Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

Title

I. THE THEORY OF ABERRATIONS OF QUADRUPOLE FOCUSING ARRAYS. II. ION OPTICAL DESIGN OF HIGH QUALITY EXTRACTED SYNCHROTRON BEAMS WITH APPLICATION TO THE BEVATRON

Permalink

https://escholarship.org/uc/item/8mk4n3hw

Author

Meads Jr., Philip Francis

Publication Date

2011-02-15

F. Selph

University of California

Ernest O. Lawrence Radiation Laboratory

\author{

1. THE THEORY OF ABERRATIONS OF QUADRUPOLE FOCUSING ARRAYS
}
2. ION OPTICAL DESIGN OF HIGH QUALITY

EXTRACTED SYNCHROTRON BEAMS WITH APPLICATION TO THE BEVATRON

Berkeley, California

UNIVERSITY OF CALTFORNTA
 Lawrence Radiation Laboratory University of California

Contract No. W-7405-eng-48

1. THE THEORY OF ABERRATIONS OF OUADRUPOLE: FOCUSING ARRAYS

II. ION OPTICAL DESIGN OF.HIGH QUALITY EXTRACTED SYNCHROTRON BEAMS WITH APPLICATION TO THE BEVATRON

Philip Francis Meads, Jr.

(Thesis)
May 15, 1963

Reproduced by the Technical Information Division directly from author's copy.

Table of Contents

Page
Abstract ix
PART ONE THE THEORY OE ABBRRATTONS OF QUNDRUPOLE FOCUGTNG ARRAYS 1
I. Introduction 1
II. Linear Theory 9
A. Representation of a Lens System 10
B. The Beam Envelope 12
C. Boam Widt,hs 13
D. Disperaive Systems 16
E. Circulor Apertures 17
F. Linear Properties of Bpecific Berm Blements 18
7. Drift Space 18
2. Quadrupole Magnet 19
3. Bending Megnet 20
L. Solenoid Magnet 24
5. Octupole Magnet 24
IIT. Quadrupole Symmetry Properties and the Scalar Magnetic
Potential 25
A. Magnetic Field Symmetries 25
B. The General Magnetic Field 26

1. General Magnetic Scalar Potential. 26
2. Pure Quadrupole Magnetic Soalar Potential 27
3. The Octupole Field Component 29
L. Failure to Achieve Quadrupole Symmetries 29
C. Symmetry Restrictions on Neerrations 31
IV. The Equations of Motion 33

Page

V. The Calculation of the Coefficients of Aberration 38
A. Separation of Equations 38
B. The Integral Bquations of Motion 39
C. Parameters of Smallness 42
D. The Dispersion and Fringing Field Terms 43
F. The ϵ^{3} Aberrations 47
F. Octupole Terms 48
G. Tolerances 49
H. Higher Harmonics 49
I. Symbolic Expressions 51
J. Numerical Methods of Calculation 54
VI. Relations Between the Geometrical Coefficients of Aberration 57
A. Number of Independent Coefficients 57
B. Derivation of the Relationships 59
VII. The Character of the Aberrations 68
A. The Average Aberration Displacements 70

1. Models for the Occupation of Object-Plane Phase Space 70
2. Normalized Aberration Coefficients 72
3. Symmetry Groups in Displacement Expansions 72
4. Maximum Aberration Displacement 73
5. Rootemeanmiquare Aberration Displacement 74
B. Region of Least Confusion 77
6. The Beam Envelope Near an Tmage aingle Parameter.
Trajectory Distribution 78
7. The General Beam Envelope Near the Image for aPoint Source82
Page
8. Example of the Region of Least Confusion 87
C. The Aberration Figure 89
9. Tllustrative Aberration Figures 91.
10. Classification of Figure Types 92
11. Incoming Parallel Beam to Point Image 94
12. Remarks on the Ceneral Figure Types 98
D. Concluding Remarks on the 'wo Examples 98
13. Tolerances 98
14. The Reduction of Aberrations 100
VIII. TBM 7090 Quadrupole Aberration Program 103
A. Program Scope 103
B. Basic Computer Required 104
C. Required Input Data 104
D. Output Produced by the Program 106
15. Field Data 106
16. Iinear Properties 106
17. Optimization of Linear Properties 106
18. Aberrations 107
Appendix I_{o} Equations for Aberration Coefficients 109
Appendix II. Operating Instructions for Quadrupole Aberration Code 117
A. Supervisor 11.7
19. Call Cards 117
20. Repeating Groups of CALL Cards 118
21. The CAlL List 119
22. Program Options $=$ SENSE Cards 122
23. General Considerations in Operating Code 128

Page

B. Calculation of Beam Properties 130

1. Input and Output of Beammiystem Parameters 130
2. Calculation of the Firstomerder Properties 136
3. Calculation of Aberrations 139
4. Calculation from Gradient Plot 11,5
C. Optimization of Parameters 151
5. Linear Programming Theory and Applications 15%
a. The Lineax Programming Problem 151
b. The Application of Linear Programing to Beam .. .Design154
6. DESTGN 156
7. FOCUS 162
8. REFINE 1.63
D. Utility Routines 164
9. Tape Manipulating Rovtines 164
10. Output Control Utility Routines 168
11. Exit Routines 169
12. Print Subroutines 170
13. TEST Routine 170
14. ALTER Routine 172
15. PFEK Routine mon Arbitrary Snapshot Dumps 174
16. Error Routines 175
E. Input Card Formats 178
Appendix III. Numerical Examples 197
A. The Input Deck 198
A. The Printed Output 205
C. The Cathode Ray Tube Display Output 220
PART TWO. ION OP'TICAL DESTGN OF HTGH QUALTTPY EX'TRACTFD SYNCHROTRON BHAMS WTTH APPLTGATTON TO THE BEVATRON 247
I. Tntroduction 248
TT. Theory of Extraction 254
A. Onemagnet Extraction 254
17. The Cosmotron External Beam 254
18. Onemmagnet System Applied to the Bevatron 255
19. Deficiencies in the Onemagnet System 256
20. Advantages of the Two Magnet System 2.57
B. Two Magnet Achromatic Extraction 257
21. Methad of Extraction 257
22. Pictorial Phase Space Description of Extraction 260
23. The Inadequacy of the Linear Theory 264
IJT. Numerical Calculation Programs 268
A. The Bevatron Orbit Code 268
24. The Basis Code 268
25. The Modified Code 269
26. The Plot Code 272
27. The Field Codes 273
B. The Linear Codes 274
I. Derivation of the Analytic Transfer Matrix to the Standard Target Location 275
28. Agreement Between the Linear Codes and BOC 277
IV. The Optical Design of the External Beam 278
A. The Design Objectives and Restrictions 278
29. Optical Properties Required at the Exit Window 278

mvijis

Page
2. Kestrictive Mechanical Considerations 279
3. Reduced Enerfy External Beam 280
B. The Adjustable Parameters 280

1. The Target Azimuth 281
2. Target lhickness 281
3. Strength of M_{1} 281
4. Strengtin of Q_{1}. 282
5. Strength of Q_{2} 282
C. Method of Solution 282
6. Nume rical Orbit Studies 283
7. Linear Parameter Survey 283
8. Reduced Bnergy Survey 284
9. Variations to the Basic System 284
D. Conclusions 286
10. Functional Dependence on the Parameters 286
11. The Optimum Solution 293
12. Comparison with Experimental Results 295
Acknowledgements 301
References 302

I。 TID THEORX OF ABERRATIORS OF (QUADRUPOLE FOCUSTNG ARRAXS

IT. ION OPRXCAL DESIGN OF IIGII QUALTTX EXTRACTCD SYNCHRORRON

BEAMS WTTH APPLICASTON TO THE BEVATRON

Philip Francis Meadso Jx.
Lawrence Radiation Laboratory
University of California
Berkeley, California
May 1.5. 1963

ABSTRACX

In Part Ono we formulate in a general way the problem of analyzing and evaluating the aberrations of quadrupole magnet beam systems, and of chardeterizing the shapes and other properties of the beam envelopos fin the neighborhood of focio We consider all aberrations, including those due to misalignments and faulty construction, through third order in small parameters, for quadrupole beam systems. One result of this study is the development of analytic and numerical techniques for treatiag these aberrations, yielding useful expressions for the comparison of the aberrations of different beam systems. A second result of this study is a comprehensive digital computer program that determines the magnitude and nature of the abexorations of such bean systemso The code, using linear programming techniques, will adjust the parameters of a beam system to obtain specified optical properties and to reduce the magnitude of aborxations that limit the performance of that system. We examine mumexicallyo in detail, the aberrations of two typical beam systems.

In Part Two, we examine the problem of extracting the
proton bean from a synchrotiron of "H" type magnet constructiono We describe the optical atudies that resulted in the design of an external beam from the levatron that is optimized with respect. to lineax, disporsive, and aberration properties.and that uses beam elements of conservative design. The design of the beam is the result of the collabordtion of many people representing several disciplines. We describe the digital computer programs developed to carry out detailed orbit studies which were required because of the existence of large second order aberrditions in the beam.

I. INTRODUCRYON TO PART ONE

As the complexity of modern physics experiments increases, more sophisticated beam systems are needed. the aberrations of quadrupole magnets limit the performance of many beam systems. An object of this theoretical study is to formulate in a general way the problem of analyzing and evaluating these abercations. and of charactexizing the shapes and other properties of the beam envelopes in the neighborhoods of foci. Another purpose of this study is to generate, fox the use of experimenters, a comprehensive $X B M$ digital computer program whjeh will determine the magnitude and arture of the aberrations of beam systems consisting of quadrupole magnets. Xhis code also provides the means to reduce the magnitude of the abexrations that limit the perfoxm mance of a beam system.

In the decade since theix use was $\overline{\text { first }}$ proposed independently by Christophilos and by Couxant, Livingston, and Snyder ${ }^{2}$, the quadrupole lens has become the standard focusing device in beam optics.

Quadrupole magnets have two planes of reflection antisymmetry. Symmetxy arguments demonstrate that there can be no secondmorder aberrations in beam systems possessing this symmetry. The calculation of aberrations is restricted to beam systems having the quadrupole symmetry, thus we exclude bending magnets which already have secondmoxder aberrations.

There are five classic thirdmorder aberrations in light optics, where the lenses possess rotational symmetry. Described by the Seidel coefficients, these five aberrations are spherical

$$
-2-
$$

aborration, coma, astigmatism, curvature of field, and distortion. ${ }^{3}$ Owing to the relaxed symnetry, beam systems consisting of quadrupole lenses have an additional eleven geometric aberrations, making a total of sixteen aberrations of thixd order.

Burfoot classified the additional aberrations that might occur in electron optics, where the classic rotational symmetry is replaced by two plane reflection antisymmetry. ${ }^{4}$ He determined, from geometric symmetry considerations, that a total of 16 distinctive aberration types could occur. He described several of these figures, with the objective of recognizing, by inspection of the image, a particular aberration if it should dominate. He did not attempt to describe figures resulting from the presence of more than one type of aberration, nor did he include any of the chromatic aberrations.

Reisman examined the possibility of using a strong-focusing lens as a sustitute for a rotationally symmetric projector lens. ${ }^{5}$ A quadrupole doublet may be adjusted to provide focal points and focal planes which are at the same position in both symmetry planes; such a lens is optically equivalent to an axially symmetric lens. It is always the case for such a lens that the focal points are imbedded within the lens, thus restricting its use. He solved analytically, to third order, the equations of motion for this particular doublet configuration, neglecting all end effectso He concluded that the aberrations of such a quadrupole doublet were of comparable magnitude to those of a good axially symmetric lens.

Bernard and Grivet solved analytically the linear
equations of motion for a symmetric doublet, adding an impulsew correction term which corresponds to the action of infinitely sharp fringirg fields. ${ }^{6}$ Their assumption is appropriate to a very weak lens in which the slopes of trajectories are small. The effect of the infinitely sharp fringing field is to abruptly alter the slope of trajectories passing through the lens. Chey examined the effect of this correction upon a paraxial line image, determining that the image was "smeared" in the particular cases investigated.

Septier has experimentally measured the detailed fringing field shape for a quadrupole magnet 1.50 mm long with a bore of 40 mm radius. ${ }^{7}$ Mis paper contains the results in graphical form, showing the dependence of the three field components upon the coordinates. The magnet measured was constructed with poletips of circular contoux.

Grivet and Septier traced several initially parallel rays through the same symmetric doublet considered by Bernard and Grivet, numerically integrating the equations through third order: This was first done on an analog mackine and then repeated on a digital computer. They found aberrations comparable in magnitude to those obtained by adding the impulse-correction term. This validates their assumption that those aberations which are highly dependent upon the slopes of the trajectories may be neglected in a weakly excited symmetric doublet. This method is slow and does not readily yield the dependence of the total aberrations upon the initial displacements and slopes. The chromatic aberration is less than the aperture aberration for this lens when used in their linear
accelerator.

The work described above has been collected by Septiex in a treatise H_{n} strong-focusing lenses. ${ }^{9}$ The work is divided into four sections. Theoretical linear properties of magnetic and electrostatic quadrupole lenses are covered in the first section. Section $x \dot{x}$ is a review of previous work on the aberrations of such lenses, as described above. Construction of these lenses and field measurements conducted upon them are next reported. The final section reviews experimental results obtained by using quadrupole lenses. A particularly comprehensive inclusion in this work is a list of 101 references.

In the present paper the aberrations are treated by studying the third-order terms in the power-series expansions of the displacements and slopes near the image plane in terms of the relative momentum and the displacements and slopes at the object plane. Amethod of successive approximations is applied to the trajectory equations which generate explicit expressions for the coefficients of terms through third order in the expansions of the displacements and slopes. These calculations are valid for any beam system that possesses the previously mentioned two-plane reflection antisymmetry. Forty derived coefficients chaxacterize the thixd-order geometric aberrations. In Chapter VI we show that the canonical mature of the transformations that carry the trajectories between two points xestricts the number of independent coefficients to 16 , the number determined by Burfoot from symmetry arguments. An additional 16 coefficients describe the chromatic aberrations of second order, which satisfy the quadrupole
symmetry, and those of third ordex. Xf the characteristic length of the fringing field of a quadrupole magnet is much smadler than the geometric mean of its effective length and its focal length. aberrations due to fringing fiedle may be separated from inherent aberrations of the magnet. These aberrations are characterized by 16 coefficients that depend upon the detailed shape of the fringing field.

Real beam systems may fail to produce pure quadrupole fields, owing to mechanical limitations, Nonalignments and rotations of individual quadrupole lemses introduce additional aberrationse The effects of these aberrations are calculated in the present worko Knowing these effects, one may prescribe tolerances in positioning each quadrupole magret in a beam system which if satisfied, insure that displacements in the trajectoxies due to monalignments will be maller than inherent aberrations of the beam system.

Real quadrupole magnets frequently contain several troublesome haxmonics in the magnetic field which produce aberxations higher than third oxder. In section hof Chapter V we derive the approximate magnitude of displacements in the trajectories induced by each harmonic.

The maximum displacements due to aberrations are
calculated for all trajectories whose momenta and initial displacements
and slopes lie within spocitied symmetric bounds. Rootmean-square displacements due to the aberrations are calculated for three models of the occupied region of object-plane phase space. These rms displacements are useful quantities for comparing the aberations

 reanders ace obtanded from the comphter pregram.
 - berrations of the quadrapole bean aysteme constixute the limitamy
 tolerancea needed to make the mberorations due to misalignmenta mad higher field harmonice gmaller tham the inhoreme aberrations.

Numerical calchlations bere madg on several beam syatems which diffeced only in separatiom of the constituent quadrupole magmets: the magnification and rochsing propertieg wero the same for all systems. In every case examined, sil the mberrations were
 admittances vere taken intacomaiderationmo

The diferital compater progrom previcomsiy mentioned
cancolatos all the aberration cogeticiento derived in thia thestaso
 comstruction and phecement. The code caleulatee all the hamean propertiex of wide varioty of bean syatems. By uato of the
 system may be odjusted to meet any apecificed opticol propertioss
 upon each parameter. The code will alko adjust parametrax to reduce the aborrations of beam aystem.

Many results ace presemted wrephically by use of the cathodempay tube (chrI) di Bplay of the taM 7090 computer. Much quantitative and qualitarive detaid mbour the aboreatioma in contained in plots of the projections on tho three aoordinate plamea of representative groups of thejectoriea leaving the beam aystemo Beam-profile plots and phacemspace plote complement the prinded outpur describing the linear boam properifee The accurary of numerical calculation of the aberootion coefficiemtes has been verified by application of 23 relationmhipa derived in Chapter VR.

