even when firing rate was 

matched, the Allan Factor of the cells increased as contrast decreased (p<0.0001). We 

obtained similar results when comparing the variability of individual firing events 

(PSTH peaks) that contained the same average number of spikes.

A minority of cells had super-Poisson variability (Allan Factor >1) which was 

attributable to bursting (Kara et al., 2000). We use inter-spike interval criteria to 

identify these bursts which we attribute to low-threshold calcium channels (Lu et al., 

1992).  We define the burst probability as the ratio of the burst frequency over the 

response frequency, where a response is either a burst or a single spike. Across all our 

conditions (41 cells x 3 contrasts), 33/123 had burst probability >5%; this subset 

included all 20 conditions for which AF>1.05 (supra-Poisson variability).

Temporal precision measures. For each cell at each contrast condition, we 

measured the trial-to-trial jitter in spike trains by the width of the peak of the average 

cross-correlation between sequential trials. We defined precision as the half-width of 

this peak at half maximum. Thus if spike times had a normal distribution of σ about 

the mean time, our measure would assign a precision of (-2·ln(.5) ·σ2)1/2. We excluded 

conditions if the peak was not at t=0. Additionally, data was required to be at least 

75% smooth, where smoothness was defined as the 1 minus cumulative square 

difference between the with and without smoothing by a 5-point moving average. 

Our findings did not depend on the method used to measure temporal precision 

of responses: similar results were found by comparing the widths of PSTH peaks 
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across contrasts.  In one analysis we determined the average width of firing events 

within contrast and compared the average across contrasts. In another analysis we 

compared the peak widths between contrasts on a peak-by-peak basis (not shown). 

Both yielded similar results to the cross-correlation method. We note that all these 

definitions of precision are sensitive to the duration of the firing event as well as the 

jitter in the time of onset. Thus our estimate is an upper bound on the precision in this 

latter sense.

Mutual Information measures. We calculated the visual information in spike 

trains by a direct entropy method (Strong et al., 1998), implemented exactly as by

(Reinagel and Reid, 2000).  Briefly, we represented LGN responses as time-binned 

spike trains. In our analysis we varied δτ from 1 to 16ms; results for δτ = 2ms are 

shown. The value in a time bin was set to zero if no spikes occurred during that time 

interval or one if a single spike occurred during that time interval. Because of the 

refractory period of the cells, the occurrence of two spikes in the same 2-ms time bin 

was so rare as to be negligible.

We analyzed the information in words (short strings of bins) and varied the 

number of bins in the words, L. For each word length, we measured two forms of word 

entropy: the average noise entropy, <Hnoise>, which reflects the trial-to-trial variability 

of words when the stimulus was fixed, and the average total entropy, <Htotal>, which 

reflects the variability of words across all stimuli in the ensemble. The mutual 

information between the visual stimulus and the spike train is defined as 

I = <Htotal>-<Hnoise>.  Finally, we define the coding efficiency of the cell as the mutual 

information divided by the total entropy (Htotal /I).
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In detail, Hnoise(t) was calculated from the distribution of words at a fixed time 

t relative to stimulus onset across all repeated trials of the same sample of the 

stimulus.  We performed a separate calculation of Hnoise(t) for many different values of 

t (separated by one bin).  We then averaged over t to get the average noise entropy 

<Hnoise>.  We performed equally many separate calculations of Htotal(i), but the set of 

words was instead selected using a different time t from each trial.  Twice the number 

of words were used for each single estimate of Htotal(i) to compensate for the 

approximately twofold difference in entropy.  We averaged over i to get the average 

total entropy <Htotal>.  We computed information as a function of word length.  

Results are shown for a word length of 1 bin (2 ms), but all trends were the same at all 

word lengths tested.  Specifically, the correlation between contrast normalization and 

information ratios was nearly identical when considering words of length 8 bins (16 

ms) (R2 = 0.66, p<0.001). 

For each entropy estimate, we determined how our estimate of H converged as 

we used increasing fractions of the data, and then corrected for finite data size 

according to the method of Strong et al. (1998).  We fit a second-order polynomial to 

1/(fraction of data) versus the entropy estimate.  We used this polynomial to 

extrapolate to infinite data only if the resulting correction was <10% and the second 

order term <1%.  If data did not meet these criteria, a linear fit was used to correct for 

finite data size (maximum 15% correction), and we indicate our reduced confidence in 

these data by open symbols in Figures 4.4 and 4.5.  All our results were qualitatively 

unchanged if we did not perform correction for finite data size (not shown).  
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The largest and most significant correlation in our data was between the 

Information Ratio and the Contrast Normalization Index (shown in Figure 4.4C). 

Some other relationships we considered are as follows: We also measured the coding 

efficiency, defined as the fraction of the cell’s entropy that carries visual information 

(I /<Htotal>).  Coding efficiency declined significantly with contrast, but remained as 

high as 0.39 at low contrast for some cells.  The coding efficiency of some cells 

declined only modestly with contrast (efficiency ratios of up to 0.93) while others 

declined dramatically (ratios as low as 0.18). The efficiency ratio was higher on 

average than the information ratio, indicating that efficiency was even more invariant 

to contrast. The information rate in bits/s was highly correlated with the firing rate 

modulation (R2 = 0.92, p<0.0001).  The spike-count variability (Figure 4.3A) was 

inversely related to firing rate, and therefore negatively correlated with information 

rate (R2 = 0.61, p<0.001).  The temporal jitter of spike times (Figure 4.3B) was not 

significantly correlated with information rate per second (R2 = 0.21, p=0.07), but was 

significantly negatively correlated with both the information per spike (R2 = 0.51, 

p<0.001) and the coding efficiency (R2 = 0.51, p<0.001).
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Appendix

In the early visual system of vertebrates, Contrast Gain Control is a classically 

defined phenomenon involving not only contrast normalization but also changes in 

temporal dynamics, including latency. In this chapter I focused on contrast 

normalization only. This appendix describes some additional observations that were 

not pursued in detail.

In this chapter I described our analysis of multiplicative contrast normalization 

(dependence of the neural gain on the input contrast). In our data we also found 

evidence for a second, additive form of contrast adaptation (lateral shifting of the 

input-output functions). The significance of this additive effect is still unclear, but 

differentially affected ON and OFF cells.  Latency was also differentially affected in 

ON and OFF cells. The ON cells showed a surprising and previously undescribed 

increase in latency with an increase in contrast.

Shift in Input-Output Functions.

As described above, we calculate the gain at different contrasts by fitting LGN 

responses to a Linear-Nonlinear cascade at each contrast.  We fit the input-output 

functions to sigmoid functions at each contrast (see Methods).  The slope of the input-

output function is related to the Gain, G, whereas the horizontal position of the 

function is related to the Offset, S.  We reported that across LGN cells, the gain 

increased as the contrast decreased.  Changes in the offset of the input-output 

functions were more diverse across cells.



111

In Figure 4.6, we show linear-nonlinear cascades fit to medium and high 

contrast data for one Y OFF cell (top row) and one X ON cell (bottom row).   The 

filters were defined as the normalized spike-triggered averages (Figure 4.6A and 

4.6D).  For each contrast condition, the input to the cell was estimated by convolving 

the stimulus with the corresponding filter to produce a generator potential g(t). We 

then determined from our data the probability of firing as a function of this generator 

potential (symbols Figure 4.6B and 4.6F).  The empirical input-output function was fit 

to a sigmoid nonlinearity for each cell and contrast condition (curves Figure 4.6B and 

4.6F, see Methods).  The parameters from this fit allowed us to estimate at each 

contrast both the gain (G), which is related to the slope of the sigmoid curve, and 

horizontal offset.  Some cells’ input-output functions differed across contrasts only in 

the gain (such as the Y OFF cell in Figure 4.6A-4.6D), while others differed in both 

the gain and offset (such as the X ON cell in Figure 4.6E-4.6I).

Gain differences are equivalent to a multiplicative scaling of the generator 

potential, whereas offset differences are equivalent to an additive shift of the generator 

potential. To illustrate this difference, we can scale the generator potential for one 

contrast such that the input-output functions for both contrasts have the same gain 

(Figure 4.6C and 4.6G).  We can further shift the generator potential of one contrast 

such that the input-output functions also have the same offset (Figure 4.6D and 4.6H). 

In some cases, the input-output functions differed only by their gain (compare Figure 

4.6C and 4.6D).  In other cases, the input-output functions also differed in horizontal 

offset (compare Figure 4.6G and 4.6H). In principle, a change in amplitude of the 

sigmoid might have been required, or the data might have been poorly fit by any 
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sigmoid function, but we found that the input-output functions of a given cell at 

different contrasts could be accurately described by sigmoid functions that differed 

only in gain and horizontal offset.

Depending on the cell, the offset of the input-output functions either decreased 

(symbols below diagonal in Figure 4.7A), increased (symbols above diagonal), or 

remained constant (symbols on diagonal) as the contrast decreased. A decrease in 

offset when the contrast decreased indicates that the input-output function shifted to 

the left. Because the input-output functions were centered to the right of zero, this 

implies that at lower contrasts, smaller generator potentials could evoke spikes.  

We found that shift in offsets for ON cells (average shift = -0.331 ± 0.324; 

green symbols in Figure 4.7B) differed significantly (p< 0.0001) from OFF cells 

(average shift = -0.0120 ± 0.242; purple symbols). We found no significant difference 

between X and Y cells (letter symbols in Figure 4.7B; p=0.38).  Finally, we note that 

the shifts in offsets was significantly correlated with the contrast normalization 

(R2 = 0.55; p<0.0001).  When the input-output function shifted over to the left, less 

contrast normalization was observed.

Latency depends on contrast. 

In both retinal ganglion cells and LGN cells, it has been shown that the phase 

of responses advance as the contrast of sinusoidal stimuli decreased (Shapley and 

Victor, 1978; Benardete et al., 1992; Kremers et al., 2001). Subsequently, other studies 

using white noise stimuli confirmed that latency in the retina decreases with contrast, 

where latency was defined as the time to first peak in the spike-triggered average
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(Chander and Chichilnisky, 2001). Based on these results in the retina, we expected 

that in the LGN response latency would decrease with contrast.  In some cells we 

observed the expected result (Figure 4.8A), but in other cells we found the opposite 

result (Figure 4.8B). 

The latency trend in the LGN was correlated with the ON/OFF cell type. For 

OFF cells, the latencies from the high-contrast responses are significantly shorter than 

those from the medium- or low-contrast responses (purple symbols in Figure 4.8C; 

p < 0.001 for both comparisons). The decrease in latency from low to medium contrast 

was also significant (p<0.01). For ON cells, latency changed significantly in the other 

direction (green symbols in Figure 4.9C). The increase in latency from medium to 

high contrast was significant (p<0.001). Most cells also increased latency from low to 

high contrast, but this was not significant (p>0.05), because of a few exceptions in the 

low contrast condition.

We note that our latency results did not depend on our fitting of the Linear-

Nonlinar Cascade to our data.  We also compared the times of peaks in the time-

varying firing rates across contrasts and obtained similar results.  Additionally, we 

compared the times of the first spikes within the time-varying firing rate peaks and 

observed the same trends as reported above.

In Figure 4.8B we reported that ON and OFF cells showed another asymmetry: 

ON cells were more likely to shift their nonlinear function to the left as the stimulus 

contrast decreased.  Within the linear-nonlinear cascade model this could approximate 

either an increase in the cell’s membrane potential or a decrease in its spiking 

threshold.  In either case, the cell’s membrane potential would be closer to threshold 
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during lower contrast stimuli.  We speculated that cells with this property could then 

take less time to reach threshold during lower contrast stimuli.  Therefore, for each 

cell, we compared the difference in latency during two contrast conditions to the 

difference in offsets.  (We excluded from this analysis data points in which over 20% 

of the responses were bursts, as bursts have different dynamics than tonic spikes.)  

Despite the fact that differences in latency values will also depend on factors 

such as filter shapes, which are not accounted for in this analysis, across our 

population of cells, we found a significant correlation between these variables 

(R2=0.43, p<.001).  Cells whose latency was longer at higher contrasts (symbols 

below horizontal y=0 line) were also described by nonlinear functions that shifted to 

the left as contrast decreased (symbols to the left of vertical x=0 line).

Conclusion

Earlier studies found that response latency (phase of responses to sinusoidal 

gratings) decreased with increasing contrast in cat retinal ganglion cells of all types; 

no difference was found between ON and OFF cells (Shapley and Victor, 1978; 

Kremers et al., 2001). Similarly, primate LGN cells show phase advance with 

increasing contrast of grating stimuli (Kremers et al., 2001). The amount of phase 

advance for grating stimuli depends on temporal frequency, so it is difficult to 

extrapolate from these results to white noise stimuli. In experiments with white noise, 

response latency decreased with increasing contrast in primate and salamander retina 

for all cell types reported, although this effect was stronger in OFF cells (Chander and 

Chichilnisky, 2001).  In the cat LGN, we find that OFF cells’ latency decreased with 
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increasing contrast, as expected (Figure 4.8C). Past results suggested that latency 

changes in ON cells would either be the same as or weaker than OFF cells. We were 

surprised to find that ON cells’ latency changed in the opposite direction: latency 

increased as contrast increased (Figure 4.8C).  Additionally, we found that the 

horizontal shift in the input-output functions also exhibited an ON-OFF asymmetry 

(Figure 4.7B), and the shift was correlated with latency difference (Figure 4.8D).  In 

the future it will be interesting to determine which of the many differences between 

ON and OFF pathways (Cohen, 1998, 2000; Chichilnisky and Kalmar, 2002; Zaghloul 

et al., 2003) can account for these reported asymmetries.
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Figure 4.1:Response characteristics as a function of temporal contrast. Responses of 
one representative ON Y LGN cell to full-field binary white noise visual 
stimuli of different contrasts. A, Raster plot for 64 repeats of the same 
stimulus at 100% contrast. Each row represents a trial; each point 
represents the time of an action potential within that trial.  A 400-ms 
segment is shown from the middle of the 5 s trials. B and C, Responses to 
64 repeats of the same full-field binary stimulus sequence, which was 
scaled about the mean to 33% and 11% contrast, respectively.  D, Time 
varying firing rate in 2ms time bins, derived from data in (A)-(C).  
E, Effect of contrast on firing rate. F, Effect of contrast on the modulation 
in firing rate (standard deviation of the firing rate across time bins, 
calculated in 1ms bins).



117

Figure 4.2:Gain changes with contrast. A, Linear filters from a Linear-Nonlinear 
cascade, fit to high (red curve) and medium (blue curve) contrast responses 
from one Y OFF cell. The filters were normalized by the amplitude of their 
first peak.  B, Symbols indicate the observed probability of spiking versus 
the generator potential, g(t) for the same cell as in (A). The curves show 
the best-fit sigmoid functions. Based on these fits, the gain at the high 
contrast was 0.63 times that at medium contrast. C, Across cells, we 
compare the gain between 100% and 33% contrast (○), 33% and 11% 
contrast (◊), and 100% and 11% (∆) contrast, where the gain at the higher 
contrast is always shown on the horizontal axis. In the absence of gain 
control, gain would be constant (x=y, thick, solid line). The thin, solid line 
indicates a threefold gain change (compare to threefold contrast changes: 
○,◊). Dashed line indicates 9-fold gain change (cf. 9-fold contrast changes: 
∆).
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Figure 4.3:Variability in spike count and spike timing decrease with increasing 
contrast. A, Each point indicates the variability of responses of a single 
LGN neuron responding to 100% contrast (x-axis) compared to either 33% 
(○) or 11% (∆) contrast (y-axis). In each case, Allan Factor was computed 
in 5ms bins and averaged across the 5-s trial.  B, Each point indicates the 
temporal jitter of spike timing of a single LGN neuron responding to 100% 
contrast (x-axis) compared to either 33% (○) or 11% (∆) contrast (y-axis).  
Jitter was measured by the half-widths at half-maxima of the cross-
correlation peaks between trials from each LGN neuron, analyzed 
separately for each contrast condition.
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Figure 4.4:Mutual information between visual stimuli and LGN responses.  A, The 
mutual information in units of bits per spike was determined for all contrast 
conditions for each cell.  The results are compared between 100% and 33% 
contrast (○,●), 100% and 11% contrast (∆,▲), and 33% and 11% contrast 
(♦,◊). Filled symbols indicate cases in which the correction for finite data 
size was small and linear for both contrasts (see Supplementary Methods); 
open symbols indicate remaining cases for which our estimate should be 
considered approximate. Information rates were significantly higher at 
higher contrast (p<0.01 for both 100% to 33% and 100% to 11% 
comparisons, whether we included all results or only those shown as filled 
symbols). B, Each symbol indicates a particular cell for a particular pair of 
contrasts, as defined in (A). The ratio of information rates (in bits per 
spike) is plotted against the ratio of rate modulation.  C, Each symbol 
indicates the information ratio for a given cell versus the contrast 
normalization index (κ) in the same data.   Symbols as in A.
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Figure 4.5:Contrast normalization and information preservation in a non-adapting 
model. A, Each symbol compares the gain of one model cell at two 
contrasts, where the gain at the higher contrast is always shown on the x-
axis (cf. Figure 4.2C). Comparisons are between 100% and 33% contrast 
(green symbols), 33% and 11% contrast (black symbols), or 100% and 
11% (blue symbols). B, Mutual information in units of bits per spike.  Each 
symbol compares the information rates for one model cell at two contrasts, 
where the information rate at the higher contrast is always shown on the x-
axis.  Symbols as in (A). C, Each symbol indicates the information ratio 
versus the contrast normalization (κ) for one model cell for two contrasts.  
The green, black, and blue symbols as defined in (A).  For comparison, 
results from LGN cells are shown in grey (replotted from Figure 4.4C).
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Figure 4.6: Using a Linear-Nonlinear model to estimate gain. A, Linear filters from a 
Linear-Nonlinear cascade model, fit to high (red curve) and medium (blue 
curve) contrast data from one Y OFF cell. The filters were normalized by 
the amplitude of their first peak. B, Symbols indicate the observed 
probability of spiking versus the generator potential, g(t), for the same cell 
as in (A). The curves show the best-fit sigmoid functions. Based on these 
fits, the gain at the high contrast was 0.63 times that at medium contrast.  
C, Equivalently, we can scale the generator potential at medium contrast by 
a factor of 0.63 in order to set the gain of the two input-output functions to 
the value at high contrast.  For this cell, the nonlinear functions are now 
quite similar.  D, After shifting the blue curve horizontally to correct for 
horizontal offset (which differed by only 0.0068 units), the same sigmoid 
function (black curve) can now describe both the medium contrast’s shifted 
and scaled nonlinear function (R2 = 0.987) and the nonlinear function at 
high contrast (red symbols; R2 = 0.992).  E-H, Data from an X ON cell, 
plots as in (A)-(D).  This cell’s gain at the high contrast was also 0.63 times 
that at the medium contrast, panel (F), but in this case the input-output 
functions also differed by 0.97 units in horizontal shift, panel (G). Shifting 
the scaled curves reveals that the sigmoid function (black curve) was a 
good fit to the data from both medium contrast (R2 = 0.996) and at high 
contrast (R2 = 0.991).
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Figure 4.7: Multiplicative and additive changes to input-output functions. For each 
cell, nonlinear functions at all contrasts (Figure 4.7B and 4.7E) were fit to a 
sigmoid (see Methods). A, The offset of each cell at each contrast were 
defined as the factor that was added to the scaled generator potential of the 
sigmoid equation (see Methods), thereby describing the horizontal offset of 
the nonlinear function.  Here, we compare the offset between 100% and 
33% contrast (○), 33% and 11% contrast (◊), and 100% and 11% (∆) 
contrast, where the gain at the higher contrast is always shown on the 
horizontal axis. If all differences in the nonlinearity were captured by 
changes in gain, offsets would be constant across contrasts (x-y, thick, 
solid line).  Symbols below the line indicate the nonlinear function was 
shifted to the left at lower contrasts.  B, Each symbol compares the contrast 
normalization index (κ) to the difference in offsets for a particular pair of 
contrasts for a single cell.  The difference in offsets was defined as the 
offset, from (A), at the lower contrast minus that at the higher contrast.  
Therefore, neurons whose nonlinear functions shifted to the left as contrast 
decreased are described by a negative offset difference.  The color of the 
symbols indicates whether the cell was an OFF cell (purple symbols) or an 
ON cell (green symbols).  Symbols distinguish X cells (X), Y cells (Y), 
and unclassified cells (○).
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Figure 4.8: Effects of contrast on latency. A, The average stimulus preceding spikes, 
normalized by the amplitude of the first peak, from a representative OFF 
LGN neuron calculated in the three contrast conditions. The response 
latency of this cell was 24.7 ms (low contrast, black curve), 22.1 ms 
(medium contrast, blue curve), and 21.7 ms (high contrast, red curve).  The 
arrows indicate the latency of the cell at each of the three contrasts.  B, The 
average stimulus preceding spikes from a representative ON LGN neuron. 
The response latency of this cell was 21.7 ms (low contrast), 22.1 ms 
(medium contrast), and 24.7 ms (high contrast). C, Response latency across 
cells. Latency of responses at 100% contrast (horizontal axis) is compared 
to latency of the same cell at either 33% contrast (○) or 11% (∆) contrast. 
ON and OFF cells are represented by green and purple symbols, 
respectively.  Symbols above the diagonal indicate a latency decrease with 
contrast. D, Difference in latency, shown in (C), compared to the difference 
in offsets from the nonlinear functions (shown in Figure 4.8A).  Both 
differences are calculated as the variable at the lower contrast minus the 
variable at the higher contrast.  Therefore, symbols above the horizontal 
x=0 line indicate that latency increased as contrast decreased, and symbols 
to the left of the vertical y=0 line indicate that the nonlinear function at the 
lower contrast was shifted to the left of that at higher contrast. Each symbol 
represents a comparison between two contrast conditions for one cell.  
Symbol shapes indicate whether the comparison was between 100% and 
33% contrast (○), 33% and 11% contrast (◊), or 100% and 11% (∆).  
Symbol colors are as defined in (C).  
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Chapter 4, in full, is a republication of the material submitted in June of 2006.  