Xn Chapter x we discuss the lineax properties of beam aystems, including the propertiea of the beam envelope. The aymatry propertios charactorintic af quadrupole magrets are discussed im Chapter MIJ. In Chaptox IV we derive the equations or motion from a Hamiltonian in which distance along the optic axis is the independent varibble. The successivempproximations method of Bolving these equations ind the topid of Chapter Vo Relations between the coefficionta of aberration are derived in chapter VI. Ar Chapter VIN, we diacuss the character of the aberponioma The
computer program reaulting from thia atudy ia described in Chaptor VIII. Appendix I containe the detailed expresmiona for the coefm ficiente of aberrationo arsing a symbolic motation introduced in Chapter V. Imatructions for operatimg the computer program are
 in Appendis IXI.

 myes. The

 approximation ara or the typo
 beam ayctems primes refor to ditienemtiotion uith gespect to

A. Represemtation of a Xems System

In quch of the two phames. x whd yo the opticen proparicies of the beam aystem for tho degign monemithm aro completely detormined

$$
\begin{array}{ll}
x_{0}\left(z_{1}\right)=1 & x_{0}\left(z_{1}\right)=0 \\
x_{0}\left(x_{1}\right)=0, & \text { and } x_{0}\left(z_{1}\right)=1 \tag{f-3}
\end{array}
$$

Thent at may other point R we heve

$$
\begin{align*}
& x(z)=x\left(x_{1}\right) x_{0}(x)+x^{8}\left(x_{\lambda}\right) x_{0}(x) \\
& x^{y}(x)=x\left(x_{1}\right) x_{0}^{0}(x)+x^{n}\left(x_{1}\right) x_{0}^{0}(z)
\end{align*}
$$

- in, ifrencicix notatiomo

$$
\binom{x(2)}{x^{\prime}(x)}=\left(\begin{array}{ll}
x_{0}(2) & x_{0}(x) \tag{110-5}\\
x_{8}^{e}(z) & x_{0}^{\prime}(x)
\end{array}\right)\binom{x\left(x_{0}\right)}{x_{0}^{\prime}(7,)}
$$

The matrix in x and x is called the x sxansfer matrix
 determinamt of the transformathom berweori fand wo In a monm dismipative system, hiquville ${ }^{\circ}$ thoorem requixeg thot valume in
 conserved. To firgt approximation, the equations of motion of oach panticle are independerton oflother, the motion in ano
one plame is independent of the motion in the other two and tho componemt of momenta are proportional to the shoper $x^{\prime \prime}$ and y. Thus hionville theorem for 6nmdimenaional phase space requireas that the acea occupied by the beam in two-dimensional apace of x and x be conserved. The Jacobian detorminant of the transformation must therefore be unity: hence the determinant of tho tranafer matrix is identically qual to unity. Thus transter matrix always possesses an inverae (which in this case is the matrix that takes the beam backwarde fromzto zo tit is easily verified that $X_{13}=X_{23} x_{12}$ where x^{2} is the transfer matioix between w_{1} and z_{3} while T_{12} and $\mathrm{T}_{2} \mathrm{a}_{3}$ are the tramger matrican betweon z_{1} and z_{2} and between z_{2} and z_{3}, reapectively. As with the thick lems in optics the linear bohavior of monoenergetic beam tramsport aystem between two pointa is completely determined by the hocation of the focal points and the focal lengith in each plane. There are in each plane threa independent quantities that determine the optical behaviono they may be thought of in terme of either focal pointe or matrix elemonta. To discover the xelationship between matrix elementa and the location of the focal pointas it is necesampy to calculate the location ar Which an incoming parallel beam is imaged on the axis and that at which a source on the axis io imagedinto parellel beamo The focal length is then determined by applying the Newtomian lene equation $q p^{2}$, with p the distance from the image focal point to the image and q the distance from the object rocal point to the object. Let z_{0} be the location of the object focal point and Z_{i} the location of the image focal point. If (T) is the tramefero matrix between the points z_{1} and z_{2} then
$(T)=\left(\begin{array}{cc}\frac{b}{5} & \frac{f^{2}-2 a b}{f} \\ -\frac{1}{5} & \frac{8}{f}\end{array}\right)$
Three equivalent repreaentationso of lems aystem have boen presented, together with the relationshte botween themy these repreaemtations are in terms of (a) linearly indeperndent golutions of diffecontiql equations, (b) transfer matriceso mind

 differemt plamea.

B. The Beam Envelope

 the concept of a beam envelope in of great value. The beam envelope in that surface which encloses the entire bemm man which is tangent to mi leamt one trajectory at every point. Before one can work with the envelope, it is necessary to define the region in phase apace occupjed by the beami thia region varica with z. As long as we are dealiag with independent motion in the two plames, we can consider ethe product of the two-dimensional phase spaces in each plane. A convenient repreaentation of the curve in x-x' apace that contains the beam io am ellipae, far
 ellipse at valuea, Confining our mtention to the xaz and the $x-x^{\prime}$ planes, wo note several properties of the avelope that hold independently for the $y=$ and $y^{-y^{\circ}}$ plameso

An what followa we ghall require the bounding phage space rigure to be an ollipse. Becaube of hiouvillér thearem and the atipulated independonce of the x and y trajectory aquations, the area of the phase ellipse ig a commant that in indepondent of to the set of trajectories that forme tho bounding phasemspace ellipse at one value of \% forms the boundirg figure for all values.

The dioplacement of particle pasging through a dritit space is changed in proportion to the drift diatamee while the slope remaims comstant. The corresponding afect on the phase ellipse for a group of particles iss a shear in the x direction. It is apparant that any phase ollipse can be sheared to an upright ellipse by drifting some distance either forward ar backward.

The efrect of thin lems defined ars an element that changes the alope of trajectory while not changing its displacement, is to shear the phase ellipse in the x° directione

C. Meam Widths

A point along the optic axis at which the phase ellipse is upright is known as on wist: at this point the envelope has a minimum width in x. We may parameterizo an upright ellipge as follows:

$$
x=\bar{x} \cos \theta_{\theta} \quad x^{0}=\overline{x^{\prime}} \sin \theta_{0} \quad 0<0<2 \pi 0 \quad(\pi /-7)
$$

Let us assume the beam to have a waist at the entrance to the beam system, with maximum displacementy and slope given by x and $x^{\circ}{ }^{\circ}$ respectively, \quad te $\mathbb{T}_{i j}$ is the transfex matrix so some othor pointo
then the maximum displacement and maximum alope ot that point are given by

$$
x_{\max }^{2}=T_{1 \lambda^{2}}^{2}+x_{1 a^{2}}^{2} x^{2} \text { and } x_{\max }^{2}=T_{21^{2}}^{2}+x_{22^{2}}^{2} x^{2}\left(\pi x^{2}-8\right)
$$

This result is easily obtrined by differentiation with respect to the parameter Q_{0} Simce the transfer matrix for drift digtance z is given by $T_{i j} \approx\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$, tha equation for the beam envelope in a figldmeree region containing a waist with maximum x and x^{\prime} equal. to \bar{x} and $\overline{x^{\prime}}$, reapectively, is $\left.x(z)^{2}=x^{2}+z^{2} x^{2}(x) 9\right)$ in which z is measured from the waist. The envolope in thus hyperbola in a fieldofree region.

Conversely, let un assume an upright waigt at the input to the beam system. With \bar{x} at the imput corresponding to the aize of the source, we areable to determine x^{0} so that nome of the trajectories will strike a boundary at any point within the beam system, provided the source is smaller than the apertures.

At every value of x, the beam may be thought of as having come through a field-free region from a waist. If, because of aome intorvening focusing element, this waist does not really axigt, wo will denote it as a virtual waist. The study of the beam envolope is thus reduced to knowing the location of all the virtual waista and waists and their respective widthe

To determine the transfer matrix between any two arbitrary points; we may proceed by locating the virtual waiat seen by each point and then determining the transfer matrix that carriea one virtual waist into the other. We now know the trangfer matrix between the two virtual waists, and the drift distance between
each of the original arbitracy pointe and itg vixitual watat. We multiply the tranafer matmix betwera the two virinal wajate by tho matricea appropriato to the two drift epaces to obtain the desired trancior matrix。

If \bar{x} and \bar{x}^{4} a are the mascimum displacement and alope ent

Thus 0 cormeaponds to motation of pointer on the editpee about the minipser center and the matrix provides the specified tramerommitiono We have determined the mont general tranafer matnix which cargita one upright ellipse imto mother upright ollipge; the paranetare d and x gre doterminea by the ollipoes. $x t$ whould be noted that M, the ratio of waint widthe, diffexg from the magnification (whiteh is

 firct image of the somece, n=2 corposponds to the secomd image, ood.

If $T_{i, j}$ is the tramster matrix that takes the upright
 knowing the location and width of the quivalemt (yixthal) waint
that would produce the observed ellipse at x by a pure dxoift x d is the distance from z to the virtual waist and \bar{x} is the maximum displacement at this waist, then

$$
\begin{align*}
& d=\frac{x_{1} \lambda^{2} 21^{x} 1^{2}+x_{1} 2^{x} 22^{x} 1^{2}}{x_{2}^{2} \lambda^{x_{1}}} \tag{}\\
& \text { and } \quad x^{2}=\frac{x_{1}^{2} x_{1}, 2}{T_{21^{2} x^{2}+T_{22^{2}}^{2} 1^{2}}} \tag{x-12}
\end{align*}
$$

Note that $d=0$ if $x^{2}=-X_{11} X_{21} / X_{12} 2^{2} 2^{\circ}$

D. Dispersive Systems

If we now broaden our attention to include beams having a spread in momenta about the design momentum, p_{0} and dispersive systems, then it is convenient to abandon the 2×2 tramsfer matrices in favor of $3 x 3$ transfex matrices operating on the column vector $(X)=\left(\begin{array}{c}x \\ x^{\prime} \\ \Delta\end{array}\right)$, where $\Delta \equiv\left(p-p_{0}\right) / p$. whe bottom row of a $3 x 3$ tranafer matrix is the same as the bothom row of the unit matrix, aince the momentum of a single particle is not changed by any of tho beam elements considered in this papex (of courso, we exclude those particles which are lost by collision with a wall)。 Xf there are no bending magnets in the beam syatem, the right-hand column $\frac{1}{}$ a the same as the right-hand colum of the unit matrix (in this case, there is no advantage in the 3×3 matrices over the 2×2 matrices) For $-\bar{\Delta} \leq \Delta \leq \bar{\Delta}$, the maximum displacement and slope at any point are increased by the dispersive terms $\left|T_{13}\right| \bar{\Delta}$ and $\left|T_{23}\right| \vec{\Delta}, ~ r e s p e c t i v e l y, ~$ where $\mathbb{T}_{i j}$ is the 3×3 transfex matrix to the point in questiono

It is obvious that the $3 x 3$ transfer matrix also has a determinant of unity, The third column of the matrix provides all the needed information about the first-order dispersive properties of the system. The third column of a transfer matrix for quadrupole magnet is the same as that of the unit matrix.

E. Circular Apertures

Provided that all the apertures encountered by the beam are rectangular, we may separate the occupied region in x, y, x_{0} 。 y^{\prime} space into independent products of regions in $x-x^{\prime}$ space and in $y-y^{\prime}$ space. $x f$ the beam is bounded at any point by a circular aperture (as is frequently the case when beam pipes are involved) then we may no longex make the separation into two independent bounding tigures. We now introduce a model for the four dimensional space which corresponds to a double waist and is very useful for comparing the effects of various types of aberrationa.

Let $X_{i j}$ be the transfer matrix in the x_{i} plane between z_{i} and z, with $U_{i j}$ the corresponding transfer matrix for the y plane All the trajectories that lie within the hyperellipsoid at z_{1} defined by $\left.\left(\frac{x_{1}}{\frac{R}{R_{11}}}\right)^{2} \cdot \frac{x_{1}}{\frac{x_{1}}{T_{12}}}\right)^{2} \cdot\left(\frac{y_{1}}{\frac{R}{U_{11}}}\right)^{2}+\left(\frac{y_{1}}{\frac{R}{U_{12}}}\right)^{2}=1$
lie within a circular aperture of radius R in the $x-y$ plane at Z. In parametric form, the equation for this hyperellispsoid in $x_{1}=\bar{x}_{1} \cos \phi \cos \theta, \quad x_{1}^{\prime}=\bar{x}_{1}^{\prime} \cos \varnothing \sin \theta_{,}$ $y_{\lambda}=\bar{y}_{\lambda} \sin \phi \cos \psi, \quad y_{l}{ }^{\prime}=\bar{y}_{\lambda}{ }^{\prime} \sin \emptyset \sin \psi$. (110.48) with $\bar{x}_{1}=R / T_{11}$, etc., and $0 \leq \phi<\pi / 2,0 \leq \theta<2 \pi$, and $0 \leq \psi<2 \pi$.

Fo Linear properties of Specific Beam liements

To conclude thio discumsion and roviev af the pertinont linear properties of bermetransport syatems and their constituont elementa, the Aollowing list givea the propentiem of each fypo of alement treated. For the calculatiome for each alement discunama below, we will need
(a) the independent parametera that determine the aptical properties.
(b) several useful derived parameteme
(c) the equations of motion (ioqog the trajectory equations),
(d) the 3x3 tranefer matrices irn ach plane:

1. Drift Space

The single parameter describing the optical properties of adrift apace is the length of the drift space, Le Additional parameters pertinent to the drift space are those which determine its aperture: width and height for rectangular crossmection or radius for circular crosemsection. A fictitious element to bo used later in this paper is the drift apace in either x alome ar y alone; inclusion of such elementa facilitates the txeatment of beams in which waist in the x plane does mot coincide with waist in the y plane.

The equations of motion in a drift space ane $x^{90}=0$ and $y^{\prime \prime}=0$. The trangfer matrix for oither plane ins

$$
X=\left(\begin{array}{lll}
1 & 1 & 0 \tag{C=15}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

2. Quadrupole Marnet

The necessaxy parameters are the effective length, L_{0} (which is generally longer than the physical length, owing to the existence of fringing fields), and the field gradient. To Three derived quantities are

$$
\begin{aligned}
& \phi=\frac{e}{p_{0} c} \frac{\partial B}{\partial y}=\frac{e^{\partial B}}{p_{0} c} \frac{\partial x}{\partial x}=\frac{c}{p_{O}^{c}} G=\frac{G}{|B \rho|} \\
& k=\phi^{0 / B} \\
& \text { and } \theta=k L=\phi^{1 / 2} L
\end{aligned}
$$

By convention both G and ϕ are taken as positive when the lemes is convergent in the x m plane。 A quadrupole lens that ias convergent in the y^{-z} plane posseases imaginary values of k and o.

The equations of motion in a quadrupole are, to lowest order, $x^{n \prime}+\phi x=0$ and $y^{\prime \prime}-\phi y=0$ (han") the gemexal solutions $\operatorname{arc} x=x_{0} \cos \left[k\left(z-z_{0}\right)\right]+\left(x_{0} / k\right) \sin \left[k\left(z_{0}-z_{0}\right)\right]$
and $y=y_{0} \cosh \left[k\left(z-2 z_{0}\right)^{\circ}\right]+\left(y_{0} 1 / k\right) \sinh \left[k\left(x \cos \alpha_{0}\right)\right]_{0}$
The case $G<0$ is treated by eliminating all imaginary quantities by use of the relations $\cos (i \theta) \equiv \cosh (\theta), \sin (i \theta) \equiv i \sinh (\theta)$, etco. which merely interchanges the x and y matrices and chamges the sign of i. The trangfer matrices are

$$
\begin{align*}
& \left(\begin{array}{ccc}
\cos \theta & (1 / k) & \sin \theta \\
0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right) \text { (x plane) } \tag{0}\\
& \left(\begin{array}{ccc}
\cosh \theta & (1 / k) \sinh \theta & 0 \\
k \sinh \theta & \cosh \theta & 0 \\
0 & 0 & 1
\end{array}\right) \text { (y phane) } \tag{x-21}
\end{align*}
$$

3. Bending Magnet

We first consider a bend in the $x-z$ plane in the x direction. The significance of the five independent parameters describing a bending magnet is more easily seen by reference to Figo lo Bach of the parameters is positiveg as shown The parameters are
(a) L, the length of the magnet, measured along the perpendiculax to the entrance edge of the magnet at the point where the optic axis intersects that edge;
(b) ${ }^{\prime}$, the angle between the emtrance and exit edges to the magnet, which is positive when the region of magnetic field increases in the negative x direction:
(c) α, the entrance angle (the angle between the optic axis and the normal to the entrance face), which is positive when particles with $x<0$ pass through a longer field region than do those with $x>0$;
(d) The field strength, B, which is positive when the bend is in the negative x direction (for a positively charged particle);
(e) n, the field exponent, which is measured orthogonal to the optic axis $\left(n \equiv-\frac{\rho}{B} \frac{\partial B}{\partial \rho}\right)$.

These parameters have been chosen as the primary parameters because each is independent of the others, with the exception of n, which depends upon the location of the optic axiso

Derived parameters include:
(a) ρ, the radius of curvatures which is positive when B is positive;
(b) θ, the angle of bend, which satisfies $\theta=\alpha+\beta \infty \gamma$
(c) β, the exit angle, defined in much the same way as α :
-21-

MU-30403

Fig. l. Parameters of a bending Magnet.
$\dot{x}_{0} . \theta^{\beta} \beta$ is positive when excess field is experienced by a particlo with $x<0 . \beta$ is derived from the formula

$$
\sin \beta=\frac{L}{\rho} \cos \gamma+\sin (\gamma-\alpha)
$$

x_{n} addition to the focusing in the interior of the bending magnet, there may be focuaing by the fringing field at the edge, which acts as a thin lens if the optic axis is not orthogonal to the magnet face. The cause of this focusing in the $x-z$ plane (orthogonal to the magnetic field) at the edge is obviouss a particle displaced in x experiences either a greater or a lesser amount of bending field than needed to turn through the angle θ. Thinmens focusing in the vertical plane occurs because the field lines "bulge" at the edge; if the edge is not orthogonal to the optic axis there is a component of field in the x direction which produces a force in the y direction on particle traveling essentially in the z dicection. With the sign conventions given above for α and β, the tramsfer matrices for the edges ares
$\mathrm{x}-\mathrm{z}$ plane
in: $\left(\begin{array}{lll}1 & 0 & 0 \\ (\tan \alpha) / \rho & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
out: $\left(\begin{array}{lll}1 & 0 & 0 \\ (\tan \beta) / \rho & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
The equations of motion in the central potion of the
magnet are

$$
\begin{equation*}
\frac{d^{2} x}{d \theta^{2}}+(1-n) x=\rho \Delta \quad, \quad \frac{d^{2} y}{d \theta^{2}}+n y=0 \tag{x-25}
\end{equation*}
$$

The general solution of the x equation is

What for the y equation $i s y=y_{o} \cos \left(\nu_{y} \theta\right)+\frac{y_{o}^{\prime}}{\nu_{y}} \sin \left(\nu_{y} \theta\right) 。(20-27)_{0}$ $\operatorname{Hex} \theta V_{K}=(1-n)^{\frac{1}{2}}, \nu_{y}=n^{\frac{1}{2}}, x_{0}{ }^{\prime} \equiv \frac{d x}{d z} \equiv \frac{1}{\rho} \frac{d x}{d \theta}$, etco.