K.S., Reinagel, P., Functional benefits of contrast normalization demonstrated in 

neurons and model cells. (2006).  The dissertation author was the primary investigator 

and first author of this paper.

Acknowledgements: The authors thank Pamela Magoffin for surgical 

assistance, Samar Mehta for assistance with spike sorting, and E.J. Chichilnisky for 

comments on earlier versions of the manuscript. This work was supported by NSF and 

NSF/IGERT (K.D.) and Alfred P. Sloan Foundation (P.R.).



125

References

Atick J, Redlich A (1992) What does the retina know about natural scenes? Neural 
Comput 4:196-210.

Baccus SA, Meister M (2002) Fast and slow contrast adaptation in retinal circuitry. 
Neuron 36:909-919.

Benardete EA, Kaplan E (1997) The receptive field of the primate P retinal ganglion 
cell, II: Nonlinear dynamics. Vis Neurosci 14:187-205.

Benardete EA, Kaplan E (1999) Dynamics of primate P retinal ganglion cells: 
responses to chromatic and achromatic stimuli. J Physiol 519 Pt 3:775-790.

Benardete EA, Kaplan E, Knight BW (1992) Contrast gain control in the primate 
retina: P cells are not X-like, some M cells are. Vis Neurosci 8:483-486.

Berry MJ, Meister M (1998) Refractoriness and neural precision. J Neurosci 18:2200-
2211.

Berry MJ, Warland DK, Meister M (1997) The structure and precision of retinal spike 
trains. Proc Natl Acad Sci U S A 94:5411-5416.

Bonds AB (1991) Temporal dynamics of contrast gain in single cells of the cat striate 
cortex. Vis Neurosci 6:239-255.

Borst A, Flanagin VL, Sompolinsky H (2005) Adaptation without parameter change: 
Dynamic gain control in motion detection. Proc Natl Acad Sci U S A 
102:6172-6176.

Brenner N, Bialek W, de Ruyter van Steveninck R (2000) Adaptive rescaling 
maximizes information transmission. Neuron 26:695-702.

Brown SP, Masland RH (2001) Spatial scale and cellular substrate of contrast 
adaptation by retinal ganglion cells. Nat Neurosci 4:44-51.

Carandini M, Ferster D (1997) A tonic hyperpolarization underlying contrast 
adaptation in cat visual cortex. Science 276:949-952.

Chander D, Chichilnisky EJ (2001) Adaptation to temporal contrast in primate and 
salamander retina. J Neurosci 21:9904-9916.

Chichilnisky EJ (2001) A simple white noise analysis of neuronal light responses. 
Network 12:199-213.



126

Cohen ED (1998) Interactions of inhibition and excitation in the light-evoked currents 
of X type retinal ganglion cells. J Neurophysiol 80:2975-2990.

Cohen ED (2000) Light-evoked excitatory synaptic currents of X-type retinal ganglion 
cells. J Neurophysiol 83:3217-3229.

DeWeese M, Zador A (1998) Asymmetric dynamics in optimal variance adaptation. 
Neural Comput 10:1179-1202.

Fairhall AL, Lewen GD, Bialek W, de Ruyter Van Steveninck RR (2001) Efficiency 
and ambiguity in an adaptive neural code. Nature 412:787-792.

Fee MS, Mitra PP, Kleinfeld D (1996) Automatic sorting of multiple unit neuronal 
signals in the presence of anisotropic and non-Gaussian variability. J Neurosci 
Methods 69:175-188.

Freed MA (2005) Quantal encoding of information in a retinal ganglion cell. J 
Neurophysiol 94:1048-1056.

Heeger DJ (1992) Normalization of cell responses in cat striate cortex. Vis Neurosci 
9:181-197.

Heitwerth J, Kern R, van Hateren JH, Egelhaaf M (2005) Motion adaptation leads to 
parsimonious encoding of natural optic flow by blowfly motion vision system. 
J Neurophysiol 94:1761-1769.

Hunter IW, Korenberg MJ (1986) The identification of nonlinear biological systems: 
Wiener and Hammerstein cascade models. Biol Cybern 55:135-144.

Jin X, Chen AH, Gong HQ, Liang PJ (2005) Information transmission rate changes of 
retinal ganglion cells during contrast adaptation. Brain Res.

Kara P, Reinagel P, Reid RC (2000) Low response variability in simultaneously 
recorded retinal, thalamic, and cortical neurons. Neuron 27:635-646.

Keat J, Reinagel P, Reid RC, Meister M (2001) Predicting every spike: A model for 
the responses of visual neurons. Neuron 30:803-817.

Kim KJ, Rieke F (2001) Temporal contrast adaptation in the input and output signals 
of salamander retinal ganglion cells. J Neurosci 21:287-299.

Kim KJ, Rieke F (2003) Slow Na+ inactivation and variance adaptation in salamander 
retinal ganglion cells. J Neurosci 23:1506-1516.

Kohn A, Movshon JA (2003) Neuronal adaptation to visual motion in area MT of the 
macaque. Neuron 39:681-691.



127

Kremers J, Silveira LC, Kilavik BE (2001) Influence of contrast on the responses of 
marmoset lateral geniculate cells to drifting gratings. J Neurophysiol 85:235-
246.

Liu RC, Tzonev S, Rebrik S, Miller KD (2001) Variability and information in a neural 
code of the cat lateral geniculate nucleus. Journal of Neurophysiology 
86:2789-2806.

Lu SM, Guido W, Sherman SM (1992) Effects of membrane voltage on receptive field 
properties of lateral geniculate neurons in the cat: contributions of the low-
threshold Ca2+ conductance. J Neurophysiol 68:2185-2198.

Ohzawa I, Sclar G, Freeman RD (1985) Contrast gain control in the cat's visual 
system. J Neurophysiol 54:651-667.

Reich DS, Victor JD, Knight BW, Ozaki T, Kaplan E (1997) Response variability and 
timing precision of neuronal spike trains in vivo. Journal of Neurophysiology 
77:2836-2841.

Reinagel P, Reid RC (2000) Temporal coding of visual information in the thalamus. J 
Neurosci 20:5392-5400.

Reinagel P, Reid RC (2002) Precise firing events are conserved across neurons. 
Journal of Neuroscience 22:6837-6841.

Rieke F (2001) Temporal contrast adaptation in salamander bipolar cells. J Neurosci 
21:9445-9454.

Ruderman DL, Bialek W (1994) Statistics of natural images: Scaling in the woods. 
Physical Review Letters 73:814-817.

Sanchez-Vives MV, Nowak LG, McCormick DA (2000) Cellular mechanisms of 
long-lasting adaptation in visual cortical neurons in vitro. J Neurosci 20:4286-
4299.

Schwartz O, Simoncelli EP (2001) Natural signal statistics and sensory gain control. 
Nat Neurosci 4:819-825.

Shapley R, Enroth-Cugell C (1984) Visual adaptation and retinal gain control. 
Progress in Retinal Research 3:263-346.

Shapley RM, Victor JD (1978) The effect of contrast on the transfer properties of cat 
retinal ganglion cells. J Physiol 285:275-298.

Shapley RM, Victor JD (1981) How the contrast gain control modifies the frequency 
responses of cat retinal ganglion cells. J Physiol 318:161-179.



128

Shou T, Li X, Zhou Y, Hu B (1996) Adaptation of visually evoked responses of relay 
cells in the dorsal lateral geniculate nucleus of the cat following prolonged 
exposure to drifting gratings. Vis Neurosci 13:605-613.

Smirnakis SM, Berry MJ, Warland DK, Bialek W, Meister M (1997) Adaptation of 
retinal processing to image contrast and spatial scale. Nature 386:69-73.

Solomon SG, Peirce JW, Dhruv NT, Lennie P (2004) Profound contrast adaptation 
early in the visual pathway. Neuron 42:155-162.

Strong SP, de Ruyter van Steveninck RR, Bialek W, Koberle R (1998) On the 
application of information theory to neural spike trains. Pac Symp 
Biocomput:621-632.

Uzzell VJ, Chichilnisky EJ (2004) Precision of spike trains in primate retinal ganglion 
cells. J Neurophysiol 92:780-789.

van Hateren JH (1997) Processing of natural time series of intensities by the visual 
system of the blowfly. Vision Res 37:3407-3416.

Victor JD (1987) The dynamics of the cat retinal X cell centre. J Physiol 386:219-246.

Victor JD (1999) Temporal aspects of neural coding in the retina and lateral 
geniculate. Network-Computation in Neural Systems 10:R1-R66.

Yu Y, Lee T (2005) Adaptive contrast gain control and information maximization. 
Neurocomputing 65-66:111-116.

Yu Y, Potetz B, Lee TS (2005) The role of spiking nonlinearity in contrast gain 
control and information transmission. Vision Res 45:583-592.

Zaghloul KA, Boahen K, Demb JB (2005) Contrast adaptation in subthreshold and 
spiking responses of mammalian Y-type retinal ganglion cells. J Neurosci 
25:860-868.

Zaghloul KA, Boahen K, Demb JB (2003) Different circuits for ON and OFF retinal 
ganglion cells cause different contrast sensitivities. J Neurosci 23:2645-2654.

.



129

Chapter 5

Contrast adaptation in a non-adapting LGN model
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Abstract

Sensory neurons are believed to adapt their gain to match the variance of 

signals along the dimension they encode. Contrast normalization has been the subject 

of extensive physiological and theoretical study. We have reported elsewhere that 

lateral geniculate nucleus (LGN) cells exhibit contrast normalization in their responses 

to full-field flickering white-noise stimuli, and the extent of normalization was 

correlated with conserving the rate of transmission of visual information across 

contrasts.  Furthermore, both of these observations could be reproduced in a non-

adapting LGN model.  In this study we show that these non-adapting model cells 

recapitulated other contrast dependencies of LGN neurons: decreasing stimulus 

contrast resulted in an increase in spike-timing jitter, spike-number variability, and 

response latency.  Additionally, the contrast normalization of model cells depends on 

the model’s parameters, so we can speculate which physiological characteristics of 

LGN cells are necessary for contrast normalization.  Moreover, like LGN cells, the 

model cells exhibit rapid, transient changes in firing rate and information transmission 

just after changes in contrast. Although intrinsic changes in visual neurons have been 

demonstrated after changes in contrast, which most likely contribute to coding 

efficiency, our results suggest how it is that significant functional normalization may 

arise passively from the nonlinearity of LGN neurons.
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Introduction

Natural visual stimuli have a vast dynamic range compared to the 

modest dynamic range of visual neurons. There would appear to be no transfer 

function that could respond differentially to the small stimulus differences in low-

contrast scenes, yet avoid saturation in responses to high-contrast scenes. A possible 

solution is suggested by the fact that the dynamic range is much more limited in any 

spatiotemporally local sample of the visual stimulus. Therefore, neurons could 

dynamically adapt their transfer functions to match the local stimulus statistics in 

order to faithfully report stimulus differences within that context. We will refer to this 

property as contrast normalization.  

Neurons in the early stages of vertebrate visual systems have been reported to 

change their gain or sensitivity as the stimulus contrast changes (Enroth-Cugell and 

Robson, 1966; Shapley and Victor, 1978; Shapley and Victor, 1979; Shapley and 

Victor, 1981; Shapley and Enroth-Cugell, 1984; Ohzawa et al., 1985; Shapley, 1997; 

Benardete and Kaplan, 1999; Sanchez-Vives et al., 2000a, b; Chander and 

Chichilnisky, 2001; Kim and Rieke, 2001; Rieke, 2001; Baccus and Meister, 2002; 

Kim and Rieke, 2003; Solomon et al., 2004; Zaghloul et al., 2005).  Similarly, motion 

contrast normalization has been reported in motion sensitive neurons from primates 

(MT) to flies (H1) (Fairhall et al., 2001; Brenner et al., 2002; Kohn and Movshon, 

2003).

Some reports have concluded that changes in ionic conductances play an 

instrumental role in contrast normalization (Sanchez-Vives et al., 2000b; Kim and 

Rieke, 2001).  Other studies have concluded that resting membrane potentials change 
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in order to adapt to different contrasts (Carandini and Ferster, 1997; Baccus and 

Meister, 2002).  On the other hand, recent theoretical findings have suggested that 

neurons could exhibit contrast normalization without actively changing either of these 

properties.  Instead, intrinsic nonlinear properties of the cell (such as the threshold and 

saturation) are sufficient to reproduce contrast normalization (Borst et al., 2005; Yu 

and Lee, 2005; Yu et al., 2005). 

In Chapter 4, we demonstrate that a non-adapting model can exhibit contrast 

normalization comparable to that found in LGN cells.  Here we investigate whether 

this model is able to reproduce other contrast dependencies of the LGN, including 

spike-count variability, precision, and latency.  We also investigate how contrast 

normalization depends on model parameters, and whether the model is able to exhibit 

transient changes after the stimulus contrast is changed.
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Methods

Model Parameters. Models were implemented as described in Keat et al. 

(2001) by systematically varying the model parameters.  We created model cells by 

using all possible combinations of the following parameters: θ = 0.1 or 0.2; B = 3, 5, 

or 7; τP = 20, 35, or 50; τA = 20; σa = 0.01, 0.16, 0.31, or 0.61, σb = 0.02, 0.15, or 0.28; 

F = FX or FY.  The filter functions, FX and FY, were taken from the X ON and Y OFF 

cat LGN data in Figure 8C of Keat et al. (2001).

Because latency depended strongly on filter shape, in Figure 5.4C, we also 

varied the filter shape.  For each of 200 model cells, the values of θ, B, τP, τA, σa, and 

σb were randomly selected from the values listed above.  The filter function was 

described by a summation of Gaussians with a positive peak between 20 and 40 ms 

and a negative peak of half the amplitude between 35 and 65 ms.  The widths of the 

first and second peaks were randomly chosen to be between 7 and 15 ms and between 

15 and 24 ms, respectively.  We required the filter function at time t = 0 to be less than 

.05 of the maximum filter amplitude.  All filter functions were ON type; calculations 

using OFF-type filters showed similar results (not shown).

Experimental Data. Model results are compared to data recorded from LGN 

neurons, as described elsewhere (Chapter 4).  Experimental methods were essentially 

as per Reinagel and Reid (2000).  Briefly, cats were anesthetized with sodium 

pentothal (2-4 mg * kg-1 * h-1, i.v.).  Animals were ventilated using an endotracheal 

tube.  Electrocardiogram, electroencephalogram, temperature, expired CO2, and 

oxygen in blood were continually monitored.  All surgical and experimental 
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procedures were in accordance with National Institutes of Health and United States 

Department of Agriculture guidelines and were approved by the UCSD Institutional 

Animal Care and Use Committee.  Parylene-coated tungsten electrodes (AM Systems, 

Everett, WA) were inserted through a 0.5 cm diameter craniotomy over the LGN.  