The $x-z$ transfer matrix is

$$
\left(\begin{array}{ccc}
\cos \left(\nu_{x} \theta\right) & \frac{1 \rho 1}{\nu_{x}} \sin \left(\nu_{\alpha} \theta\right) & \rho / \nu_{x}^{\beta}[1 \\
-\frac{\nu_{x}}{|\rho|} \sin \left(\nu_{\alpha} \theta\right) & \cos \left(\nu_{\alpha} \theta\right) & \frac{1}{\gamma_{k}} \frac{\rho}{|\rho|} \sin \left(\nu_{k} \theta\right) \\
0 & 0 & 1
\end{array}\right)
$$

The $y-z$ transfer matrix is

$$
\left(\begin{array}{ccc}
\cos \left(\nu_{y} \theta\right) & \frac{|\rho|}{\rho_{y}} \sin \left(\nu_{y} \theta\right) & 0 \tag{5}\\
=\frac{\nu_{y}}{|\rho|} \sin \left(\nu_{y} \theta\right) & \cos \left(\nu_{y} \theta\right) & 0 \\
0 & 0 & 1
\end{array}\right)
$$

which passes to the limit

$$
\left(\begin{array}{ccc}
1 & \rho 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad\left({ }_{j} \times \infty\right) \quad \text { as } \quad \text { a goes to zero 。 }
$$

The total transfer matrix is the properly ordered product of the exit-edge matrix, the matrix for the interior and the matrix for the entrance edge.

If the entire magnet is physically rotated 180° about the incoming optic axis ($\alpha, \beta,{ }^{\prime}, B_{0}$, and ρ axe reversed in sign) then the first and second columns of the transfer matrix are unchanged, whereas the third column is reversed in sign.

If the bending magnet is oriented so that the bend is in the $y-z$ plane, then the above relationships all hold with x and y interchanged everywhere.

4. Solenoid Magnet

Two parameters are required to doscribe the linearo properties of a solenoid magnet; they are the length, L, and the central magnetic field, $B_{\text {, }}$ which is axial in the magnet ${ }^{p}$ interior. Two derived quantities are of interest:

$$
\begin{aligned}
\mathrm{k} & =\mathrm{eB} / 2 p_{O} c \\
Q & =k L_{0}
\end{aligned}
$$

If the condition is imposed that the beam entering a solenoid be rotationally symmetric, the rotation induced by the axial field (which results in mixing the solutions for x and y) can be ignored. The radial equation of motion $i x^{\prime \prime}+k^{2} x=0$. The transfer matrix, which is the same in both the $x-z$ plane and tho y-m plane, is $\left(\begin{array}{ccc}\cos \theta & \frac{1}{k} \sin \theta & 0 \\ -k \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right)$.

5o Octupole Magnet
We introduce octupole magnets in the next chapter. Properly oriented octupole magnets in some instances may be adjusted to reduce the magnitude of the aberrations of a beam system of quadrupole magnets. The linear properties of an octupole magnet are the same as those for a drift space, hence the matrices are also the sume.

III QUADRUPOLE SYMMBTRX PROPERTYES AND TYE MAGNXTXC SCALAR POTENTIAL We continue to refer to the Cartesian coordinate irame used in the last chapter in which the optic axis coincides with the z axis and particles travel in the positive z direction.
A. Masnetic Field Symmotries

The ideal quadrupole field possesses several important symmetry properties. The magnetic field is antisymmetric with respect to reflection through both the $x=0$ and $y=0$ planes, and is symmetric with respect to reflection through both the $x=y$ and $x=.-y$ planes. The magnitude of the magnetic field in an ideal quadrupole lens is proportional to the radial displacement from the optic axis and is thdependent of z. The restoring force produced by the ideal quadrupole field is proportional to x in the $x-z$ plane and proportional to y in the $y-z$ plane. Such a magnetic field would be produced by an ideal magnet possessing hyperbolic cylindrical pole pieces of infinite transverse extent, infinite length, and infinite permeability which satisfy the equations $x y=a^{2} / 2$ (north poles) and $x y=-a^{2} / 2$ (south poles) where a is the radius of the inscribed circle. With this choice of polarity, positively charged particles are focused in the $y-z$ plane and defocused in the $x-z$ plane. Reversing the polarity interchanges the converging and the diverging planes.

The scalar magnetic potential appropriate to the linear fiold produced by the ideal magnet is proportional to the product $x y$ or, alternatively, proportional to $r^{2} \sin 2 \theta$, where θ is the usual angle in cylindrical coordinates $(x=x \cos \theta$, $y=r \sin \theta, z=z)$. The field produced by a magnet having pole
piecos of the ideal magnet configuration but finite in extent will contain, in addition to the linear field component, harmonic components proportional to higher powers of x and y. In addition. all the field components, including the linear component, depend upon z.

To treat real (not ideal) quadrupole magnets, we need a general expression for the magneic field.

B. The General Magnetic Pield

We first introduce a general expression for a potential giving rise to a magnetic field which possesses the previously stated symmetries, and which approximates the field produced by an ideal quadrupole magnet; this field will be referred to as a "pure quadrupole magnetic field." We then consider field components that may be introduced by failure to achieve the assumed symmetries exactly.

1. General Magnetic Scalar Potential

In terms of cylindrical coordinates, we choose the following general expansion of the scalar magnetic potential V : $V(r, \theta, z)=\sum_{m=n}^{\infty} \int_{n=0}^{\infty} v^{m}\left\{-\mu_{m n}(z) \sin n \theta-y_{m n}(z) \cos n \theta\right\}$

This expression is chosen because the field is obviously periodic in θ with period $2 n$, is dominated near the z axis by a term in r^{2} that approximates the ideal field, and is nearly independent of z except in the regions near a magnet edge.

Applying Laplace's equation,

$$
V=\frac{1}{x} \frac{\partial}{\partial r}\left(x \frac{\partial V}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} V}{\partial \theta^{2}}+\frac{\partial^{2} V}{\partial s^{2}}=0
$$

 As r approaches zero, terms in the above expression with $m=0$ or $m=\lambda$ increase without bound except for those terms for which $m=n_{0}$ nence $H_{0, n} \equiv V_{O_{1} n} \equiv 0$ for $n>0$ and $\mathcal{A l}_{1, n} \equiv \gamma_{1, n} \equiv 0$ for $n>1$. Since Laplace's equation must be satisfied at all values of r, θ, and z, we have
$\mu_{m-2, n}^{\prime \prime}+\left(m^{2}-n^{2}\right) / h_{n, n}=0$ for $n=0,1,2, \cdots$
$V_{m-2, n}^{\prime \prime}+\left(m^{2}-n^{2}\right) V_{m, n}=0$ for $n=0,1,2, \cdots$ -

For each n, the lowest-order nonvanishing term which appears
is that for $m=n$, yielding the following general expression for $V 8$
$V(x, \theta, z)=$
$\sum_{n=0}^{\infty} \sum_{n=0}^{\infty} \frac{n!r^{2 k}}{k!(n+k)!(-4)^{n}}\left\{\sin n \theta \mu n_{n}(z)+\cos n \theta p_{n}(z)\right\}^{(2 k)}$
Here $f^{(2 k)}$ denotes the $2 k t h$ derivative of f with respect to \mathbb{Z}_{8} $f^{(O)} E f$, and $A A_{n}$ and D_{n} are functions of z which must be chosen to fit the boundary conditions and the symmetries of the problem.

2. Pure Quadrupole Magnetic Scalar Potential

We'rixgt apply eq. $(3-3)$ to the pure quadrupole field. All terms in cos $n \theta$ must vanish owing to the required antisymmetry for reflection through the $x=0$ plane. Reflection antisymmetry through the $y=0$ plane rules out all terms in sines of odd multiples of θ : Finally, the required symmetry for reflection through either th $x=y$ or the $x=-y$ planes rules out all terms except those
containing a factor $\sin [2(2 \lambda+1) \theta]$ with $\ell=1,2,3, \cdots \infty$, The general expansion of the pure quadrupole field is

$$
\begin{align*}
V(r, \theta, z)= & -r^{2} \sin 20\left\{\mu_{2}-\frac{r^{2}}{12} \mu_{3}^{\prime \prime}+\frac{r^{4}}{382} \mu_{2}^{(4)} \cdots \cdots\right\} \\
& \cdots r^{6} \sin 60\left\{\mu_{6}-\frac{r^{2}}{28} \mu_{6}^{\prime \prime}+\cdots \cdots\right\} \\
& -r^{10} \sin 100\left\{\mu_{10}-\cdots\right. \tag{0110-4}
\end{align*}
$$

Only the leading term of this expression would appear in the potential of an ideal quadrupole magnet of infinite extent; this term would be independent of z. The higherorder terms in the coefficient of $\sin 2 \theta$ appear as a consequence of the finite oxtent of the magnet in the z direction. The higher harmonics in θ are induced by truncating the joles of an ideal magnet in the x and y direction. An object of much effort has been the design of magnet pole-face contour and coil placement so that these higher harmonics are minimized. Quadrupole magnets have been constructed for which the contribution to the magnetic field due to the higher harmonics is less the 0.5% of the contribution due to tho $\sin 2 \theta$ term at maximum radius. 10

Dropping terms that do not contribute to the trajectory equations when trucated to third order in the displacements and slopes, and expressing in terms of x, y, and z, we have
$\frac{e}{p_{0} c} V(x, y, z)=-x y d p(z)+\frac{1}{12}\left(x^{2}+y^{2}\right) x y q^{\prime \prime}(z)$
where $\hat{P}=\mathrm{e} / \mu_{2}(z) / p_{0} \mathrm{c}$.

3. The Octupole Field Component

It may be desireable to consider quadrupole magnets that possess all symmetries listed above except for reflection through the $x=y$ and $x=-y$ planes. Such is the case in quadrupole magnets that have been shimmed in such a manner that the reflection antisymmotries are preserved, and in octupole magnets oxiented so that the $x=0 . y=0, x=y$, and $x=-y$ planes are planes of reflection antim symmetry. The terms in the scalar potential possessing antisymmetry about each of the four planes mentioned are those in $\sin 4 k \theta$, $k=1,2,3, \cdots$. Xncluding these terms yields the scalar potential $\frac{e}{p_{0} c} V=-x y \phi(z)+\frac{1}{12} x y\left(x^{2}+y^{2}\right) \phi^{\prime \prime}(\pi)-\frac{1}{3} x y\left(x^{2} \cdots y^{2}\right) \psi(z)+\cdots ;$ where $U(z) \equiv 12 \frac{e}{p_{0} c} \mu_{p_{r}}(z)$.

4. Failuxe to Achieve Quadrupole Symmetries

Finally, real beam systems may fail to achieve the above symmetries owing to nonaligment, rotation, etc. Cherefore, we . add several terms to the scalar potential which will be used later to calculate the tolerances permitted in the construction and placement of the constituent magnets in particular beam system. Truncating to fourth order, we have

$$
\begin{aligned}
V(r, \theta, 2)= & -\mu_{0}(z)-r \sin \theta\left[\mu_{1}-\frac{r^{2}}{8} \mu_{1}^{\prime \prime}\right]-r \cos \theta\left[\nu_{1}-\frac{r^{2 \pi}}{8} \nu_{1}^{\prime \prime}\right] \\
& -r^{2} \sin 2 \theta\left[\mu_{2}-\frac{r^{2}}{12} \mu_{4}^{\prime \prime}\right]-r^{2} \cos 2 \theta\left[\nu_{2}-\frac{r^{2}}{12} \nu_{2}^{11}\right] \\
& -r^{3} \mu_{3} \sin 3 \theta-r^{3} \nu_{3} \cos 3 \theta-r^{4} \mu_{4} \sin 4 \theta-r^{4} \nu_{4} \cos 4 \theta(x x \cos)
\end{aligned}
$$

In terms of x and y,.

$$
\begin{aligned}
& \frac{e}{p_{0} c} V(x, y, z)=-x y \phi(z)+\frac{1}{12} x y\left(x^{2}+y^{2}\right) \phi^{\prime \prime}(z)-\frac{1}{3} x y\left(x^{2}-y^{2}\right) \psi(z) \\
&-x y \delta \phi(z)-y \ell(z)-x \nu(z)-\left(x^{2}-y^{2}\right) \lambda(z)+\Omega(z) \\
&(\pi-8)
\end{aligned}
$$

These extra terms are assumed to be unwanted and therefore small; in particular, the following assumptions have been made. The coefficients μ_{s}, ν_{2}, and ν_{3} are assumed to be smaller by at least on order of magnitude than the coefficient μ_{20}. The terms in sin 3θ and $\cos 3 \theta$ (sextuple terms) are not the result of a simple displacement or rotation; they are treated separately as field errors in the same way as the 60 and 100 terms are treated. The term in $\cos 4 \theta$ is also treated as a field error, since it does not satisfy the basic quadrupole antisymmetry. However, the sin 4θ term is treated with the pure quadrupole field terms, since the $\sin 4 \theta$ term may be adjusted in some instances to reduce objection able aberrations due to the 2θ terms. The coefficients Ω, ν_{1}. and μ_{1}, are assumed to be smaller by two orders of magnitude than \mathcal{H}_{2}, which is consistent with the assumption made throughout this paper that the $r^{2} \sin 2 \theta$ term represents the dominant field component.
As an example of how these terms may enter, consider the field produced by a quadrupole; the potential is given by Eq. ($I X-5$) with x and y referred to the magnet's axis of symmetry. If this magnet is now translated so that its center axis is the line $x=\delta x$ and $y=\mathcal{S} y$, and if the magnet is rotated about the optic axis by an angle ω (positive when the magnet is rotated in the direction of increasing θ), the added terms in the scalar potential take the values $\mu=\delta x \cdot \phi(z), \nu=\delta y \cdot \phi(z)$,

$$
\begin{equation*}
\delta \phi=\phi(z)[\cos 2 \omega-1], \lambda=\frac{1}{2} \phi(z) \sin 2 \omega \tag{III-9}
\end{equation*}
$$

Here δ_{x}, δ_{y}, and ω are assumed to be an order of magnitude smaller
than the displacements and slopes of trajectories to be considered. The term in St gives rise to a uniform a componemt of the field which can occur as the result of tilling a particular magnet so that the axis of symmetry of the magnet ceases to be parallel with the optic axis.

C. Symmetry Restrictions on Aberrations

Returning to a field which possessea reflection antigym metry about the planes $x=0$ and $y=0$, let us consider what types of terms may be present in the expressions giving the displacements and slopes at any chosen point in terms of the displacements and slopes at some initial point (the object). Since a linear relationm ship is assumed to dominate (this is the lens assumption), we are justified in expanding x, y, x^{η}, and $y^{\prime \prime}$ at an arbitxary value of z. in a power gecies in $x_{0}, x_{0}{ }^{\prime}, y_{0}, y_{0}^{\prime}$ and Δ taken at z_{0} (tho inditial point).

Since the trajectories cannot depend upon the coordinate system in which they are represented, we find that all even-order terms in the displacements and slopes are absent in the power series as a consquence of the reflection antisymmetry. The same reasoming demonstrates that the expansion of x cannot contain any termas that are odd in y_{o} or y_{o}^{\prime} nor can the expansion of y contain any terme that are odd in x_{0} or x_{0} '. Thus the following terms are the only terms, to third order, which may appear in the power series expansions; these terms are grouped according to aberration type

Aberration Type
generalized dispersion

generalized spherical
(aperture)
aberration
generalized coma
generalized astigmatism
generalized distortion
Linear terms

$$
x_{0} x_{0}{ }^{2}, x_{0} y_{0}^{\prime 2}, y_{0} x_{0}^{\prime} y_{0} \quad y_{0} y_{0}^{, 2}, y_{0} x_{0}^{\prime 2}, x_{0} x_{0}^{\prime} y_{0}^{\prime}
$$

$$
x_{0}^{2} x_{0}^{\prime}, y_{0}^{2} x_{0}^{\prime}, x_{0} y_{0} y_{0}^{\prime} \quad y_{0}^{2} y_{0}^{\prime}, x_{0}^{2} y_{0}^{\prime}, x_{0} y_{0} x_{0}^{\prime}
$$

$$
x_{0}^{3} \cdot x_{0} y_{0}^{2}
$$

$$
y_{0}^{3}, y_{0} x_{0}^{2}
$$

$$
\begin{equation*}
x_{0}, \quad x_{0}{ }^{\prime} \tag{trx}
\end{equation*}
$$

$$
y_{0}, \quad y_{0}{ }^{\theta}
$$

$$
y_{0}{ }^{3}, y_{0}{ }^{1}, x_{0}{ }^{2}
$$

Thus there are many more terms to be considered than in light optics, where complete rotational symmetry rules out all thirdm order terms except seven corresponding to the five seidel coefficients and two chromatic aberration terms, the seven classic optical aberrations. Although a total of 40 terms appears in third order for x, x^{\prime}, y, and $y^{\prime \prime}$ (excluding dispergion terms), only 16 of these coefficients are independent, as is shown in Ch. VX. The classical aberrations of light optics are described in most textbooks on optics, such as that by Jenkins and White. ${ }^{3}$

The expressions for the coefficients to the 40 aberration terms are derived in Ch. Vo The equations forcthe coefficients, in terms of the symbolic notation introduced in Ch. V. are listed in Appendix I .

The significance of the aberration coefficients is discussed in Ch. VIX。

IV. THE RQUATIONS OF MOTXON

In preparation for derivations presented in Ch. V, wa meed certairi results which are obtained from the following derivations of the equations of motion, A single charged particle of mass mand charge e, undex the influence of magnetic field, $\vec{B}_{\text {, }}$ possesses the following Lagrangian, L, and Kamiltonian, H.

$$
\begin{align*}
& L=\frac{1}{2} m v^{2}+\frac{e}{c} \hat{A} \circ \vec{v} \tag{IV-1}\\
& H=\frac{1}{2 m}\left[D-\frac{e}{G}\right]^{2} \tag{IV-2}\\
& \text { where } \vec{v}=\vec{r}=(\dot{K}, \dot{y}, \dot{z}) \text { and } \vec{B}=\nabla X, \vec{A}
\end{align*}
$$

As long as the only force the particle experiences is due to the field, B, the velocity of the particle will be a constant of the motion: the nonrelativistic equations of motion that would be derived from either the Lagrangian or the Hamiltonian given above may be extended to relativistic particles by merely replacing the mass m by the so-called "xelativistic transverse mass," $m_{x}=m\left(\operatorname{lov} v^{2} / c^{2}\right)^{-\frac{1}{2}}$. Through the rest of this paper, the symbol m will always refer to the transverse mass. The variational principle known as Hamilton's principle from which both LaGrange's equations and Hamilton's canonical equations of motion are derived is generally stated in terms of t as the variable of integration:

$$
\begin{equation*}
\delta \int_{t_{1}}^{t_{2}} L d t \equiv \delta \int_{\vec{r}_{t_{1}}}^{\overrightarrow{\vec{r}_{2}}} \overrightarrow{\vec{p}_{3}} \cdot d \vec{p}-\delta \int_{t_{1}}^{t_{2}} H d t \equiv 0 \tag{IV-3}
\end{equation*}
$$

To obtain the trajectory equations, we replace t by z, the variable measuring distance along the optic axis, as the independent vardable。 For all the orbits of interest, the transformation from to t is singlenvalued, with a well-defined derivative everywhere. We may
then rewrite Hamilton's principle in terms of as the variable of integration From this point primes refer to differentiation with respect to z, and dots to differentiation with respect to times

$$
\begin{align*}
& f \equiv \frac{d f}{d z} \quad, \quad f=\frac{d f}{d t} \text {. We now proceed: } \\
& \delta \int_{t_{1}}^{t_{2}} t_{0} d t=\delta \int_{z_{1}}^{z_{z}} \frac{d t}{d z} d x \equiv \delta \int_{z_{1}}^{x_{2}} \mathcal{L}_{2} d z_{0}=\iint_{x_{2}}^{z_{2}}\left[x^{\prime} p_{x}+y^{\prime} p_{y}-t^{\prime} H-\alpha x\right] d z=0(x v-4) \\
& O=\frac{1}{2} \frac{m}{x^{\prime}}\left(1+x^{2}+y^{\prime 2}\right)+\frac{e}{c}\left(x^{\prime} A_{x}+y^{\prime} A_{y}+A_{z}\right)_{o g} \tag{IV-5}\\
& y=-p_{x}
\end{align*}
$$

Having made this transformation, we follow the same procedure, which reduces this variational principle to the equations of motion in the case of the standard Lagrangian or Hamiltonian, yielding

$$
\begin{aligned}
& \frac{d}{d x} \frac{\partial y}{\partial x^{\prime}}-\frac{\partial d}{\partial x}=0 \quad, \quad \frac{d}{d x} \frac{\partial y^{\prime}}{\partial y^{\prime}}-\frac{\partial J^{\prime}}{\partial y}=0, \quad \frac{d}{d x} \frac{\partial d}{\partial c^{\prime}}-\frac{\partial f}{\partial t}=0 \\
& x^{\prime}=\frac{\partial f^{\prime}}{\partial p^{\prime}}, \quad P_{x}^{\prime}=-\frac{\partial x^{6}}{\partial x},
\end{aligned}
$$

In terms of z as the independent variable, the canonical momenta are

$$
\begin{align*}
& P_{x}=\frac{\partial L_{0}}{\partial x^{\prime}}=m v x^{\prime}\left(1+x^{12}+y^{\prime 2}\right)^{-\frac{1}{2}}+\frac{e}{c} A_{x} \\
& P_{y}=\frac{\partial L_{0}}{\partial y^{\prime}}=m v y^{\prime}\left(1+x^{\prime 3}+y^{\prime 2}\right)^{-\frac{1}{2}}+\frac{e}{c} A_{y} \tag{IV-7}\\
& P_{t}=-\frac{1}{2} m v^{2} \sigma-E
\end{align*}
$$

Two easily derived relationships are

$$
\begin{align*}
& v^{2}=\dot{2}^{2}\left(1+x^{2}+y^{2}\right) \tag{IV-8}\\
& m \dot{Z}=\left[m^{2} v^{2}-\left(p_{x}=\frac{e}{c} A_{x}\right)^{2}-\left(p_{y}-\frac{e}{c} A_{y}\right)^{2}\right]^{\frac{b}{2}} \tag{IV-9}
\end{align*}
$$

In terms of the canonical sot of coordinates and momenta, the
Hamiltonian becomes

$$
\begin{align*}
& f=x^{\prime} p_{x}+y^{\prime} p_{y}-t^{\prime} E-2 \tag{xV-10}\\
& 2 f=-\left[2 m E-\left(P_{x}-\frac{e}{c} A_{x}\right)^{2}-\left(p_{y}-\frac{e}{c} A_{y}\right)^{2}\right]^{\frac{1}{x}}-\frac{e}{c} A_{x}=-P_{z} \tag{xV-11}
\end{align*}
$$

Applying the modified lamilton's equations for x (IV-7), we obtain

$$
\begin{equation*}
\frac{\partial \hat{f}}{\partial P_{x}}=x^{\prime}=\left(P_{x}-\frac{e}{c} p_{x}\right) / m \dot{z} \tag{IV-12}
\end{equation*}
$$

$y^{\prime}=\left(P_{y}-\frac{e}{c} A_{y}\right) / m \dot{z}$,
$t_{0}^{\prime}=m\left[2 m E-\left(P_{x}-\frac{e}{c} A_{x}\right)^{2}-\left(P_{r}-\frac{e}{6} A_{y}\right)^{2}\right]^{-\frac{1}{2}}$,
and $E^{\prime}=-\frac{\partial \partial}{\partial t}=0$
Thus $P_{x}^{\prime}=-\frac{\partial \psi}{\partial x}=\frac{c}{6}\left[\left(Q_{x}-\frac{e}{c} A_{x}\right) \frac{\partial A_{x}}{\partial x}+\left(P_{y}-\frac{e}{c} A_{y} \frac{\partial A_{y}}{\partial y}\right] / m \div+\frac{e}{c} \frac{\partial A_{z}}{\partial x}\right.$,
the lather reducing to

and then to
$\left(1+y^{2}\right) x^{\prime \prime}-x^{\prime} y^{\prime} y^{\prime \prime}=\frac{G\left(P_{s}-\frac{e}{c} A_{x}\right) \frac{\partial A_{x}}{\partial x}+\left(P_{x} \frac{e}{-} \frac{\partial A_{y}}{\partial y}\right)}{m \dot{z}}+\frac{e}{6} \frac{\partial A_{z}}{\partial x}$.
Using $\vec{B}=\nabla x \vec{A} \quad$ and $\quad \frac{d A}{d z}=\frac{\partial A}{\partial z} x+x^{\prime} \frac{\partial A_{x}}{\partial x}+y^{\prime} \frac{\partial A}{\partial y} y$.
we obtain $\left(1+y^{\prime 2}\right) x^{\prime \prime}-x^{\prime} y^{\prime} y^{\prime \prime}=\frac{e}{p c}\left(\lambda+x^{t^{2}}+y^{t^{2}}\right)^{2 / 2 / 2}\left(\cdots B_{y}+y^{\prime} B_{z}\right)$
($x \vee \sim 1.7$)

Solving for $x^{\prime \prime}$ and then $y^{\prime \prime}$, we obtain
$x^{\prime \prime}=\frac{e}{p c}\left(1+x^{Q^{2}+y^{0}}\right)^{\frac{1}{3}}\left\{\ldots\left(x+x^{2}\right) B_{y}+x^{2} y^{8} B_{x}+y^{2} B B_{z}\right\}$
$y^{\prime \prime}=\frac{e}{p c}\left(1+x^{\prime 2}+y^{2}\right)^{\frac{1}{2}}\left\{-\left(1+y^{0}\right) B_{x}+x^{8} y^{\prime} B_{y}+x^{1} B_{z}\right\}$ 。
$(x V m 19)$

These are the exact trajectory equations for a particle undex the influence of a magnetic field, \vec{B}. What they axe identical to the equations obtained from iinst principles confirms the correctness of the procedure and the choice of new canonical variables.

The expansions for the magnetic field components, in terms
of the ecalar magnetic potential (xxas) ane

With the insertion of these fields and the trucation of torms of fourth order and higher (fourth ordex of smallness in x, y, x°, y^{8}). we abtain the following equations of motion:

$$
x^{\prime \prime}+\phi x=-3 x x^{\prime 2} \phi / 2-x y^{2} \phi / 2+y x^{9} y^{\circ} \phi+x y y^{9} \phi^{\prime}+x y^{2} \phi^{\prime \prime} / 4+x^{3} \phi 19 / 12
$$

$$
\begin{equation*}
\left.\cdots x^{3} \psi / 3+3 y y^{2} \psi-x\right\}-\mu+2 y \lambda+\cdots \tag{IV-2I}
\end{equation*}
$$

$$
\begin{equation*}
-y^{3} \psi / 3+x^{2} y \psi+y^{\delta} \psi^{2}+y+2 x \lambda+00 \tag{XV-22}
\end{equation*}
$$

With respect to the terme in fty, 58 , and \mathcal{A}, the following assumptions have been made:
(a) $\mathcal{H} D$; and \mathcal{H} are piecewise constant functions in this approximation;
(b) $r^{2} \mu^{\prime \prime}, x^{2} \mu^{\prime \prime}, r^{2} j^{\prime \prime}$, and $x^{\prime \prime} g^{\circ}$ are smaller than third order and may be dropped;
(c) \mathcal{A}, \downarrow, and rd are of higher order in "smallness" than rop which gives rise to tho main fieldo In V 。 C 。 wo discuss further the relative oxders of magnitude of the terms in the equations of motion. These assumptions restrict the application of these equations anly to situations where the displacement or rotation of any quadrupole magnet from the correct alignment is small compared with typical displacements and slopes of the trajectories. Any fluttar in $\mu, \forall, \quad \alpha \lambda$ is assumed to average to zero to third order

$$
\begin{aligned}
& \frac{e}{p_{0} c} x_{x}=\frac{-e d V}{p_{0} c d x}=y \phi-x^{2} y g^{1} / 4-y^{3} \phi^{\prime \prime} / 12+x^{2} y V-y y^{3} \psi / 3+y d \phi+y+2 x \lambda+00 .
\end{aligned}
$$

$$
\begin{align*}
& \frac{e}{P_{0}^{C}} B_{z}=x y g^{0}+\Omega^{0}+\infty 0 . \tag{XV=-20}
\end{align*}
$$

in the parameters of smallnesso
For pure quadrupole fields, the equations of motion are

$$
\begin{align*}
x^{\prime \prime}+\phi x= & -3 x x^{2} \phi / 2-x y^{\prime} \phi / 2+y x^{\prime} y^{\prime} \phi+x y y^{\prime} \phi^{\prime} \\
& +x y^{2} \phi^{\prime \prime} / 4+x^{3} \phi^{\prime \prime} / 22+0(5) \tag{IV-23}\\
y^{\prime \prime}-\phi y= & 3 y y^{\prime 2} \phi / 2+y x^{\prime 2} \phi / 2-x x^{\prime} y^{\prime} \phi-x y x^{\prime} \phi y^{\prime} \\
& \operatorname{m}^{2} y \phi^{\prime} / 4-y^{3} \phi^{\prime \prime} / 12+0(5) \tag{IV-24}
\end{align*}
$$

Xn the next chapter we solve these equations by an iterative method to obtain expressions for the coefficients of aberration.

V. THE CALCULATION OF THE COEPPICXENSS OF ABERRATION

In order to separate most clearly and to characterize the different aberrations in a beam system, it will be our purpose to obtain the coefficients in the power-series expansions of the displacements and slopes of a trajectory at some arbitrary value of z (such as the image) as functions of the initial (object plane) displacements and slopes. We further would like to separate aberrations that depend upon the shape of the fringing field from those which appear even in an ideal model magnet with infinitely sharp fxinging fields. Finally, we shall examine the effect of misalignments, rotations, and other defects in the constituent magnets.

A. Separation of Equations

We first turn our attention to solving the equations of motion for particles in a pure quadrupole field [Eqs. (IV-23) and (IV-24)]. These equations are expressed in terms of the function $\phi(2)$, which is proportional to the radial field gradient along the z axis. Applying the method of successive approximations to the equations in x, we obtain three equations, one entirely linear, one containing all the dispersive and fringing field effects, and the third containing the aberrations that are cubic in the initial slopes and displacements. Only the $x-z$ equations will be treated explicitly here, as the corresponding equations in y can be obtained from them by interchanging x and y and changing the sign of ϕ 。 Let $x=x_{S}+x_{c}+x^{a}$, where

$$
\begin{align*}
& x_{s}^{\prime \prime}+\phi_{S} x_{s}=0 \tag{V-1}\\
& x_{c}^{\prime \prime}+\phi_{S} x_{c}=-\phi_{c}\left(x_{s}+x_{c}\right)+\Delta\left(\varphi_{s}+\phi_{c}\right)\left(x_{s}+x_{c}\right) \tag{V-2}
\end{align*}
$$

$$
\begin{equation*}
x^{a^{\prime \prime}}+\left(\phi_{s}+\phi_{c}\right) x^{a}=-3 x x^{\prime} \phi^{2} / 2-x y^{2} \phi / 2+y x^{\prime} y^{\prime} \phi+x y y^{\prime} \phi^{\prime}+x y^{2} \phi^{\prime \prime} / 4+x^{3} \phi^{\prime \prime} / 12+{ }^{\circ}{ }_{0} \tag{V-3}
\end{equation*}
$$

$\Delta^{\prime}=\left(p^{\sim} p_{0}\right) / p$ and ϕ is given by $(x-16)$.
The gradient function $\phi(z)$ has been split into two parts $\phi(z)=\phi_{S}(z)+\dot{\phi}_{c}(z) ;$
$\phi_{s}\left(\right.$ "phi simple") is a piecewise constant-step-functioni ϕ_{C}
("phi complicated") describes the field behavior in the fringing field regions. The function ϕ_{c}, is assumed to vanish well inside a magnet as well as in the field-free regions. For reasons to be given later $\left(V_{0} D_{0}\right)$, the locations of the discontinuities in $\phi_{B}(z)$ are chosen so that the integral, $\mathcal{f}_{z_{1}}^{z_{2}} \psi_{c}(z) d z$, vanishes when taken over any fringing field region, (between z_{1} and z_{2} such that $\phi_{c}\left(z_{1}\right)=\phi_{c}\left(z_{2}\right)=\phi_{0}^{\prime}\left(z_{1}\right)=\phi_{c}^{\prime}\left(z_{2}\right)=0$. Figure 2 shows $\phi(z)$ and its division into ϕ_{s} and ϕ_{c}. The graphs are taken over a single quadrupole magnet.

In the event that the fringing fields are very large, this separation need not be made; greater accuracy is thereby achieved at the loss of the desired separation of the fringing-field effects. When retaining the separation, we shall show that the solution to $\mathbb{E q} .(V-3)$ is not affected, within the approximation already made, by taking the limit $\phi>\phi_{S}$ (corresponding to neglecting the detailed shape of the fringing field in these terms).