Waveforms were analyzed offline to isolate single unit responses (Fee et al., 1996).  

Stimuli were spatially uniform random binary flicker presented on a custom-built 

photopic LED array at 125 frames/s.  The same binary pattern was scaled about the 

mean to obtain 11%, 33%, and 100% contrast, where contrast is defined as the 

standard deviation of the luminance over the mean.  Only steady-state responses (after 

5 s at fixed contrast) are shown.

Gain Calculations. First we estimated the filter at each contrast as the spike-

triggered average. The filters for the three contrasts were normalized to the amplitude 

of their first peaks. The stimulus at each contrast was convolved by its corresponding 

filter to estimate the instantaneous stimulus strength.  The input-output function was 

defined as the relation between the observed probabilities of spiking and the 

instantaneous stimulus strength.  For each cell, we fit the input-output function to the

data from the 100% contrast condition to the following sigmoidal equation:

)exp( SGxeAy +−−= Eq. 1

In this equation, the variables A, G, and S describe the amplitude, slope, and 

horizontal offset of the nonlinear function, respectively.  We then fit the input-output 

functions at the other two contrasts holding A constant.  (Estimates of A were noisy at 

low contrasts, and fitting A did not improve the quality of fits.)  We excluded a data 
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set from our analysis if there were less than 100 spikes in the response or if the R2 

value associated with this fit was less than 0.90. We define the Gain and Offset as G

and S from the sigmoidal fits.  

Spike-count Variability Measure. In Figure 5.6D, we report the trial-to-trial 

variability in spike count by calculating the Allan Factor (AF).  The Allan Factor is 

equal to the average squared difference in spike counts (N) between consecutive trials 

divided by twice the mean spike count (υ) across trials.

µ2
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AF Eq. 2

In our model simulations, the expected spike count in a given time window 

does not drift from trial to trial, and therefore the Allan Factor is identical to the Fano 

Factor (variance/mean spike count).  For real LGN data the Allan Factor can differ 

from the Fano Factor and thus we use the Allan Factor for both. Spike counts were 

analyzed in non-overlapping 5-ms bins of the repeated stimulus, and we report the 

average Allan Factor across time bins.  (Trends were qualitatively the same using 10, 

50, 100, 250, 500, and 1000 ms bins, not shown.) 

Spike-timing jitter measures. We measured the trial-to-trial jitter in spike 

timing by the width of the peak of the average cross-correlation between sequential 

trials. We defined the jitter as the half-width of this peak at half maximum. We 

considered this measure invalid if the peak was not at t = 0, or if the peak was not 

smooth. Specifically, we smoothed by a 5-ms moving average and required that the 

cumulative square difference between the raw and smoothed curves be <25%. 
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Response Latency. Spike-triggered averages (STAs) were computed from 

responses of each model cell to each contrast.  The latency was defined as the time to 

the shortest latency peak of the STA. In a separate analysis (not shown) we replicated 

the results of Figure 5.6F using two event-based methods. First, we computed STAs 

instead from the times of discrete firing events (PSTH peaks) as per Berry et al. 

(1997), where the time of each event was defined as the average time of the first spike 

in the event.  Second, we compared the times of all firing events that were shared 

across both contrast conditions, as described above.  Both calculations yielded similar 

trends (not shown).  We note that the trends in latency observed in the model did not 

depend on the sign of the filter (not shown).

Information Calculations. We represented the model responses as time-

binned spike trains, using a fixed bin size of δτ = 2 ms.  Due to the after-potential, it 

was rare to observe two spikes within one bin. The value of a bin was defined to be

zero if no spikes occurred within the bin or one if any spikes occurred.  We calculated 

the visual information from spike trains by using the direct method (Strong et al., 

1998), implemented exactly as in Reinagel and Reid (2000). For steady-state 

information calculations (Figure 5.5), entropies were measured for words of length L 

= 1 bin (2 ms), though trends were the same as we varied the bin length.  We 

calculated both the average noise entropy, <Hnoise>, which estimates the trial-to-trial 

variability of responses during fixed stimuli, and the average total entropy, <Htotal>, 

which estimates the variability of responses across all stimuli in the ensemble.  

Entropy values were averaged across time points during the steady-state stimulus 

(from t=5 s to t=10 s relative to a change in stimulus contrast).  The mutual 



137

information was defined as the difference in these entropies: I = Htotal – Hnoise. We 

correct for finite data size according to the method of (Strong et al., 1998).  

Specifically, we fit a second-order polynomial to 1/(fraction of data) versus the 

entropy estimates, and evaluate the polynomial at 1/(fraction of data) = 0.  We require 

that the total correction for finite data size was <10% and the second-order term of this 

correction was <1%.   

Analysis of responses as a function of time after contrast change. We 

define a stimulus sequence as a 40 s stimulus in which contrast changes every 10s, 

transitioning from high to medium to low to medium contrast in that order.  Different 

sequences differ in the binary flicker pattern, but not the contrast transition pattern. 

We presented one model cell with 216 different stimulus sequences (each shown once) 

and 686 additional stimulus sequences (each repeated 512 times). The time-varying 

firing rates were calculated by averaging the firing rate in each time bin over the 216 

unique stimulus sequences (Figure 5.7A). Results shown are from averaging in 

overlapping boxcar windows of length 8 ms. 

In order to compute the information rate following a contrast change, the 

variability of spiking responses both to repeated stimulus sequences and unique 

stimulus sequences needed to be estimated within small time windows. Estimates in 

small time windows are problematic because of the sparse nature of the responses. For 

steady state analysis we overcome this by averaging noise entropy across time; for 

time-locked analysis we average within a small time window across many different 

repeated stimulus sequences.
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We calculated the time-varying noise entropy separately from each of the 686 

repeated stimulus sequences and averaged the entropies across stimulus sequences.  

We calculated the time-varying total entropy separately from each of 128 blocks of 

512 unique sequences, and averaged the entropies across blocks. Entropies and 

information were calculated for words of length L = 1 bin, for every 2-ms time step 

relative to the time of contrast change. Results shown are from averaging the 

information rates in overlapping boxcar windows of 12 bins (24 ms).
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Results

When an LGN neuron is presented with stimuli of different contrasts, its 

responses exhibit contrast normalization. We recently reported that contrast 

normalization for white noise stimuli was correlated with preservation of information 

at low contrasts and that both of these phenomena were also observed in a non-

adapting model (Chapter 4).  Here, we explore why contrast normalization occurs in 

this model.  Additionally, we show that the non-adapting model also exhibits several 

other properties of LGN responses, some of which have previously been thought to 

give evidence of active adaptation.

A generative model for spike trains

Responses of LGN neurons can be compactly described by a nonlinear model 

with few parameters (Figure 5.1; Keat et al., 2001). This model has been shown to 

successfully reproduce responses of LGN neurons to white noise stimuli, including the 

reliability and precision of spikes.  This is only one of several nonlinear models that 

can produce contrast normalization with fixed model parameters, but it was the only 

model we tested that also exhibited changes in spike timing (precision and latency) 

with contrast, as discussed further below.

The model first convolves the stimulus with a linear filter.  The generator 

potential is equal to the convolved stimulus plus noise; the amplitude and time-

constant of this noise are defined by the model parameters σa and τA, respectively. A 

spike is generated whenever the generator signal crosses a threshold, θ.  Each time a 
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spike occurs, a negative after-potential is added to the generator potential, such that 

the threshold is crossed repeatedly during sustained excitatory stimuli. The amplitude, 

time-constant, and variability in the amplitude of the negative after-potential are 

defined by the model parameters B, τP, and σb, respectively. 

To test the effects of contrast in this model, we used a temporal binary white 

noise stimulus. The stimulus was shown repeatedly at each of three contrasts. 

Responses of a model cell to 100%, 33%, and 11% contrast stimuli are shown in 

Figure 5.2A, 5.2B, and 5.2C, respectively.  Responses to all contrasts were generated 

using a single set of fixed model parameters.  In the following sections we will 

describe the responses of fixed-parameter model cells in terms of contrast 

normalization and information transmission, as well as the contrast dependence of 

response reliability, precision, and latency. We will compare the qualitative trends in 

the model to previous results from real LGN neurons.

Model cells can exhibit contrast normalization

Although this model has fixed parameters at all contrasts, it could exhibit 

contrast normalization due to its nonlinearity. To measure the gain of the model we fit 

a linear-nonlinear cascade to the responses at each contrast condition, a method 

routinely used to characterize gain of visual neurons (Sakai et al., 1995; Chander and 

Chichilnisky, 2001; Kim and Rieke, 2001; Baccus and Meister, 2002; Zaghloul et al., 

2005).  Briefly, the data are fit by a filter and an input-output function.  The filter is 

defined as the spike-triggered average, which is taken as an approximation of the 

stimulus feature to which the neuron is sensitive.  The similarity of the stimulus to the 
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filter is evaluated at each time step of the stimulus; this can be thought of as the 

stimulus strength.  An input-output function is defined as the average probability of 

spiking as a function of the stimulus strength. Differences in gain at different contrasts 

can be measured by comparing the amplitudes of the recovered filters (if the input-

output function is fixed), or by the recovered input-output functions (if the filter 

amplitude is normalized). We have analyzed our model responses in both ways.