B. The Integral Equations of Motion

In order to proceed to solve equations (V-2), and (V-3) by the method of successive approximations, we form integral equations by means of Green's functions. we define two Green's functions, one appropriate to each equation; the Green's functions

Fig. 2. The gradient function over a quadrupole magnet;
(a) the total function, $\phi(z)$; (b) the step function, $\emptyset_{s}(z)$; (c) the difference function, $\varnothing_{c}(z)$.
satisiy $\frac{d^{3}}{d z^{3}}\left(\mathcal{C}(7,5)+\phi_{5}(7) g^{\prime}(z, 5)=-5(z-5)\right.$

Green's functions can be constructed from paixs of
linearly independent solutions of the equations. Let $x_{\text {so }}(z)$ and $x_{s e}(z)$ be two linearly independent solutions of Eq. (Vol) fox which the initial conditions at the object plane are
$x_{s e}(0)=l_{0}, x_{s o}(0)=0, x_{s e}(0)=0$, and $x_{s o}{ }^{\prime}(0)=1$.
Any solution of ($\mathrm{V}-\mathrm{I}$) may be written as

$$
\begin{equation*}
x_{s}(z)=x(0) x_{s e}(z)+x^{\prime}(0) x_{s o}\left(x_{0}\right) \tag{V-8}
\end{equation*}
$$

Furthermore, the Green's function ins

$$
\begin{align*}
& g(z, y)=x_{s o}(x) x_{s 0}(S) \cdots x_{s e}(z) x_{s 0}(5) \text { for } S \leq z \\
& g(z, S)=0 \text { for } S \geq z \tag{V-9}
\end{align*}
$$

Since the equation does not comtain texms in x^{\prime} : the Wronskian $W\left(x_{s e}{ }^{\gamma x_{s o}}\right)$, is constant: $W=x_{s e} x_{s o}{ }^{\circ}-x_{s o} x_{s e}=10$

Similar independent solutions, x_{e} and x_{0} will be
defined for the equation $x^{18}+\left(\phi_{\mathrm{g}}+\phi_{6}\right) x=0$
such that the general solution can be written

$$
x(z)=\dot{x}(0) x_{e}(z)+x^{\prime}(0) x_{0}(z)
$$

while the Green's function for Eq (V.10) may be writtex as

$$
\begin{equation*}
E_{c}(x, S)=x_{0}(z) x_{e}\left(Y^{0}\right) \cdots x_{0}(\pi) x_{0}(5) \text {, } \operatorname{for} \xi \leq z_{0} \tag{-12}
\end{equation*}
$$

The implicit solutions of ($V-2$) and ($V-3$) written
as integral equations are

$$
\begin{aligned}
& x_{c}(2)=\int_{0}^{2} Q(2,5)\left[x_{5}(5)+X_{6}(y)\right]\left\{-\phi_{6}(5)+\Delta\left[\phi_{5}(5)+\phi_{6}(5)\right]\right\} d S, \quad\left(V_{0013}\right) \\
& x^{a}(z)=\int_{0}^{2} \widehat{C}_{6}(z, \zeta)\left\{-\frac{3}{2} x x^{\prime \alpha} \phi-\frac{1}{2} x y^{\prime 2} \phi+y x^{\prime} y^{\prime} \phi+x y y^{\prime} \phi^{\prime}+\frac{1}{4} x y^{2} \phi \phi^{\prime \prime}+\frac{1}{23} x^{3} \phi^{\prime \prime}\right\} d s,
\end{aligned}
$$

where $\phi=\phi(5)=\phi(x)+\phi(5)$
and $x=x(y)=x_{g}+x_{c}+x^{a}$, etc.

C. Parameters of Smallness

Let ε be characteristic of the magnitude of the slopes x^{0} and y^{\prime}; we assume that ε is small compared with umity. for each magnet, we define a characteristic length,
where ℓ is the effective length of the magnet and f is the absolute value of its focal length. Then x / L and y / L are considered small. of the order of magnitude of ε 。

Further, $\Delta=\left(p-p_{0}\right) / p$ is assumed small compared with umity.
Let h be a characteristic lengeh of a fringing field. such as the half width of the fringing field. Then $\mathcal{A}=h / L$ is assumed small compared with unity when we separate $\phi_{\text {into }} \phi_{g}$ and ϕ_{σ}.

In the treatment that follows, all terms are of third or lower order in these three parameters of smallness, E, Δ, and A, are xetained, while those of higher order are dropped. For example, $\Delta^{2} \varepsilon, \varepsilon^{3}$, and $\lambda^{2} \varepsilon$ are retained while $\lambda^{2} \Delta \varepsilon, \lambda \Delta^{2} \varepsilon$, and $\lambda \varepsilon^{3}$ are dropped.

Some magnets in use barely qualify for the classification "quadrupole magnet, ${ }^{13}$ since the characteristi.c length of their fringing field is the same order of magnitude as their effective length. This is due to their large aperturemonlength ratio. In such magnets the approximation mado above with respect to the extent of the fringing field is invalid and may easily be abandoned by replacing ϕ_{s} by ϕ_{ϕ} and then dropping all terms in ϕ_{c} in the final expressions. One then loses the ready identification of the effects of the fringing field and also loses the calculational
advantage of simple known first-order solutions.

D. The Dispersion and Fringing-Field Terms

We turn first to Eq. (V-13) whose solution yields the dispersive and fringing field texms. The term x_{c} can be written as the sum of the expressions

$I_{b}=\Delta \int_{0}^{2} \alpha\left(z_{1} s\right) \phi_{s}(s) X_{s}(s) d s$,
$x_{c}=-\int_{0}^{2} g(z, s) \phi_{c}(s) x_{c}(s) d s$
$x_{d}=\Delta \int_{0}^{2} \delta(z, 5) \varphi_{s}(s) x_{G}(s) d s$,
$I_{e}=\Delta \int_{0}^{2} \wp_{\delta}(2,5) \phi_{c}(5) x_{s}(5) d s$,
$I_{f}=\Delta \int_{0}^{z} g(z, 5) \phi_{c}(\xi) x_{c}(\zeta) d S$
The integral X_{b} contains two parameters of smallness, thus x_{c} has at least one component which is of second order in magnitude. We will show that, under the assumption that λ is a small paxameter, I_{b}, is the only second-order term in x_{c}.

Integrals that contain ϕ_{c} as a factor have contributions only in the fringing field regions. These integrals may be split into sums of integrals taken over each magnet entrance and exit.

A typical term in the integral x_{a} is

$$
\begin{equation*}
\int_{0}^{z_{c}} \phi_{c}(s) x_{s 0}(s) x_{s e}(s) d s=\sum_{k} \int_{Z_{k-}}^{z_{k+}} \phi_{c} x_{s o} x_{s e} d s=\sum_{k} I_{k s} \tag{V-22}
\end{equation*}
$$

where the sum is taken over each entrance and exit. At each
fringing field, the integiand may be expanded about the point of discontinuity in \oint_{s} Let $\xi_{\text {, }}$ and ξ_{+}be the ends of one fringing field region with $\zeta_{0}<\zeta_{*^{*}}$ Then we have

$$
\begin{aligned}
& I_{k}=\int_{Z_{k-}}^{Z_{k+}} \phi_{s} x_{s e} d s
\end{aligned}
$$

However, the integrand has a discontinuous second derivative, hence

We now invoke the definition of the location of the discontinuity in ϕ_{s} which was chosen so that $\int_{\gamma_{0}}^{⿹_{s}+} \phi_{\xi}=0$. Using $x_{s o}{ }^{\prime \prime}+\phi_{s} x_{s o}=0$ and $x_{s e}{ }^{\prime \prime}+\varphi_{s} x_{s e}=0$, we have

where the coefficient $c_{1} \lambda_{k}{ }^{2}$ depends only upon the detailed shape of the fringing field. The expression for this "Shape coefficient" is: $c_{k} \lambda_{k}^{2}=\frac{1}{\phi_{S}} \int_{\xi_{-}}^{\zeta+} \zeta_{k}(\xi) d \xi<\frac{1}{2}\left(\xi_{-}-\xi_{m}\right)^{2} \approx h^{2}$.

Let us determine the order of magnitude of this expression
for a typical example。 A good approximation to the actual
fringing field shape is the "bell shape"," for which

$$
\begin{align*}
& \phi=\phi_{s} \quad \text { for } \pi \leq-\pi h / 4, \\
& \phi=\phi_{s}\left\{1+(5+\pi h / 4)^{2} / h^{2}\right\}^{-2} \quad \text { for } \xi>-\pi h / 4, \tag{V-27}
\end{align*}
$$

$\xi=0$ at the effective ends, and h is the "half width. "Figure 3 shows the parameters used in the calculation of the shape coefficient for the exit fringing field of a quadrupole magnet. One half of the

MU. 30405

Fig. 3. Calculating the shape coefficient with the bellshape curve.
magnet is shown. The function of, as shown, obeys the "bell shape" formula. With this model, we find $c_{k} \lambda_{k}{ }^{2}=h^{2}\left(1-\pi h^{2} / 16\right) / 2 \approx h^{2} / 5 \cdot(V-2 \theta)$ The comparable coefficient for the other end of tho magnet is just the negative of the one above.

To calculate the order of magnitude of the terms in ϕ_{c} we should compare them with the comparable terms in ϕ_{s}. For an example, consider

$$
\begin{equation*}
\mathrm{R}=\frac{\int_{z}^{z_{1} \phi_{c} x_{1} x_{2} \mathrm{dz}}}{\int_{z_{4}}^{z_{s} \phi_{s} x_{1} x_{2} \mathrm{dz}}} \tag{V-2D}
\end{equation*}
$$

with the integral taken over one magnot. Applying (V-25) and (V-26) to the expression for R, we obtain

$$
(v-30)
$$

$$
R=\frac{\operatorname{ch}^{2} \phi_{S}\left\{\left.\left(x_{1} x_{2}\right) \cdot\right|_{z_{2}}-\left.\left(x_{1} x_{2}\right)^{\prime}\right|_{2}\right\}}{\phi_{S} \overline{\left(x_{1} x_{2}\right)}\left(z_{2}-z_{1}\right)}=\frac{\operatorname{ch}^{2} \phi_{3} \overline{\left(x_{1} x_{2}\right)^{\prime \prime} \ell}}{\phi_{5} \overline{\left(x_{1}-x_{2}\right)\left(z_{2}-z_{1}\right)}}
$$

where \vec{f} is the average value of the function f_{0} defined by $\overline{\hat{x}}=\left\{d^{b} f d z\right\}(b-a)^{\infty-1}$. We approximate further, using Eq. $(V-1)$: $R \approx \frac{-h^{2} \phi_{5}^{2}\left(x_{1} x_{2}\right) \ell}{\phi_{5} \ell\left(x_{1} x_{2}\right)} \approx \frac{-h^{2}}{\mathcal{E}}=-\lambda^{2}$.
This demonstrates that $\lambda=\frac{h}{L}=h(\Omega f)^{-1 / 2}=h\left(\phi_{G}\right)^{-1 / 2}$ is the appropriate parameter of smallness for treating the fringing field terms. We are now in a position to evaluate all the integrals
appearing in x_{c} :
$I_{a}=\sum_{(c n d 3)}\left[-c_{k} \lambda_{k}^{2}{P_{s}}_{k}\right]\left\{\left.\frac{\partial}{\partial s}\left[g(2,5) X_{s}(\zeta)\right]\right|_{s=z_{k}}\right\}_{g}$
$I_{b}=\Delta f_{g}^{z}(2, S) \varphi_{S}(S)_{X_{S}}(S) d S$
$I_{c}=O\left(\Delta \lambda_{\varepsilon}^{2}\right) \quad$.

$$
\begin{equation*}
x_{d}=\Delta^{2} f^{z} d \zeta \phi_{S}(5)_{G}(z, 5) \mathcal{S}^{\zeta} d \zeta \oint_{S}(\zeta)_{g}(\zeta, 5) \tag{v-34}
\end{equation*}
$$

$x_{\mathrm{e}}=O\left(\Lambda^{2} \varepsilon\right)$ ，
$I_{f}=O\left(\Delta^{2} \lambda^{2} \varepsilon\right)$ 。
The integrals x_{c}, x_{e} ，and x_{f} ，being smaller than third order， are dropped．The remaining integrals are readily evaluated．

E。The ε^{3} Aberrations

All of the integrals in the expression for $x^{a}(V-14)$
are continuous，as ϕ has not been separated into $\phi_{s}+\phi_{c}$ ．
Consequently，we may integrate by parts to eliminate the terms in φ^{\prime} and $\varphi^{\prime \prime}$ ；this has the advantage of leading to increased accuracy and simplicity of subsequent numerical calculations．The presence of the Green＇s function poses no difficulty，as it is readily expressed in terms of x_{0} and $x_{e}(V-12)$ ；we xetain g in the expressions only for brevity．All the integrated terms resulting from the integration by parts vanish，since ϕ and its derivatives all vanish at the end points，which have been chosen to die well outside of any field region．Thus we have
$\int_{0}^{2} \phi^{\prime} c x y y^{\prime} d s+\int_{\alpha}^{2} \phi^{\prime \prime} g\left(\frac{1}{2} x y^{2}+\frac{1}{\sqrt{2}} x^{3}\right) d s$
$=\left.\left[\phi^{\prime} \sigma\left(\frac{1}{4} x y^{2}+\frac{1}{2} x^{3}\right)\right]\right|_{0} ^{2}+\int_{0}^{z} \phi^{\prime} \alpha_{0}\left(-\frac{1}{4} x^{\prime} y^{2}-\frac{1}{4} x^{\prime} x^{2}+\frac{1}{2} x y x^{\prime}\right) d s+\int_{0}^{2} \phi^{\prime} q^{\prime}\left(-\frac{1}{4} x y^{2}-\frac{1}{2} x^{3}\right) d s$ $=\left\{\phi^{\prime} g^{\left.\left(\frac{1}{4} x y^{2}+\frac{1}{12} x^{3}\right)+\phi g\left(-\frac{1}{4} x^{\prime} y^{2}-\frac{1}{4} x^{2} x^{\prime}+\frac{1}{2} x y y^{\prime}\right)+\phi d\left(-\frac{1}{4} x y^{2}-\frac{1}{12} x^{3}\right)\right\}\left.\right|_{0} ^{2}, ~}\right.$
 where $\theta=\frac{\partial}{\partial S} \delta_{0}(2,5) \equiv x_{0}(x) x_{e}^{\prime}(5)-x_{e}(2) x_{0}^{\prime}(5)$ ，
$x^{\prime \prime}=-\phi x+\cdots, \quad y^{\prime \prime}=\phi y+\cdots, g^{\prime \prime}=-\phi \varnothing 。$

The integrated term does vanish. The entire expression for x^{2} is

$$
\begin{align*}
& x^{a}=\int_{0}^{2} d s \phi^{2} g\left(-x y^{2}-\frac{1}{3} x^{3}\right)+\frac{1}{2} \int_{0}^{2} d s \phi g^{1} x^{1}\left(x^{2}+y^{2}\right) \\
& +\int_{0}^{2} d s \phi g\left(-x x^{\prime 2}-x y^{2}+x^{6} y y^{0}\right) \tag{V-36}
\end{align*}
$$

Cach of the terms in x^{2} is already of ordex ε^{3}, hence we may drop x^{2} wherever it occurs in the integrands without affecting the solution to third order.

If the fringing fields are small, i.e.e. if λ is truly a parameter of smallness, then we may replace ϕ by $\phi_{s}+\phi_{c}$. x by $x_{s}+x_{c}$, etco and then keep only the terms in $\mathcal{P}_{s}, x_{s}, x_{s}$ 。 y_{s}, and $y_{s}{ }^{\prime}$. The terms dropped are of ordex $\lambda \varepsilon^{3}, \Delta \varepsilon^{3}$ at most. We have now put all the terms giving the aberrations into integrals of products of the firstmorder solutions multiplied by piecewise constant functions $[(V-33),(V-34)$, and $(V \ldots 36)]$, and a fringing field term which is evaluated from a sum of products of first-order solutions multiplied by "shape coefficients" (V-32). Each of the expressions may be explicitly evaluated from known functions.

F. Octupole Terms

The same Green'swiunction approach yields the contribution to x due to the octupole fields (IIT-6), if any. These terms are added to $\mathrm{x}^{\text {a }}$; they ace

$$
\begin{equation*}
\int_{0}^{2} g\left(z, S^{\infty}\right)\left(x y^{2}-x^{3} / 3\right) \Psi(5) d \zeta \tag{V-37}
\end{equation*}
$$

In evaluating these integrals, which are already smali (of order ε^{3}), we replace $\Psi(\mathbb{S})$ by the mean value of ψ, which is then piecewise constant.

G. Tolerances

In addition to the components of the magnetic field which have eiti:er the quadrupole or the octupole symmetry, we may find others present owing to misalignment of magnets, etc. In developing the equations of motion, we included these effects in the terms in $\mathcal{H}, V, \delta\{$, and $\mathcal{A}[(X V-21),(I I X-8)]$. The treatment is exactly the same as for the other aberration terms Let X_{t} and y_{t} be the contributions to x and y, respectively, due to these terms; then we have

$$
\begin{align*}
& x_{t}=-\int^{2} \delta \phi g x d s-\int_{\sigma}^{2} d s g \mu+2 \int^{2} \lambda g y d s \\
& y_{t}=\int^{2} \delta \phi \delta y d s+\int^{2} g \nu d s+\lambda \int^{2} \lambda g x d s \tag{V-38}
\end{align*}
$$

Each of these integrals may be separated into a sum of integrals, each of which has contributions from only a single magnet. Hence we obtain the effect of misalignments, etc. of each magnet independent of the rest.

H. Higher Harmonics

Real quadrupole magnets frequently contain several troublesome higher harmonic components corcesponding to $n=3,4$, $5,6, \cdots, 10, \cdots$ in the general scalar magnetic potential expansion given by Eq。 (IXI-3)。 Let us now consider the effect of these harmonics. Keeping only the lowest-order term in each harmonic, we may write the increment in the scalar potential due to the higher harmonics as
$\frac{\dot{e}}{p_{0} c} \Delta V(r, \theta, z)=-a^{2} \sum_{n=3}^{\infty} \frac{1}{n} g^{n g} d(z) f_{n}(z) \sin \left(n \theta+\delta_{n}\right) \quad$.
Here $\rho=x / a_{0}$ a is the maximum radius, f_{n} are arbitraxy functions
whose significance will be seen below, and δ_{n} are arbitrary phase angles.

The field components due to this potential increment are

$\frac{e}{p_{0} c} \Delta B_{y}=\sum_{n=3}^{\infty} \rho^{n-1} f_{n}(z) \phi(z) \cos \left[(n-1) \theta+\delta_{n}\right] \quad$.
Since the magnitude of the pure quadrupole field at maximum radius is ($p_{0} c / e$) a ${ }_{0}$, it is clear that f_{n} is the ratio of the maximum field component, due to the nth harmonic in the potential, to the maximum pure quadrupole component.