Here, we show the latter approach in which we scaled all of the model cell’s 

recovered filters to the same amplitude (Figure 5.3A), such that gain changes were 

contained within differences in the input-output functions.  The observed input-output 

function is steeper for lower contrast stimuli than for higher contrasts (Figure 5.3B). 

We fit a sigmoid equation to the input-output function at each contrast in order to 

calculate the gain (see Methods).  For this model cell the gain at low, medium, and 

high contrast is equal to 0.100, 0.079, and 0.054, respectively.  Therefore the model 

cell exhibits contrast normalization, despite the fact that the same parameters were 

used to generate responses to all contrasts. We note that the model also shows changes 

in filter shape, to be discussed below.

Next, we simulated model responses using many different sets of parameters 

(see Methods) to generate a large representative population of model cells. For any 

given model cell the parameters were fixed for all contrasts. We compared the gain of 

each model cell at 100% contrast to its gain at either 33% or 11% contrast (Figure 

5.4A). 

As reported in Chapter 4, for some model cells, the responses showed little or 

no contrast normalization: the gain was relatively independent of contrast (purple 
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symbols near thick line).  For other model cells, the gain increased by nearly the same 

factor that the contrast decreased (red triangles near dashed line, and red circles near 

thin line).  

We express the extent of contrast normalization by κ:

1/

1/
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−=
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where C is the stimulus contrast and G is the gain (Chapter 4). If the gain 

increases by the same factor that the contrast decreases, the contrast normalization κ
is equal to one.  If the gain does not change with contrast, the contrast normalization κ
is equal to zero.  We note that κ could in principle be less than zero (gain 

paradoxically increased at high contrast) or greater than one (gain increased by more 

than stimulus contrast decreased), but for real LGN neurons these values are rarely 

observed.

The population of model cells exhibited a range of contrast normalizations (κ
broadly distributed between zero and one (Figure 5.4B). The extent of the contrast 

normalization depended strongly on the amplitude of the noise added to the convolved 

stimulus, σa (compare symbols of different colors in Figure 5.4A and 5.4B). The 

dependence of κ on model parameters will be described further below.  The model cell 

population exhibits contrast normalization comparable to the range reported in LGN 

neurons, (Chapter 4; data reproduced in Figure 5.4A and 5.4B, black symbols). 

“Contrast Gain Control” refers to a specific process in the early visual system 

that has other properties in addition to contrast normalization (Shapley and Victor, 
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1979). For example, Contrast Gain Control in visual neurons is accompanied by a 

decrease in latency with increasing contrast. Although we have not explored other 

features of Contrast Gain Control in detail, we did observe changes in latency with 

contrast, but see Appendix to Chapter 4. We measured the response latency for all our 

model cells at each contrast by determining the time of the first peak of the spike-

triggered average (see Methods).  By this measure, model cells had both shorter 

latency and shorter duration at higher contrasts (Figure 5.4C, see also Figure 5.2D), 

consistent with results from neurons (Shapley and Victor, 1978; Benardete et al., 

1992; Smirnakis et al., 1997; Chander and Chichilnisky, 2001).  Recall that for any 

given model cell, the linear filter used to generate responses was fixed at all contrasts. 

Nevertheless the shape of the empirically recovered spike triggered average can 

change as a function of contrast due to effects of the nonlinearity (Pillow and 

Simoncelli, 2003).

Effects of contrast and changing coding characteristics on information 

We report in Chapter 4 that in LGN neurons, contrast normalization was 

significantly and positively correlated with the preservation of information 

transmission across contrasts.  For LGN and model neurons with large gain changes, 

the mutual information between neural responses and the stimulus was relatively 

constant across contrasts.  This did not follow automatically, because information rates 

depend on details of the spiking response which are not trivially related to the gain of 

the response.  Therefore, it is important to investigate the effect of contrast on the 
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reliability and precision of responses and to examine how changes in these variables 

effect changes in information transmission. 

Most model cells showed at least some decrease in information transmission at 

lower contrast (Figure 5.5A and Chapter 4). This might be attributable to changes in 

spike-count variability and/or temporal jitter of spiking responses.  Indeed, the spike-

count variability and temporal jitter of LGN responses both increased as stimulus 

contrast decreased.  Though the model we have implemented was designed to replicate 

the spike-count and spike-timing variability of neural data for any stimulus with the 

same statistics (including contrast) as the stimulus used to fit the parameters (Keat et 

al., 2001), it had not been shown whether this model, with fixed parameters, would 

show similar changes in spike-count variability and temporal jitter with changes in 

contrast.  

We quantified the spike-count variability of model responses to repeated 

stimuli by calculating the Allan Factor (see Methods).  The Allan Factor is high if the 

spike count is highly variable.  We report that in model responses, the spike-count 

variability increases as the stimulus contrast decreases (Figure 5.5B), as is the case for 

LGN neurons (Chapter 4). The Allan Factor associated with a Poisson spike train is 

equal to one.  Like LGN cells, the model responses often exhibit sub-Poisson spike-

count variability. The supra-Poisson spike-count variability occasionally observed in 

LGN neurons is likely caused by bursting, which is not replicated by this model.   

The temporal precision of model responses degraded as contrast decreased (see 

Figure 5.2). We measured the jitter in spike timing by the width of the peak in the 

cross-correlation between responses of consecutive trials (see Methods). As the 
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stimulus contrast decreased, the temporal jitter increased (Figure 5.5C), as was also 

found in LGN data (Chapter 4).  Our model cells had spike-timing jitter of a few 

milliseconds, well within the range of values measured under identical conditions 

from LGN cells.  Although the parameter values we tested did not replicate the 

complete range of temporal jitter observed in the LGN, it remains possible that other 

parameter combinations could produce more or less jitter than found in these model 

cells.

In Chapter 4, we reported that the preservation of information was correlated 

with the extent of contrast normalization for both LGN (R2=0.67; p<0.01) and model 

cells (R2=0.87; p<0.01) (Figure 5.5D).  We did not examine whether information was 

also better preserved when the spike-count variability or temporal jitter remained 

relatively constant across contrasts.

As before, we calculate the information ratio as the information rate in bits per 

spike during the lower contrast divided by that at the higher contrast, such that if the 

information rate is constant across contrasts, the information ratio is equal to one.  We 

compare this to the Allan Factor ratio, which is the Allan Factor at the higher contrast 

divided by that at the lower contrast.  Therefore, if the Allan Factor (spike-count 

variability) increases as the contrast decreases, the Allan Factor ratio will be less than 

one.  There was a very weak but significant correlation between the Allan Factor ratio 

and the information ratio for model cells (Figure 5.5E, black symbols; R2=0.093; 

p<0.01) and no correlation for LGN cells (Figure 5.5E, red symbols; R2=-0.10; 

p=0.46).
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Similarly, we calculated the Jitter ratio as the temporal jitter at the higher 

contrast divided by that at the lower contrast.  Therefore, if the jitter increases as the 

contrast decreases, the Jitter ratio will be less than one.  For model cells, the jitter ratio 

was strongly and significantly correlated with the information ratio (Figure 5.5F, black 

symbols; R2=0.85; p<0.01), but for LGN cells, these variables were uncorrelated 

(Figure 5.5F, red symbols; R2=0.23; p=0.11).

How model parameters influence contrast normalization

To determine which parameters are important for contrast normalization in the 

model, we separately varied each parameter holding all other parameters at fixed 

values (see Methods). We find that the contrast normalization depends most strongly 

on the generator potential’s noise term, σa (Figure 5.6E; also compare symbols of 

different colors in Figure 5.4B). The contrast normalization is also weakly dependent 

on parameters of the negative after-potential, including its amplitude (B), time 

constant (τP), and noise (σb) (Figure 5.6B, 5.6C, and 5.6F, respectively).  The 

mechanism of contrast normalization in the model will be further considered in the 

Discussion.

Models with fixed parameters exhibit transitory changes

Sensory neurons exhibit transitory changes in their response properties 

immediately after an abrupt change in contrast. These gradual changes suggest an 

active adaptation process. We note, however, that transitory effects on the timescale of 
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integration time of the filter are expected even in a fixed, linear system. Like LGN 

neurons, our model cells contained a biphasic linear filter that integrated stimuli for up 

to 100 ms (e.g., see Figure 5.3A). Thus it is not surprising that model cells exhibit 

smoothing of transitions as well as overshooting and ringing following abrupt changes 

in contrast (Figure 5.7).  In particular, the firing rate overshoots the steady state when 

contrast changes (Figure 5.7A), and the information rate dips below the eventual 

steady state particularly for transition from high to medium contrast (Figure 5.7B). 

Slow changes, on the order of seconds, occur in neurons but not in our model. 
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Discussion

Contrast normalization without parameter change

Many sensory neurons exhibit contrast normalization. Often this is cast in the 

vocabulary of adaptation, as if neurons are actively changing their properties in 

response to the contrast of recent stimuli in order to optimize information coding. 