The displacements due to these field components are

$\Delta y=+\int_{0}^{Z} g_{y}(z, S) \frac{e}{p_{O} c} \Delta B_{x} d S=\frac{e}{p_{O} c} \overline{\Delta B}_{x} \int_{\text {Kth magnet }}^{2}$
The integrals are taken over the $\underline{\underline{c} t h}$ magnet, and $\overline{\Delta B}$ is the average field increment experienced by the trajectory of interest. These integrals have already been calculated ($V-38$) ; they are the same integrals as determine the displacements in x and y due to displacing the kth magnet from the optic axis. Let X_{1}^{O} and X_{2}^{O} be the coefficients that deturmine the effects of displacing the kth magnet $\left(\Delta x=T 1 \frac{\mu_{p}}{\beta_{s}}\right.$ and $\Delta y=T_{2}^{0} \frac{\nu_{s}}{\phi_{k}}$)。We express the displacements due to the higher harmonic terms in terms of the coefficients
$\Delta x=a T_{1}^{O} \sum_{n=3}^{\infty} f_{n} \rho^{n-1} \sin \left[(n-1) \theta+\delta_{n}\right] \quad$,
$\Delta y=a T_{2}^{o} \stackrel{\unrhd}{n}_{\underline{E}} f_{n} \rho^{n-1} \cos \left[(n-1) \theta+\delta_{n}\right] \quad$ 。

We now have the effect of each harmonic for different regions of the \underline{k} th quadrupole. That is, for any radius, $r=\rho a$, we can calculate the displacements due to any harmonic component in the field, providing we know the fractional magnitude of that component and the phase angle appropriate to that harmonic. of course, we have neglected all but the lowest-order effect for these components. Lacking specific knowledge of a particular field component, we can specify the upper bound on the effect of that component. This calculation can be repeated for each quadrupole magnet in the beam system under consideration.

I. Symbolic Expressions

In the subsequent paragraphs, we introduce a useful shorthand for the independent functions (V-7) and those integrals which are required to evaluate the aberration coefficients. All of the coefficients may be evaluated from sums of integrals whose integrands are proportional to combinations of the four independent solutions to Eq. (V-1) and the corresponding equation in y, and the derivatives of these four solutions.

Let the eight-element array, $\mathcal{X}_{k_{k}}$, denote the independent funtions and their derivatives:

$$
\begin{aligned}
& \chi_{1}(z)=x_{s e}(z), \chi_{2}(z)=y_{\text {se }}(z), \chi_{3}(z)=x_{\text {so }}(z), \chi_{4}(z)=y_{\text {so }}(z) \\
& \chi_{5}(z)=x_{s e^{\prime}}(z), \chi_{6}(z)=y_{s e^{\prime}}(z), \chi_{7}(z)=x_{\text {so }}(z), \chi_{8}(z)=y_{\text {so }}(z),(v-43)
\end{aligned}
$$

We introduce an array ψ_{m} for the initial conditions
at the object plane: $\psi_{1}=x(0), \psi_{2}=y(0), \psi_{3}=x^{\prime}(0), \psi_{4}=y^{\prime}(0)$,

$$
\begin{equation*}
\psi_{5}=\Delta \equiv\left(p-p_{0}\right) / p, \psi_{0} \equiv U_{6} \equiv 1 \tag{V-44}
\end{equation*}
$$

All of the terms in the oxpressions for x^{2} and y^{a} (with the fringing field taken out) axe of two types:

$$
k \psi_{i} \psi_{s} \psi_{k} \int_{0}^{2} \phi_{s}^{2}(s) \chi_{m}(s) \chi_{n}(S) \chi_{p}(s) \chi_{p}(s) d s
$$

$$
\begin{equation*}
k \psi_{i} \psi_{j}\left(\psi_{1 r} \int_{0}^{2} \phi_{s}(s) \chi_{m}(s) \chi_{n}(s) \chi_{p+1}^{(s)} \chi_{g r 4}^{(s)} d s\right. \tag{m}
\end{equation*}
$$

for $m<5, n<5, p<5$, and $q<5$.
We denote these integrals by the symbol
$(\operatorname{mapq})=\int_{0}^{z} \phi_{s}^{2} x_{m=n} x_{n} x_{p} x_{q} d s$ or $\int_{0}^{z} \phi_{s} x_{m} x_{n} x_{p} x_{q} d \xi$
Whether ϕ_{s} ox ϕ_{s}^{20} is indicated depends upon whether all the indices are less than five or not (equivalent to selecting the power of ϕ which puts the integrand into dimensionless units).

We write

$$
\begin{equation*}
x^{a}(z)=\sum_{i s i \leqslant j \leqslant k\{a b} c^{k j i}(z) \psi_{i} \psi_{j} \psi_{k} \tag{V-47}
\end{equation*}
$$

where the coefficients $C^{k j i}$ axe sums of integrals multiplied by one of the four independent functions (V.7), evaluated at $z_{\text {。 }}$

The terms comprising x_{c} are also sums of integrals with the exception of the fringing field texms. We also introduce a symbolic expression for these integrals:

$$
\begin{align*}
(m n) & =\int_{0}^{2} \phi_{s}(s) \chi_{m}(S) \chi_{n}(S) d s \tag{V-48}\\
(m n \mid p q) & =\int_{0}^{2} d s \phi_{s}(S) \chi_{m}(S) \chi_{n}(S) \int_{0}^{s} d \zeta \phi_{s}(S) \chi_{p}(\zeta) \chi_{q}(\zeta) \tag{V-49}
\end{align*}
$$

The fringing field sums are denoted by

$$
s_{\mathrm{mn}}=\sum_{\substack{k_{1} k k \tag{V-50}\\
\left(\begin{array}{c}
\text { swing } \\
\text { gricids }
\end{array}\right.}} c_{k} \phi_{\mathrm{sk}} \chi_{\mathrm{in}}\left(z_{k}\right) \chi_{n}\left(z_{k}\right)
$$

Then we have $x_{c}={ }_{i} \sum_{i}\left\{c^{5 i} \psi_{5} \psi_{i}+c^{55 i} \psi_{5}^{2} \psi_{i}+c^{66 i} \psi_{i}\right\}$
where $C^{5 i}$ and $C^{55 i}$ are the coefficients for second-order and third-order dispersion terms, respectively; $C^{66 i}$ are the coefficients describing the fringing-field effects.

As shown in Ch. XII, reflection symmetry forces certain coefficients to vanish. For example, there can be no term in $x(0)^{2} y^{\prime}(0)$ in the expansion of x^{a}, although there is such a term in the expansion of y^{a}; hence the coefficient $C^{4 l l}$ appears only in the expansion of y^{a}. In fact, for any combination of indices, it can be proven from symmetry considerations that the coefficient corresponding to those indices can appear in only one of the expansions, that for x^{a} or that for y^{a}. We combine x^{a} and x_{c} $\lceil V-47)$ and $(V-51]$ and write
$x=\psi_{1} \psi_{1}(z)+\psi_{3} \psi_{3}(z)+\sum_{1 \leqslant k \leqslant j \leqslant i \leqslant 6} c^{i j k}(z) \psi_{i} \psi_{j} \psi_{k}$, $y=\psi_{2} \psi_{2}(z)+\psi_{4} \chi_{4}(z)+\sum_{1 \leqslant k \leqslant j \leqslant i \leqslant 6} c^{i j k}(z) \psi_{i} \psi_{j} \psi_{k}$, with the following "rule of thumb" for determining in which expression a particular coefficient $C^{i j k}$ belongs: excluding indices of five or six, if $(i+j+k)$ is even then $C^{i j k}$ is a factor in the expansion of y; if $(i+j+k)$ is odd then it is a factor in the expansion of x.

A complete list of coefficients and expressions that yield them are found in Appendix I.

The octupole integrals are denoted by
$\langle i j k m\rangle=\int_{0}^{Z} U(\rho) \chi_{i}(\rho) \mathcal{X}_{j}(\rho) \chi_{k}(\xi) \mathcal{X}_{m}(\rho) d \rho$
We denote the displacements due to the nonsymmetrical field components $\mu, \gamma, \delta \phi$, and λ by x_{t}. To lowest order in
these efrects we have

There is a set of tolexance coefficients $\mathrm{f}_{\mathrm{j}}^{\mathrm{i}}$ for each quadrupole magnet in the beam system. the tolexance coeffictents on magnet placement required to insure $\left|x^{t}\right|<X_{\text {max }}$ where $X_{\text {max }}$ is the maximum aberration due to permissible tolerances.

Q. Nuncoical Methods of Calculation

All the coefficients of aberration may be calculated by summing a number of terms, each of which consists of theee Sactors: (a) a numerical factor: (b) one of the functions $\mathcal{X}_{2}(z)$ (i=1, 2, 3, ox 4), and (c) an integral of one of the types mentioned. The coefficients describing the fringing field differ only in that the integral is replaced by a sum。

A digital computer code for the TBM 7090 digital computer has been wnitten which includes the calculation of the coefitcients of aberration within its scope the entire scope of the code is described in Ch. VIXX, and its operation is described in Appendix X.

In calculating the aberrations, the code must evaluate numerically 11.3 integrals taken over the beam system $[16$ of the type (mn/pq), 6 of the type (mn), 72 of the type (mopq), and 19 of the type <ijkm>], in adrition to l4 integrals requixed for the tolerance coefficients, which must be integrated separarely over each magnet in the system.

The total number of terms to be ivemed and summed is 244_{0}
exclusive of the tolerance coefficients. An additional 244 terms are summed to evaluate the 32 coefficients in the expansions of the slopes, x^{\prime} and y^{\prime} 。

All the terms in the expansions of $x^{\prime \prime}$ and y^{\prime} are the same as the corresponding terms in the expansions for x and $y(V-52)$ except that the factor $\mathcal{X}_{i}(z)$ is replaced by its derivative, $\mathcal{X}_{i+4}(z)$.

and $x_{\psi}^{\prime}(z)=\int_{3} \frac{\mu}{\phi}+X^{1} \frac{\delta \phi}{\phi}+\cdots$, etco the coefficients $D^{i j k}$ are obtained by differentiating the equations for $C^{i j k}$ (Appendix I) with respect z_{0}

The integrals are ovaluated by tenmpoint Gaussian integration, which corresponds to fitting a 2lst-degree polynomial to the integrand and evaluating the integral of that polynomial. Since there are 16 double integrals to be evaluated, each of the intervals used in the Gaussian integration must be further subdivided. In all, the first-order solutions and derivatives, $\left.\chi_{6}(\underline{z})_{(w i t h} i=1,8\right)$ must be evaluated at $11 l$ points for each quadrupole magnet.

The first-order solutions, $\mathscr{Y}_{\mathrm{i}}(z)$, are evaluated from the entrance of the magnet to each of the 111 points using Eqs. ($\mathrm{XI}-18$) and (IT-19) (the accuracy is improved by calculating each time from the beginning of the magnet rather than from the preceding point; this procedure is just as finst)。At each point cextain products are formed and the code rums through a table of 94 entries which specifies the factors in the integrands of each integral. The integrands are evaluated, weighted with the appropriate Gaussian
factor, and added into the partial sums that comprise the integralse After the integrals have been evaluated for the entire beam system, a second table consisting of 24\& entries is consulted. Cach entry in this table lists a factor k one of the functions Th (z), and one of the integrals $(m n),(m a \mid p q),(m n p q)$, or $\langle m n p q\rangle$, and a coofficient $C^{i j k}$ into which the product, ko $\mathcal{X}_{i}(z) \cdot f(-) d \varphi$, is added. All the coefficients $C^{\text {ijk }}$ and $p^{i j k}$ are calculated with no octupole contributions and are listed. The octupole contributions (if there are any) are then added into the coefficients which are then listed again。

Por a beam system consisting of three quadrupole magnets and four drift spaces, the entire process of calculating the aberration coefficients takes approximately 0.01 minute on the IBM 7090 computer。

The code will also calculate the shape coefficients and the locations of the effective ends of quadrupole magnets. The required input consists of a table of $\mathcal{O}(x)$ at uniform intervals in z, the locations of the magnet centers, and the physical lengths of the magnets. The code evaluates the integrals $f \phi d x$ and $\int z \phi d z$ over both ends of each magnet and the adjacent drift spaces. From these integrals, the required data can be derived. If desired, the code will construct the table of $\phi(z)$ using the bell-shape approximation previously described (V-27). The locations of the magnet centers, the relative excitation of each magnet, the length of the central plateau (constant-gradient region) of each magnet, and the half width, h, (characteristic of the fringing ficld extent) for each magnet constitute the input data.

VI。 RELARIONS BETWELEN THE GEOMLMRICAL COEFPICIENTS OF ABERRATION In the preceding chapters we have calculated 56 coefficients which completely describe the aberratyons through third order for a beam system possessing two planes of reflection antisymmetry。 Of these, 40 characterize the geometrical aberrations of monoenergetic beams; the remaining 16 describe the chromatic aberrations. (If the scalar potential is separated into two parts, one a step function in z and the other a difference function, as described in Chapter V, then eight additional coefficients are obtained; these coefficients describe the thridmorder effects of the fringing fields. In this chapter we ignore the fringing field coefficientso They are not fundamental, but have been included to clearly demonstrate the offects of the fringing fieldso) Not all these coefficients are independent. Burfoot has shown that the third-order geometric aberrations of a monoenergetic beam system possessing the above symmetry properties are completely described by 16 independent numbers. 4 In this chapter we derive 28 relationships; of which 24 are independent, among the 40 geometrical aberration coefficients in the third-order terms in the power-series expansions of x, y, x^{\prime}, and y^{\prime} in terms of $x_{0} y_{0} y_{0}{ }^{\prime}$, and $y_{o}{ }^{\prime}$. These relationships are derived by making use of certain Poincaré integral invariants which express the fact that the transformations carrying the trajectories between two points are restricted to the special class of canonical transformations.

A. Number of Independent Coefficients

Burfoot's method of classifying aberration types follows a classical method of treating aberxations. This is fully
described in Chapter 16 of the book by Zworykin et al. 11
Iustead oi expandiag the displacements, x and y, in a power series in the object plane displacements and slopes, this bethod describos the trajectories in terms of a power sexies in x_{o}, y_{o}, x_{a} and y_{a}, The latter fwo quantities are the displacements of a trajectory at the aperture plane. The aperture plane is defined as a planc in field-free space near the image plane。 All trajectories are straight lines between the aperture plane and the image plane.

Xt is well known that the system of trajectories issuing from a monoenergetic point source are all orthogonal to a particular family of surfaces, on each of which Hamilton's characteristic function takes a constant value. For each trajectory one value of Hamilton's characteristic function, W, coresponds to the surface orthogonal to that trajectory at the point where the trajectory intersects the aperture plane. If we know the value of W as a function of the coondinates of the source and the coordinates of the intersection with the aperture plane of trajectories issuing from that source, then we know all there is to know about the optical properties, including aberrations, of the beam system considered.

Since the family of surfaces described above must also have the symmetries of the quadrupole magnet array, the powerseries expansion of W in terms of x_{0}, y_{o}, x_{a}, and y_{a} may contain only terms of even power. The trajectories are determined by the derivatives $\frac{\partial W}{\partial x_{a}}$ and $\frac{\partial W}{\partial y_{a}}$ of W, evaluated at x_{a} and y_{a}. Thus third-order terms in the image-plane displacements are derived from
fourth-order terms in the power sexies for W, Since there are only 16 independent $\mathfrak{f o u r t h - p o w e r ~ c o m b i n a t i o n s ~ o f ~} x_{0}, y_{o} x_{a}$ and y_{a} that contain at least one power of x_{a} or y_{a} and satisfy the symmetries, there can be only 16 indepeadent numbers describing the geometrical aberrations of thixd-ordex.

In IXI. C. we listed the 20 thixdmordex texms that describe the geometric aberrations to that order. The coefficients to eight of these terms are derived from the following four terms in the expansion of $\mathrm{H}_{0} x_{a}^{2} y_{a}^{2}, x_{0} y_{0} x_{a} y_{a}, x_{0} x_{a} y_{a}^{2}$, and $y_{0} y_{a} x_{a}^{2}$ (four terms ixom differentiating with respect to x_{a} and four from y_{a}) Shere are three numbers characterizing generalized spherical aberrations; four numbers characterizing generalized coma, five numbers characterizing genexalized astigmatism, and four numbers characterizing generalized distortion. In systems possessing rotational symmetry, these 16 independent numbers reduce to five.

B. Derivation of the Relationships

We now return to our description of the abernations, which employs coefricients of the third-order terms in the power. series expansions of $x_{0} y, x^{\prime}$, and $y^{\prime \prime}$ in terms of $x_{0}{ }^{\prime}{ }^{\prime} y_{o}{ }^{\prime}, x_{0}$ and y_{0}. We derive the desired relationships by utilizing the Poincare integral invariants, using the coordinate frame introduced in Chapter IV. With z as the independent variable, the canonical coordinates and momenta are x, y, t, p_{x}, p_{y}, and p_{t}; the expressions for the canonical momenta are given by Eq. (XV..7)。 These quantities are the Cartesian coordinates in our six-dimensional phase space. The magnetic field is assumed to vanish in the
neighborhoods of the object and image planesg so that the following expansions are valid in these refions

$$
\begin{align*}
& P_{x}=\operatorname{Mvx}^{\prime}\left(1-x^{\prime} / 2-y^{\prime} / 2+^{\circ}\right)_{0} \\
& P_{y}=\operatorname{Mvy}^{\prime}\left(1-x^{\prime 2} / 2-y^{\prime} / 2+\cdots\right)_{0} \tag{VX-1}
\end{align*}
$$

The Poincare invariance theorem states that the integral

$$
\begin{equation*}
J=\int_{S} \int_{\dot{x}} \stackrel{3}{=} 1 \quad d q_{i} d p_{i} \tag{VI-2}
\end{equation*}
$$

taken over any arbitrary surface in phase space, is invariant under all canonical trasformations, such as the canonical transformation that takes the coordinates from their initial values to their final values. Similax invariants exist fox integrals taken over any even-dimensional subspace of phase space。

The method we use is an adaptation of the proof of the invariance found in the textbook by Goldstein. ${ }^{12}$ We may calculate an invariant in terms of the initial coordinates and slopes at the object plane and also in terms of the coordinates and slopes at the image plane. We can then express the invariant at the image plane in terms of the initial coordinates and slopes, using the power-series oxpansions of the image-plane coordinates and slopes in texms of the object-plane coordinates and slopes. Equating the value of the invariant at the image plane with the value at the object plane, we obtain the desired relationships between the coefficients as required by invaxiance.

Points on a two-dimensional surface may be located by two curvilinear coordinates. Let u and v be any curvilinear coordinates appropriate to the arbitrary two-dimensional surface on which we evaluate the integral to obtain the invariant. In terms of u and v,
the integral may be writiten

$$
\begin{equation*}
\int=\int_{S} \int_{n=1}^{3} \frac{\partial\left(q_{j}, p_{i}\right)}{\partial\left(u_{0} v\right)} d u d v . \tag{Vx=3}
\end{equation*}
$$

We now see that, owing to the invariance of the integral over an arbitraxy surface, S, the integrand must be invariant. The integrand is the Lagrange bracket of u and v_{0}

$$
\begin{equation*}
\left.\frac{\partial\left(q_{i}, p_{i}\right)}{x} \frac{\partial(u, v)}{\partial(u, v}\right\}_{q, p} \tag{Vx-4}
\end{equation*}
$$

Although we havo been xeferxing to an "image" plane, there is no need to restrict the subsequent discussion to systems that form a point image of a point source let there be a dine image paralled to the y axis at x_{x} and a line image parallel to the x axis at $z y^{\circ}$ Either of these images may be virtual. At some arbitrary point z, in a fieldmeree region, we expand the displacements and slopes of a trajectory, obtaining to first order $\left[\right.$ from $\left.\left(\pi_{0}-6\right)\right]$

$$
\begin{align*}
& x^{\prime}(z)=x_{0}^{\prime} / m-x_{0} / f_{x^{\prime}} \quad x(z)=m x_{0}+\left(z-z_{x}\right) x^{\prime}(z) \tag{VI-5}\\
& y^{\prime}(z)=y_{0}^{\prime} / n \cdots y_{0} / f_{y^{\prime}} \quad y(z)=n y_{0}+\left(z-z_{y}\right) y^{\prime}(z)
\end{align*}
$$

Here m and n are the marnifications in the $x \cdots z$ plane and the $y-z$ plane, respectively, and f_{x} and f_{y} are the two focal lengthso Letting the superscript a denote the correction due to aberrations, we find the corresponding expressions that include the aberrations are
$x^{0}(z)=x_{0}^{1 / m-x_{0} / \hat{x}_{x}+x^{a}\left(x_{0}, y_{0}, x_{0}^{\prime}, y_{0}^{\prime}\right), ~}$
$x(z)=m x_{0}+(z-z) x^{\prime}(z)+x^{a}\left(x_{0}, y_{0}, x_{0}^{\prime}, y_{0}^{1}\right)_{0}$
In restricting this discussion to monoenergetic beams,
we limit ourselves to surfinces in phase space on which \mathbb{E} is a
constant。 Thus we shall always have
$\frac{\partial(t,-E)}{\partial(u, v)} \equiv 0$.
In the subsequent derivations, we shall have ocassion to use the following properties of Jacobian determinants; these properties are easily derived。 If α, β, and ε are three arbitrary functions of u and v, and $i \hat{i} x$ is a function of α and β, then

$$
\begin{align*}
& \frac{\partial(\alpha, \beta)}{\partial(u, v)}=-\frac{\partial(\beta, \alpha)}{\partial(u, v)}=\frac{\partial \alpha}{\partial u} \frac{\partial \beta}{\partial v}-\frac{\partial \beta}{\partial u} \frac{\partial \alpha}{\partial v} \tag{VI-8}\\
& \frac{\partial(a \alpha+\varepsilon, \beta)}{\partial(u, v)}=a \frac{\partial(\alpha, \beta)}{\partial(u, v)}+\frac{\partial(\varepsilon, \beta)}{\partial(u, v)} \text { (where a is a constant), } \tag{VX-9}\\
& \frac{\partial(x, \varepsilon)}{\partial(u, v)}=\frac{\partial x}{\partial \alpha} \frac{\partial(\alpha, \varepsilon)}{\partial(u, v)}+\frac{\partial x}{\partial \beta} \frac{\partial(\beta, \varepsilon)}{\partial(u, v)} \tag{VI-10}\\
& \frac{\partial(\alpha, \alpha)}{\partial(u, v)}=0
\end{align*}
$$

When evaluated at the object plane, the integrand of
the invariant becomes
$x=\{u, v\}_{q, p}=\frac{\partial\left(x_{0}, p_{x O}\right)}{\partial(u, y)}+\frac{\partial\left(y_{o}, p_{y o}\right)}{\partial(u, v)}$,
where, applying (VI-1),
$\frac{\partial\left(x_{0}, p_{x 0}\right)}{\partial(u, v)}=\operatorname{Mv}\left(1-3 x_{0}^{\prime},^{2} / 2-y_{0}, 2 / 2\right) \frac{\partial\left(x_{0}, x_{0}{ }^{\prime}\right)}{\partial(u, v)}-\operatorname{Mv} x_{0}{ }^{\prime} y_{0}^{\prime} \frac{\partial\left(x_{0}, y_{0}{ }^{\prime}\right)}{\partial(u, v){ }_{0}}$
(VI-13)
to thixd order; a similar expression is obtained fromthe term in y_{o} and $\mathrm{p}_{\mathrm{yo}}{ }^{\circ}$

At the arbitrary point z, the integrand in texms of the
initial conditions, is $\quad X=\frac{\partial\left(x, p_{x}\right)}{\partial(u, v)}+\frac{\partial\left(y, p_{y}\right)}{\partial(u, v)}$,

$$
\begin{align*}
& \text { where } \frac{\partial\left(x, p_{x}\right)}{\partial(u, v)}=M v\left(1-3 x \cdot 2 / 2-y^{\prime}{ }^{2} / 2\right) \frac{\partial\left(x, x^{\prime}\right)}{\partial(u, v)} \tag{vx-15}\\
& -M v x^{\prime} y^{\prime} \frac{\partial\left(x, y^{\prime}\right)}{\partial(u, v)}-x^{\prime} y^{\prime}\left(z-z_{x}\right) \frac{\partial\left(x^{\prime} y^{\prime}\right)}{\partial(u, v)} \quad . \\
& \frac{\partial\left(x, x^{\prime}\right)}{\partial(u, v)}=\frac{\partial\left(x_{0}, x_{0}^{\prime}\right)}{\partial(u, v)}+m \frac{\partial\left(x_{0}, x^{\prime}{ }^{2}\right)}{\partial(u, v)}-\frac{1}{m} \frac{\partial\left(x_{0}{ }^{\prime}, x^{a}\right)}{\partial(u, v)}+\frac{1}{f} \frac{\partial\left(x, x^{a}\right)}{\partial(u, v)} . \\
& \frac{\partial\left(x, y^{\prime}\right)}{\partial(u, v)}=\frac{m}{n} \frac{\partial\left(x_{0}, y_{0}^{\prime}\right)}{\partial(u, v)}-\frac{m}{x} \frac{\partial\left(x_{0}, y_{0}\right)}{\partial(u, v)}+\cdots, \quad \text { and } \\
& \frac{\partial\left(x^{\prime}, y^{\prime}\right)}{\partial(u, v)}=\frac{1}{m n} \frac{\partial\left(x_{0}^{\prime}, y_{0}^{\prime}\right)}{\partial(u, v)}-\frac{1}{m f} \frac{\partial\left(x_{0}, y_{0}\right)}{\partial(u, v)}-\frac{1}{n f} \frac{\partial\left(x_{0}, y_{0}^{\prime}\right)}{\partial(u, v)} \frac{1}{f_{x} f y} \frac{\partial\left(x_{0}, y_{0}\right)}{\partial(u, v)} ;
\end{align*}
$$

these expressions are obtained from Rq. (VX-1) and Eq. (VI-6) using Eqs. (VI-8) through (Vx-1x).

Let D be the difference between the integrands evaluated at the two points. As stated previously, this integrand is an invariant and D therefore is identically zero. We write D as $\quad D=\operatorname{Mv}\left\{\frac{\partial\left(x, p_{x}\right)}{\partial(u, v)}+\frac{\partial\left(y_{,}, p_{y}\right)}{\partial(u, v)}-\frac{\partial\left(x_{0}, p_{x 0}\right)}{\partial(u, v)}-\frac{\partial\left(y_{0}, p_{y_{0}}\right)}{\partial(u, v)}+\cdots\right\}$.

Each of the aberration terms can be expanded, using ($\mathrm{V}-47$)
(this expansion is not made until latex fo: reasons of brevity), and each term can be written so that the only Jacobian determinants remaining involve pairs of initial parameters. We write D as

$$
\begin{align*}
D= & M v\left\{S_{1} \frac{\partial\left(x_{0}, x_{0}^{\prime}\right)}{\partial(u, v)}+S_{2} \frac{\partial\left(x_{0}, y_{0}\right)}{\partial(u, v)}+S_{3} \frac{\partial\left(x_{0}, y_{0}^{\prime}\right)}{\partial(u, v)}\right. \tag{VI-17}\\
& \left.+S_{4} \frac{\partial\left(x_{0}^{\prime}, y_{0}\right)}{\partial(u, v)}+S_{5} \frac{\partial\left(x_{0}^{\prime}, y_{0}^{\prime \prime}\right)}{\partial(u, v)}+S_{6} \frac{\partial\left(y_{0}, y_{0}^{\prime \prime}\right)}{\partial(u, v)}\right\}
\end{align*}
$$

where $S_{1}=m_{1} \frac{\partial x^{1 a}}{\partial x_{0}^{1}}+\frac{1}{m} \frac{\partial x^{a}}{\partial x_{0}}+\frac{1}{y_{2}} \frac{\partial x^{a}}{\partial x_{0}^{0}}+\frac{3}{2}\left\{x_{0}^{12}-\left(\frac{x_{0}^{12}}{m^{20}}-\frac{2}{m f_{x}} x_{0} x_{0}^{1}+\frac{1}{f_{x}^{10}} x_{0}^{2}\right)\right\}$

$$
+\frac{1}{2}\left\{y_{0}^{\prime 2}-\left(\frac{y_{0}^{\prime 2}}{n^{2}} \cdots \frac{2}{n f_{y}} y_{0} y_{0}^{\prime}+\frac{1}{s_{y}^{2}} y_{0}^{2}\right)\right\},
$$

$$
S_{2}=m \frac{\partial x^{\prime a}}{\partial y_{0}}-n \frac{\partial y^{\prime a}}{\partial x_{0}}+\frac{1}{f_{x}} \frac{\partial x^{a}}{\partial y_{0}}-\frac{1}{f_{y}} \frac{\partial y^{a}}{\partial x_{0}}+\left\{\frac{x_{0}^{\prime} y_{0}^{\prime}}{m_{00}}-\frac{x_{0} y_{0}^{b}}{n S_{x}}-\frac{x_{0}^{\prime} y_{0}}{m f_{y}}+\frac{x_{0} y_{0}}{f_{x_{x}} f_{y}}\right\}\left\{-\frac{n}{f_{x}}+\frac{m}{f_{y}}+\frac{b}{f_{x} f_{y}}\right\} g
$$

$$
S_{5}=-\frac{1}{m} \frac{\partial x^{8}}{\partial y_{0}^{\prime}}+\frac{1}{n} \frac{\partial y^{a}}{\partial x_{0}^{\prime}}+\left\{\frac{x_{0}^{\prime} y_{8}^{\prime}}{m n}-\frac{x_{0} y_{0}^{\prime}}{n f_{x}}-\frac{x_{0}^{\prime} y_{0}^{\prime}}{m f_{y}}+\frac{x_{0} y_{0}}{f_{x} f_{y}}\right\} \frac{L}{\operatorname{mn}} q
$$

$$
S_{6}=n \frac{\partial y^{\prime}}{\partial y_{0}^{\prime}}+\frac{1}{n} \frac{\partial y^{4}}{\partial y_{\theta}}+\frac{1}{S_{y}} \frac{\partial y^{a}}{\partial y_{0}^{\prime}}+\frac{3}{2}\left\{y_{0}^{\prime 2}-\left(\frac{y_{0}^{\prime 2}}{n^{2}}-\frac{2 y_{0} y_{0}^{\prime}}{n f_{y}}+\frac{y_{0}^{2}}{f_{y}^{2}}\right)\right\}+\frac{1}{2}\left\{x_{0}^{\prime^{2}}-\left(\frac{x_{0}^{\prime 2}}{n^{2}}-\frac{2 x_{0} x_{0}^{\prime}}{m s_{w_{0}}}+\frac{x_{0}^{2}}{f_{x}^{2}}\right)\right\}
$$

The integral, J, is invariant over any twoodimensional
surface in phase space. Among these surfaces are those on which two of the four parameters $x_{0}, y_{o}, x_{0}{ }^{\prime}, y_{o}^{\prime}$ take constant valueso On such a surface only one of the six Jacobian determinants in Eq. (VI-I7) is nonvanishing. For example, consider the surface $x_{0} \equiv a$ and $y_{o}^{\prime} \equiv b$ Here we find that the coefficients of
$S_{1}, S_{2}, S_{3}, S_{5}$, and S_{6} each vanish as the Jacobian determinants contain constantso Thus, for this choice of surface, we see that $S_{4}=0$. By applying this argument to other surfaces, it is clear that each of the coefficients $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}$, and S_{6} must vanish identically.

Let us now group the terms withing these six expressions as follows:

$$
\begin{equation*}
S_{1}=S_{11} x_{0}^{2}+S_{12} x_{0} x_{0}^{\prime}+S_{13} x_{0}^{\prime 2}+S_{14}^{y_{0}^{2}}+S_{15} y_{0}^{12} \tag{VX-18}
\end{equation*}
$$

$$
\begin{aligned}
& S_{2}=S_{21} x_{0} y_{0}+S_{22} x_{0} y_{0}{ }^{\prime}+S_{23} x_{0}{ }^{\prime} y_{0}+S_{24} x_{0}{ }^{\prime} y_{0}^{\prime}, \\
& S_{3}=S_{31} x_{0} y_{0}+S_{32} x_{0} y_{0}{ }^{\prime}+S_{33} x_{0} y_{0}+S_{34} x_{0} y_{0} y_{0} \because \\
& S_{4}=S_{42} x_{0} y_{0}+S_{42} x_{0} y_{0}^{\prime}+S_{43} x_{0}^{\prime} y_{0}+S_{44} x_{0} y_{0}^{\prime} \quad 0 \\
& S_{5}=S_{51} x_{0} y_{0}+S_{52} x_{0} y_{0}^{\prime}+S_{53} x_{0} y_{0}+S_{54} x_{0}{ }^{\prime} y_{0}{ }^{\prime}, \\
& s_{6}=s_{61} x_{0}^{2}+s_{62} x_{0} x_{0}{ }^{1}+s_{63} x_{0}{ }^{2}+s_{64} y_{0}^{2}+s_{65} y_{0} y_{0}{ }^{\prime}+s_{66} y_{0}{ }^{\prime 2} .
\end{aligned}
$$

Since. the region of integration is completely arbitrary,
S_{1} through S_{6} can all vanish identically only if each of the $S_{i j}=0$.
These conditions yield 28 relations between the coefficients of aberration, of which only 24 are independent, the derived relationships, in the notation introduced in Volo bthe aberration corrections are expanded, using $E q \cdot(V-47)$, are

$$
\begin{align*}
& s_{11}=m D^{311}+3 C^{111} / m+C^{311} / i_{x}-3 / 2 f_{x}^{2}=0 . \tag{VX-19}\\
& S_{12}=2 m D^{331}+2 C^{311} / m+2 c^{331} / f_{x}+3 / m f_{x}=0 \\
& S_{13}=3 m D^{333}+C^{331} / m+3 C^{333} / f_{x}+3\left(m^{2}-1\right) / 2 m^{2}=0 \\
& S_{14}=m D^{322}+C^{211} / m+C^{322} / x_{x}-1 / 2 x_{y}^{2}=0 \\
& S_{15}=m D^{432}+C^{421} / m+C^{432} / f_{x}+1 / n f_{y}=0, \\
& S_{16}=m D^{443}+C^{441} / m+C^{443} / f_{x}+\left(n^{2}-1\right) / 2 n^{2} \\
& S_{2 I}=2 m D^{221}-2 n D^{211}+2 C^{22 l} / f_{x}-2 C^{211} / f_{y}-n / f_{x}^{2} f_{y}+m / f_{x} X_{y}^{2}+L / f_{x}^{2} f_{y}^{2}=0, \\
& S_{22}=m D^{421}-2 n D^{4 I I}+C^{42 l^{2}} f_{x}-2 C^{4 L j} f_{y}+1 / f_{x}^{2}-m / n f_{x} f_{y}-L / f_{x}^{2} f_{y}=0 \\
& S_{23}=2 m D^{322}-n D^{321}+2 C^{322} / f_{x}-C^{321} / f_{y}+m / m f_{x} f_{y}-1 / f_{y}^{2}-L / m f_{x} f_{y}^{2}=0 \\
& S_{24}=m D^{432}-n D^{431}+C^{432} / f_{x}-C^{431} / f_{y}-1 / m f_{x}+1 / n f_{y}+L / m n f_{x} f_{y}=0 \text {, }
\end{align*}
$$

$$
\begin{aligned}
& S_{31}=m D^{421}+2 C^{211} / n+C^{421} / f_{x}-m / n f_{x} f_{y} m L / n f_{x}^{2} f_{y}=0, \\
& S_{322} 2 m D^{44 l}+2 C^{4 l l} / n+2 C^{44 l} / f_{x}+m / n^{2} f_{x}+L / n^{2} f_{x}^{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& S_{34}=2 m D^{443}+C^{431} / n+2 C^{443} / f_{x}+1-1 / n^{2}-x_{1} / \mathrm{mn}^{2}=0 . \\
& S_{41}=-n D^{321}-2 C^{22 l} / m-C^{32 l} / f_{y}+n / x_{x} f_{y}+m_{1} / m f_{x} f_{y}^{2}=0, \\
& S_{42}=-n D^{431}-C^{42 \lambda} / m-C^{431} / f_{y}-1 / m f_{x}+x_{6} / m n f_{x} f_{y}=0, \\
& S_{43}=-2 n D^{332}-2 C^{322} / m-2 C^{332} / f_{y}-n / m^{2} f_{y}+L^{2} / m^{2} f_{y}^{2}=0 \\
& S_{44}=-2 n D^{433}-C^{432} / m-2 C^{433} / f_{y}+1+1 / m^{2}+1 / m^{2} n f_{y}=0 \\
& S_{5 l}=C^{32 l} / n-C^{421} / m+1 / m \lambda f_{x} f_{y}=0, \\
& S_{52}=C^{431} / n-2 C^{441} / m-2 / m^{2} f_{x}=0 \\
& s_{53}=2 C^{332} / n-C^{432} / m-L / m^{2} n f_{y}=0 . \\
& S_{54}=2 C^{433} / n-2 C^{443} / m+L / m^{2} n^{2}=0, \\
& S_{61}=n D^{411}+C^{21 \lambda} / n+C^{411} / f_{y}-1 / 2 f_{x}^{2}=0 \\
& S_{62}=n D^{431}+C^{321} / n+C^{431} / f_{y}+1 / m f_{x}=0, \\
& s_{63}=n D^{433}+C^{332} / n+C^{433} / f y+\left(m^{2}-1\right) / 2 m^{2}=0 . \\
& S_{64}=n D^{422}+3 C^{222} / n+C^{422} / t_{y}-3 / 2 f_{y}^{2}=0 \\
& S_{65}=2 n D^{442}+2 C^{422} / n+2 C^{442} / f_{y}+3 / n f_{y}=0, \\
& S_{66}=3 n D^{444}+C^{442} / n+3 C^{444} / f_{y}+3\left(n^{2}-1\right) / 2 n^{2}=0 .
\end{aligned}
$$