Numerous investigations in several systems have searched for these changing 

properties, including changes in gain of membrane voltage (Sanchez-Vives et al., 

2000b; Rieke, 2001; Baccus and Meister, 2002; Kim and Rieke, 2003; Zaghloul et al., 

2005), shifts in mean membrane potential relative to threshold (Carandini and Ferster, 

1997; Zaghloul et al., 2005), and recruitment of inhibitory circuitry (Chance et al., 

2002; Murphy and Miller, 2003; Prescott and De Knoninck., 2003).

We show here that at least one class of model cell with fixed parameters can 

qualitatively account for contrast normalization across the range observed in LGN 

neurons. This is consistent with the fact that contrast normalization is rapid or 

instantaneous in the early visual system (Shapley, 1997).  Our results do not establish 

the mechanisms of contrast normalization in the LGN, but they show that some effects 

of contrast may arise automatically from either linear filtering or the nonlinear nature 

of spike generation.

Why do the model cells exhibit contrast normalization?

To understand how contrast normalization arises in this model, we illustrate a 

short sample of response generation in a model cell in Figure 5.8.  For high contrast 

stimuli (red curves in Figure 5.8), the generator potential h(t) tends to cross threshold 
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well before the peak of the filtered stimulus g(t). The negative after-potential causes 

repetitive firing (i.e. h(t) crosses threshold again) for the strongest stimulus events. 

Nevertheless, the cumulative effect of the negative after-potential is to truncate 

responses, such that the number of spikes during the peak in g(t) increases much less 

than linearly with the size of the peak. The majority of the time bins with supra-

threshold values of g(t) do not contain spikes.  Therefore if we measure the average 

probability of a spike given g(t) in the range indicated by the shaded region, the 

probability is low (0.067). For low contrast stimuli, on the other hand (blue curves in 

Figure 5.8), the peaks in g(t) are rarely large enough to enter this saturating range, 

such that the majority of the time bins with supra-threshold values of g(t) do contain 

spikes. If we measure the average probability of a spike given g(t) in the indicated 

range, the probability is higher (0.082).  We note that the calculation of the gain 

depends only on the relation of g(t) to spikes (Figure 5.3); the noise and after-

potentials included in h(t) are unobserved variables in real experiments.

After-potential effect

In this context, we can rationalize the dependence of contrast normalization on 

model parameters. The after-potential reduces the probability of repeated firing within 

peaks of g(t) and, to a lesser extent, reduces the probability of firing a spike in 

subsequent peaks of g(t). As we decrease the amplitude or duration of the after-

potential, the gain increases at both contrasts, but the effect is larger for high contrast. 

Therefore the difference in gain becomes smaller, such that contrast normalization 

decreases (Figure 5.6B and 5.6C).  When the after-potential is small and fast 
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compared to fluctuations of g(t), the responses at both high and low contrast are 

approximately linear with the size of the peak in g(t), and contrast normalization is 

low. 

Why would this gain change result in equalizing information rates across 

contrasts? Refractoriness increases reliability in the retina, LGN, and primary visual 

cortex (Kara et al., 2000), in that the number of spikes elicited during an epoch of 

repetitive spiking is more reliable when a refractory period is implemented.  In our 

model, as the amplitude and duration of the negative after-potential increase, we 

expect that the reliability should increase across all contrasts, and indeed we find that 

the information rate in bits/spike increases (not shown).  Still, because epochs of 

repetitive firing are less common for lower-contrast responses, we do not expect the 

reliability to increase as much as for higher-contrast stimuli.  Therefore it makes sense 

that the information ratio in bits/spike decreases as the amplitude and duration of the 

after-potential increase (data not shown).

Sub-threshold Noise 

The noise parameter σa had by far the strongest correlation with contrast 

normalization among our model cells. Other modeling results have suggested that a 

balanced change in both the excitatory and inhibitory background firing rates can 

serve as a gain control mechanism (Chance et al., 2002). In the context of our model, 

adding noise to g(t) increases the probability that a just-sub-threshold stimulus will 

evoke a spike in a given trial, but decreases the probability that a just-super-threshold 

stimulus will evoke a spike. Therefore the gain decreases (the slope of the input-output 
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function becomes shallower) with noise σa. In the low-contrast case, where noise 

fluctuations are large relative to stimulus-induced fluctuations, this effect is strong and 

the reduction in gain is large.  In the high contrast case, peaks in g(t) are often far 

above and below threshold, so the same amount of noise has less effect on the gain. 

Consequently, the gains at the two contrasts become more similar, and there is less 

contrast normalization. 

How does this translate to information transmission? For low contrast stimuli, 

noise can dominate the times of threshold crossings, which decreases the mutual 

information about the stimulus in bits/spike. For high contrast stimuli the same noise 

has relatively little effect on the threshold crossings, and thus little effect on 

information transmission. Thus the low noise condition, where low contrast stimuli 

can elicit spikes only at very strong peaks in g(t), corresponds to a relatively high 

information rate at low contrast, at least in bits/spike.  

Contrast normalization versus Contrast Gain Control

In the early visual system, contrast normalization is just one aspect of the well-

defined phenomenon known as Contrast Gain Control.  In addition to normalization, 

in Contrast Gain Control the dynamics of the cell change with stimulus contrast 

(Shapley and Victor, 1978, 1981; Victor, 1987; Benardete and Kaplan, 1999; Chander 

and Chichilnisky, 2001; Kim and Rieke, 2001; Baccus and Meister, 2002; Zaghloul et 

al., 2005).  We generated model responses using a fixed filter at all contrasts and find 

that the latency of the recovered filters depends on the stimulus contrast (Figure 5.4C).  

We attribute this to the positive threshold-crossing structure of the model (Figure 5.1), 
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which effectively introduces a derivative of the filter into the generation mechanism. 

We have not tested for other hallmarks of Contrast Gain Control and it remains 

possible that active adaptive mechanisms are required to account for the full observed 

phenomenon.  Additionally, it has been shown that spike-triggered covariance 

techniques is more accurate than spike-triggered average techniques in recovering the 

true filter (Schwartz et al., 2002).  Therefore, it will be important to determine whether 

the covariance technique finds the same latency effects reported above. 

Transient changes after contrast shifts

Recent research has emphasized the time course of neural characteristics 

following a change in stimulus contrast.  After the stimulus contrast is changed, the 

firing rate of neurons in the early visual system quickly changes and then gradually 

converges to their steady-state values (Smirnakis et al., 1997; Brown and Masland, 

2001; Chander and Chichilnisky, 2001; Baccus and Meister, 2002; Solomon et al., 

2004; Zaghloul et al., 2005).  These dynamic changes in firing rate include both a fast 

and a slow component (Smirnakis et al., 1997; Chander and Chichilnisky, 2001; 

Baccus and Meister, 2002).  The fast component occurs within 100 milliseconds of a 

change in stimulus contrast (Victor, 1987).  The slow component of the firing rate 

adaptation occurs on the order of 1-10 seconds (Smirnakis et al., 1997; Brown and 

Masland, 2001; Chander and Chichilnisky, 2001; Baccus and Meister, 2002; Solomon 

et al., 2004), and this time constant depends on the duration of the contrast periods 

(Zaghloul et al., 2005). The time constants of the slow component have been related 
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theoretically to Bayesian optimal strategies for detecting that the contrast has changed 

(DeWeese and Zador, 1998).

Current research is attempting to isolate which of these firing rate trends would 

require an adaptive mechanism (Shapley, 1997; Smirnakis et al., 1997; Chander and 

Chichilnisky, 2001). Intracellular studies in the retina concluded that ganglion cell’s 

spiking generation mechanism adapts to stimulus contrast on the timescales of seconds 

(Kim and Rieke, 2001; Zaghloul et al., 2005). An increased number of sodium 

channels become inactive after a high contrast stimulus is presented, resulting in a 

decreased sensitivity to stimulus fluctuations (Kim and Rieke, 2003).

In the fly motion-sensitive neuron H1, Fairhall et al (Fairhall et al., 2001) 

showed that information transmission efficiency (in bits/spike) dropped transiently just 

after a decrease in contrast, recovering gradually. This result was highly suggestive 

that an active adaptation process is required to restore coding efficiency after a change 

in stimulus statistics. Moreover, that study showed that both gain change and 

information optimization occurred within tens of ms, much faster than the firing rate 

adaptation which was on the order of seconds.

Here we show that a model with no adapting parameters is capable of 

producing the fast component of firing rate change following a change in stimulus 

contrast (Figure 5.7A).  The biphasic nature of the filter is sufficient to reproduce the 

over-shooting firing rate observed in visual neurons.  The duration of the firing-rate 

transient is limited by the length of the filter, 50-100 milliseconds. In our model cells, 

gain changes (not shown) and optimization of information transmission (Figure 5.7B) 
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both occur on this fast timescale and both occur without any change in model 

parameters. 

The model presented here does not account for the slow firing-rate adaptation 

observed in retinal ganglion and LGN cells (Smirnakis et al., 1997; Brown and 

Masland, 2001; Chander and Chichilnisky, 2001; Baccus and Meister, 2002; Solomon 

et al., 2004).  This slow form of firing-rate adaptation has been attributed to a gradual 

change in cells’ baseline membrane potentials (Baccus and Meister, 2002; Solomon et 

al., 2004).  Although the model does not replicate the slow component of firing rate 

adaptation, this component appears to be uncoupled from contrast normalization and 

information optimization.
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Figure 5.1:Generative model to predict spike trains from stimuli.  First row: the 
stimulus, s(t), is convolved with a filter, F(t),  to produce g(t).  Second row: 
a noise signal is added to g(t) to produce the generator potential, h(t).  The 
parameters τA and σa determine the time-constant and amplitude of this 
noise term. Bottom rows: when the generator potential crosses a threshold, 
θ, a spike occurs. Each time a spike occurs, a negative after-potential is 
added to the subsequent generator potential.  The parameters B, τP, and σb

determine the amplitude, the time-constant, and variability in the amplitude 
of the negative after-potential.
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Figure 5.2:Response characteristics from model cell as a function of temporal 
contrast.  Responses of one representative model cell to full-field binary 
white noise visual stimuli of different contrasts.  The parameters for this 
model cell are: θ =0.4, B=3, τP =50, σa =0.31, σb =0.28, τA =20. A, Raster 
plot for 64 repeats of a repeated stimulus at 100% contrast.  Each row 
represents a trial; each point represents the time of an action potential 
within that trial.  A 500 ms segment from the middle the 5 s trials is shown. 
B and C, Responses to 64 repeats of the same full-field binary stimulus 
sequence as in (A), scaled about the mean to 33% and 11% contrast, 
respectively.  
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Figure 5.3:Measuring gain from model responses.  A, Linear filters from a Linear-
Nonlinear cascade, fit to high (red curve) medium (blue curve) and low 
(black curve) contrast responses from the model cell responses shown in 
Figure 5.2. The filters were normalized by the amplitude of their first peak.  
B, Symbols indicate the empirical probability of spiking versus the 
stimulus strength (see Methods). The points were fit to sigmoid functions 
(curves). Colors defined as in (A).
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Figure 5.4:Fixed-parameter model cells reproduce range of contrast normalization 
observed in LGN.  A, The gain of each model cell at 100% contrast 
(horizontal axis) is compared to the gain of the same model cell for 33% 
contrast (○) and 11% contrast (∆). In the absence of gain control, gain 
would be constant (x=y, thick, solid line). Three-fold or nine-fold gain 
changes correspond to the thin, solid line or the dashed line respectively.  
Black symbols are data from the LGN, previously published in Chapter 4.  
Red, green, blue, and purple symbols correspond to model cells in which 
σa was set to 0.01, 0.16, 0.31, and 0.61, respectively.  For oth6er parameter 
values see Methods; for clarity this figure shows results only for θ= 0.2. 
Results using θ =0.1 show a similar dependence on σa.  B, Each symbol 
indicates the contrast normalization (κ, Eq. 3) for a single model cell.  
Colors as defined in (A). C, Response latency of model cells at 33% or 
11% contrast versus 100% contrast for model cells (N=864 including both 
100%-33% and 100%-11% comparisons). At each x-y point, the number of 
model cell results is indicated by color, where red corresponds to the 
highest density and dark blue to the lowest. The color is scaled as the log of 
the probability.
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Figure 5.5:Effects of contrast and changing coding characteristics on information.  A,
The information rate in bits per second at 100% contrast (x-axis) compared 
to either 33% or 11% contrast (y-axis) for model cells (N=864 including 
both 100%-33% and 100%-11% comparisons). At each x-y point, the 
number of model cell results is indicated by color, where red corresponds 
to the highest density and dark blue to the lowest. The color is scaled as the 
log of the probability. B, The variability of spike counts at 33% or 11% 
contrast versus 100% contrast for model cell responses, plotted as in (A).  
C, Temporal jitter of spike timing at 33% or 11% contrast versus 100% 
contrast for model cell responses, plotted as in (A). D, The information 
ratio is calculated as the information (in bits per spike) at the lower contrast 
divided by that at the higher contrast.  Contrast normalization, κ, is as 
defined in Eq. 3.  Each black symbol compares the information ratio to the 
contrast normalization from responses generated by a model with one set of 
fixed parameters, evaluated at three different stimulus contrasts.  Red 
symbols are LGN data from Chapter 4. E, The Information ratio versus the 
Allan Factor ratio, where the Allan Factor ratio is defined as the Allan 
Factor at the higher contrast divided by that at the lower contrast.  Symbols 
as in (D). F, The Information ratio versus the Jitter ratio, where the Jitter 
ratio is defined as the jitter at the higher contrast divided by that at the 
lower contrast.  Symbols as in (D). 
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Figure 5.6:Contrast normalization dependence on model parameters.  For a reference 
model cell we used the average parameters for X ON LGN cells as reported 
in Table 2 of (Keat et al., 2001), which are: θ =0.76, B=4.59, τP =24, 
τA =20, σa =0.44, and σb =0.15.  We then varied each one of these 
parameters separately.  The red symbols in each panel show the value 
along each parameter range that was held constant when other parameters 
were varied.  For each resulting model cell we calculated the contrast 
normalization from comparison of the responses to high vs. medium 
contrast.  A, Contrast normalization versus the threshold, θ.  When the 
generator potential crosses θ, a spike is elicited.  B, Contrast normalization 
versus the amplitude B of the negative after-potential. C, Contrast 
normalization versus the time constant τP of the negative after-potential. D,
Contrast normalization versus the time-constant τA of the noise signal that 
is added to the convolved stimulus. E, Contrast normalization versus the 
amplitude σa of the noise signal added to the convolved stimulus. F, 
Contrast normalization versus the amplitude σb of the noise of the negative 
after-potential.
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Figure 5.7:Transient changes in model responses following contrast changes. 
Responses of one model cell (parameters indicated by red points in Figure 
6) in a contrast switching experiment.  The stimulus consisted of 
continuous binary white noise that changed contrast every 10 seconds, 
switching from 100% to 33% to 11% to 33% and then repeating (see 
Methods).  A, Firing rate as a function of time, shown around the times of 
contrast transitions. B, Information rate in bits per second.
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Figure 5.8: Illustration of why the model exhibits contrast normalization.   A, The 
generator potential, h(t), for a high-contrast stimulus from one model cell is 
shown in the thick red line.  The convolved stimulus, g(t), which does not 
include the negative after-potentials or noise, is shown in the thin red line.  
Spike times from one trial are shown with the thick, red ticks on top.  The 
thin blue ticks show spike times from the low-contrast stimulus (below), 
such that spike times can be compared.  B, The generator potential, h(t), 
and the convolved stimulus, g(t), for a low-contrast stimulus are shown by 
the thick and thin lines, respectively.  Spike times for the low-contrast 
stimulus are shown in the thick blue ticks, while the thin red ticks show the 
spike times for the high-contrast stimulus.
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Chapter 5, in full, is a republication of the material submitted in June of 2006.  

K.S., Reinagel, P., Contrast adaptation in a non-adapting LGN model. (2006).  The 

dissertation author was the primary investigator and first author of this paper.
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Chapter 6

Concluding Remarks
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Work presented here describes how fixed, nonlinear properties in the LGN 

neuron can help these neurons to encode information about the broad range of visual 

stimuli.  First, we show that the T-type calcium channel present in LGN neurons is de-

ianctivated during only a subset of stimuli.  In this state, an excitatory stimuli causes 

the cell to elicit a burst of spikes rather than a single spike.  Therefore, distinguishing 

between these two responses can provide visual information (Chapter 2).  Because de-

inactivation of the channels require sustained hyperpolarization, a burst response could 

indicate that an excitatory stimulus occurred after a period of un-excitatory stimuli.

In Chapter 3, we demonstrate why it is important to use our state-information 

measure rather than other measures that we considered.  Further, we show that burst 

structure depends on the stimulus, such that distinguishing bursts with different 

numbers of spikes can provide additional visual information.  Physiologically, bursts 

and spikes could be distinguished, because bursts have been shown to be more 

effective in driving downstream neurons.

Next, we found that LGN neurons exhibit contrast normalization, such that 

relationship between neurons’ firing rates and the stimulus depends on the stimulus 

contrast.  The extent of contrast normalization varied across cells, and we postulated 

that cells that were characterized by larger contrast normalization would be better able 

to preserve the information transmitted across contrasts.  However, information rates 

depend on reliability and precision in addition to firing rate, and both of the qualities 

degrade as the contrast decreases.  Still, we found that cells with stronger contrast 

normalization better preserved their information rates across contrasts (Chapter 4).
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Although contrast normalization might be a result of the cell actively adapting 

to the new contrast, we investigated whether a model with fixed parameters could 

reproduce the contrast normalization in the LGN.  In Chapter 4, we show that the 

model also exhibits contrast normalization and the associated preservation of 

information.  This suggests that a fixed nonlinearity is sufficient to produce contrast

normalization and that this phenomenon provides useful coding advantages.

Contrast normalization is but one characteristic of the classically-described 

Contrast Gain Control, but in Chapter 5 we show that the model cell responses include 

yet another characteristic of Contrast Gain Control: the latency of the increases as 

contrast decreases.  Furthermore, we demonstrate that after a change in stimulus 

contrast, there are transient changes in model cell responses.  These results 

demonstrate that changes in response properties do not imply that neurons actively 

adapted to changes in contrast.  Neurons, instead, appear to be equipped with fixed 

nonlinear properties that better enable them to encode the variety of stimulus 

conditions present in natural scenes. 