These 28 relationships, derived from the Poincare integral invariance, are a consequence of the assumed symmetry of the beam system and the requirement that the transformations betwoen tho object plane and the plane at the arbitrary point z bo a canonical transformation. In Chapter y wo havo derived the expressions for the 40 coefficientg appearing in the above relationships. We may now apply these relationships to any numerical values of the coefficients we may calculato, in order to verify the accuracy of our calculations. This is a powerful check, as these xelationships involve the five firstmorder quantities $m, n, f_{x} f_{y} f_{y}$ and L in addition to the aberration coefticientso

These relationships axe satisited by the aberration coefficients calculated by the 7090 computer code in every instance checked. In most cases, the relations are valid to five of six significant figures. As we are easily able to test the accuracy of the linear calculations of the code, we are now able to completely verify the accuracy of the aberration calculationso

The expressions $S_{5 d}$ through $S_{5 k}$ yield ane relationship between the four coefficients describing generalized spherical aberration one relationship between the six coeficients describing generalized astigmatism, and two relationships between the six coefficients describing generalized coma. The remaining independent. terms agree with the distribution described by Burfoot.

The other 24 conditions we have derived relate the coefficients in the expansions of the slopes $x^{\prime \prime}$ and $y^{\prime \prime}$ to the coefficients in the expansions of the displacements x and y.
VII. THE CHARAC'RER OF TME ABERRATXONS

In the preceding chapters we have developed powermseries expansions of the displacements of trajectories that have passed through a quadrupode magnet beam system. The aberrations of such a system are described by (ix coefficients, many of which are not independent. In addition to the aberrations of a beam system possessing the two-plane reflection symmetry properties assumed in the aberration calculations beam systems with real quadrupole magnets have defects due to their failure to achieve exactly tho assumed symmetry. These defects can be characterized by further coefficients. We have refored to a digital computer code that calculates all these coefficients, but we have not yet examined the qualitative and quantitative effects of the aberrations. This we shall now do.

We are interested in abexrations only in a region where the displacements due to linear terms are small. We therefore restrict our discussion to the neighborhood of an image or a waist produced by the beam system. The actual character of the beam in such a neighborhood is strongly dependent on the distribution of the trajectory points in the object-plane phase space, because some components in the displacements, which are cubic in the objecto plane parameters, may be dominant in such a neighborhood.

A complete solution would provide the exact shape of the throe-dimensional beam envelope near the image, but a more practical description, even though not quite so general, consists of the knowledge of the projections of the envelope on each of the coordinate planes. In addition to the projections of the envelopes
our description must consider the distribution of trajectories within the envelope. In most applications a system in which relatively few trajectories suffer large aberration displacemente. would be preferced to one in which many trajectories suffer Large aberration displacements, even though the maximum displacement due to the aberrations might be the same for both systems. Finally, we would like to represent the aberrations by a few characteristic numbers in ordex that we can compare several beam systems. The maximum displacements due to the aberrations and the root-mean-square displacements due to the aberrations are good quantities for use in making compaxisons. For beam systems in which a line or a point image is desired, one would like to know the width of the best image attainable when aberrations are considered.

In the remainder of this chapter, we calculate the average and maximum aberration displacements and the location and size of the best image attainable for a given beam system; we also examine the effects of aberrations on the image of a point source. In the course of these discussions we refer to two sample problems which have been solved by use of the digital computer code. Significant portions of the computer printouts obtained for these examples are reproduced in Appendix $I I X$, together with instructions for further interpretation. Instructions for using the code are given in Appendix $I X$.

The first example consists of a bean system composed of a symmetric quadrupole triplet which is adjusted to provide a point image of a point source, the symmetric triplet being located midway
between the source and the image, Obviously, unit magnification is obtained in both planes in this example. We then examine the imaring of a small circular diffuse source by this system.

The second example consists of a quadrupole doublet which is adjusted to provide a line image of an incoming parallel beam in one plane and a parallel outgoing beam in the other plane。 For each of these examples, we determine the coexficients that dominate the aberrations displacements and then calculate the tolerances permitted in positioning the magnets so that the aberrations due to failure to achieve quadrupole symmetry are smaller than the inherent aberrations.

A. The Average Aberration Displacements

In this section, we calculate the maximum and average displacements due to the aberrations obtaining expressions that enable us to compare the contributions of the difiexent coefficients. of aberrations. We first must stipulato the occupied region in phase space For this purpose, we introduce three models. Some calculations result in relatively simple expressions for one model but not for others. Bach of the three models represents a reason able approximation to a real beam distribution.
l. Models for the Occupation of Object-plane phase Space

As stated previously, we always assume an effective source at the input to the beam system, since this assumption entails no real restriction. We restrict the distribution of trajectories to those which are symmetric with respect to reflection through any of the five coordinate planes in $x_{0}, y_{0}, x_{o}{ }^{\prime}, y_{o}^{\prime}, \Delta$
space.
Model \#1 is a rectangular distribution with each coordinate ranging between a minimum and a maximum valuo independent of the other four coordinates. For this model. we have
(VIIMD)

$$
-\bar{x} \leqslant x_{0} \leqslant \bar{x},-\bar{y} \leqslant y_{0} \leqslant \bar{y},-\bar{x} \leqslant x_{0}^{\prime} \leqslant \overline{x^{\prime}},-\bar{y}^{\prime} \leqslant y_{0}^{\prime} \leqslant \bar{y}^{\prime}, \text { and }-\bar{\Delta} \leqslant \Delta \leqslant \bar{\Delta}
$$

Xhis model is used by the computer program to evaluate the maximum displacement due to aberrations.

Model \#2 is the product of elliptical distributions in $x-x^{\prime}$ space and $y-y '$ space with Δ taken as zero. 'This model is appropriate to a beam system bounded by rectangular apertures. We parameterize this distribution as $x_{0}=\bar{x}_{0} \zeta \cos \theta, x_{0}^{\prime}=\bar{x}_{0}^{\prime} \xi \sin \theta, 0 \leqslant \xi \leqslant 1,0 \leqslant \theta<2 \pi$, $\mathrm{y}_{0}=\overline{\mathrm{y}}_{0} \eta \cos \phi, \mathrm{y}_{0}^{\prime}=\overline{\mathrm{y}}_{0}^{\prime} \eta \sin \phi, \quad 0 \leqslant \eta \leqslant l$, and $0 \leqslant \phi<2 \pi$.

Although helpful for comparing with model $\not \not \# l$, this model is not used by the computer code.

Model \#3 consists of a hyperellipsoid in $x_{0}{ }^{\prime} x_{0}{ }^{\prime}, y_{0}$, anc y_{o}^{\prime} with \triangle taken as zero. As mentioned in Chapter $X I$, this model is appropriate to a beam limited by a circular aperture, which is usually the case when beam pipes of circular cross section are employed. The code uses this model to calculate the rms aberration displacements. We parametrize this distribution by $x_{0}=x \bar{x}_{0} \cos \phi \cos \theta, \quad x_{0}{ }^{\prime}=r \bar{x}_{0}^{\prime} \cos \phi \sin \theta$, $y_{0}=r \bar{y}_{0} \sin \phi \cos \psi, y_{o}^{\prime}=r \bar{y}_{o}^{\prime} \sin \phi \sin \psi$, $0 \leqslant \theta<\pi / 2, \quad 0 \leqslant \theta<2 \pi, \quad 0 \leqslant V<2 \pi$, and $0 \leqslant x \leqslant 1$ 。

2. Noxmalized Aberration Coefficients

As each of these models involves the maximum values the parameters can attain (i.e. \bar{x}_{0}), we find it convenient to normalizo the aborration coefficients by maltiplying them by such powers of $\bar{x}_{0}, \bar{y}_{0}, \bar{x}_{0}, \bar{y}_{0}^{\prime}$, and $\bar{\Delta}$ as are required to scale to a space in which each parameter achieves a maximum value of 2.0 and a minimum value of ma. We denote the normalized coefficients by an underscore, for example, $C^{111}=C^{111} \bar{x}_{0}^{3}, C^{554}=C^{554} \bar{y}_{0}, \bar{\Delta}^{-2}$, and $D^{42 \lambda}=D^{42 l} \bar{y}_{0} \bar{y}_{0} \bar{x}_{0}$. With the coefficients in this form, we may immediately compare the relative effect of the various coefficients acting upon the beam described by this objectoplane phase space distribution.
3. Symmetry Groups in Displacement Expansions

In the expansion of x in terms of abject-plane parameters, we may separate the terms according to the reflection symmetries about various coordinate planes:

$$
\begin{align*}
& x^{a}=x_{0}\left(c^{111} x_{0}^{2}+c^{331} x_{0},^{2}+c^{221} y_{0}^{2}+c^{441} y_{0},^{2}+c^{551} \Delta^{2}\right) \\
& +x_{0},\left(c^{432} y_{o} y_{0}^{1}\right) \\
& +x_{0}{ }^{\prime}\left(C^{311} x_{0}^{2}+C^{333} x_{0},^{2}+C^{322} y_{0}^{2}+C^{443} y_{0}^{\prime}{ }^{2}+C^{553} \Delta^{2}\right) \tag{VIX-4}\\
& +x_{0}\left(C^{421} y_{0} y_{0}^{1}\right) \quad .
\end{align*}
$$

The first line is antisymmetric under reflection through the plane $x_{0}=0$ while symmetric under reflection through any other plane containing two coordinate axes. The other three lines have similar properties. Notice that, with the exception of the dispersion terms, the first two lines contain only terms in spherical
aberration and astigmatisin. This separation, arising from the symotry properties assumed in the five-dimensional object-plane space, appears in each of the later results of this section。 In the expressions for maximum and mean aberration displacements, this separation into symmetry groups demonstrates that the distortion and coma terms contribute in exactly the same way as the spherical aberration and astigmatism terms. X_{i} the corresponding terms were equal (i.e., $C^{\text {lll }}=C^{333}, C^{432}=C^{42 \lambda}, \therefore 0$) then the distortion terms would contribute exactly the same amount as the spherical aberrations terms, and the astigmatism terms would contribute exactly the same amount as the coma terms toward the maximum and rms aberrations.
4. Maxinum Aberration Displacement

Let us calculate the upper bound on the magnitude of the displacements due to the aberration terms. $x t$ is clear from the symnetry properties that for model $\#$ we must replace each parameter by its maximum value and take the sum of the absolute values of the four lines to obtain the maximum displacement, given by

$$
\begin{align*}
\left|x^{a}\right| \leqslant & \underline{c}^{111}+\underline{c}^{331}+\underline{c}^{221}+\underline{c}^{441}+\underline{c}^{551}\left|+\left|\underline{c}^{432}\right|\right. \\
& +\left|\underline{C}^{311}+\underline{c}^{333}+\underline{c}^{322}+\underline{c}^{443}+\underline{c}^{553}\right|+\left|\underline{c}^{421}\right| \tag{VII}
\end{align*}
$$

This value is obviously larger than the maxima that would be appropriate either to model $\not / 2$ or to model $\not \approx 3$. Note that the symmetry separations have occurred as discussed above. The maximum displacement $\left|y^{2}\right|$ is calculated in exactly the same manner.

We obtain an upper limit on the bean width at the image by adding $\left|x^{2}\right|$ to the maximum obtained from the terms that are
linear in x_{0} and $x_{o}{ }^{\prime} ;$ this limit in general is larger than the maximum displacement actually obtained in a typical beam。

Only a very small proportion of the trajectories will suffer aberration displacements nearly as large as $\left|x^{a}\right|$ o＇She rms aberration displacement to be calculated next has been found to be an order of magnitude smaller than this maximum displacement in the examples mentioned above．The xms value is the more interesting figure in applications in which the quadropole magnets are placed to form a point or line image on a scintillator or resolution slit。 5．Root－Mean－Square Aberration Displacement

The rms displacement is defined as the square root of the average of the squares of the displacements of a representative set of trajectories given by the following ratio of integrals taken over the object－plane phase space：

$$
\begin{equation*}
\left\langle x^{a}\right\rangle=\frac{\rho \rho(c)\left(x^{a}\right)^{2} a^{2}}{\rho \rho(c) d c} \tag{VIX=6}
\end{equation*}
$$

Here $\rho(C) d C$ is the number of trajectories originating in the volume olement d \mathbb{C} att．The denominator is the total number of trajectories considered．We restrict $\rho(\vartheta)$ to have the same reflection symmetry as has been imposed upon the three models of the object－plane phase space，so that the expression for $\left\langle x^{2}\right\rangle$ separates into the four symmetry groups，each term being positive definite and containing only coefficients from a single symmetry group．This result follows because the cross－terms between terms in different symmetry groups must integrate to zero；every contribution is balanced by an equal contribution with opposite sign。

We now evaluate the rins displacement for model $\not \not \neq 3$. The transformation Jacobian for this choice of parameters is
$\frac{\partial\left(x_{0}, y_{0}, x_{0}^{\prime}, y_{0}^{\prime}\right)}{\partial\left(x_{0}, x_{0} \theta_{0}\right)}=x^{3} \bar{x} \overline{x^{\prime}}, \bar{y} \bar{y}^{\prime} \cos \phi \sin \phi_{0}$
(VII-7)

If we assume the trajectory density function, ρ, to depend only upon the dimensionless variable r, then
(VII-8)
$\left\langle x^{a}\right\rangle^{2}=\frac{\bar{x}_{0} \bar{x}_{0}^{1} \bar{y}_{0} \bar{y}_{0}^{!} \int_{0}^{l} d r r^{3} \rho(r) \int_{0}^{\pi / 2} d \emptyset \cos \phi \sin \phi \int_{0}^{2 \pi} d \theta \int_{0}^{2 \pi} d x^{a}(r, \phi, \theta)^{2}}{\bar{x}_{0} \bar{x}_{0}^{1} \bar{y}_{0} \bar{y}_{0}^{1} \int_{0}^{1} d r r^{3} \rho(r) \int_{0}^{\pi / 2} d \varnothing \cos \phi \sin \phi \int_{0}^{2 \pi} d \theta \int_{0}^{2 \pi} d}$
Upon carrying out the indicated operations, we find

$$
\begin{align*}
& x^{a}=\left\{\frac { F } { 4 8 0 } \left[\left(3 \underline{C}^{333}+\underline{C}^{311}+\underline{C}^{443}+\underline{C}^{322}\right)^{2}+6\left(\underline{C}^{333}\right)^{2}+2\left(\underline{C}^{311}\right)^{2}+2\left(\underline{c}^{443}\right)^{2}\right.\right. \\
&+2\left(\underline{C}^{322}\right)^{2}+\left(\underline{C}^{432}\right)^{2} \\
&+\left(3 \underline{C}^{111}+\underline{C}^{331}+\underline{C}^{221}+\underline{C}^{441}\right)+6\left(\underline{C}^{111}\right)+2\left(\underline{C}^{331}\right)+2\left(\underline{C}^{221}\right) \\
&\left.\left.+2\left(\underline{C}^{441}\right)^{2}+\left(\underline{C}^{421}\right)^{2}\right]\right\}^{\frac{1}{2}} \tag{VII-9}
\end{align*}
$$

Here $F=\frac{5}{2} \frac{\int_{0}^{1} \rho(x) r^{9} d x}{\int_{0}^{l} \rho(x) r^{5} d x}$; if $\rho(x)=$ constant the $F=1$, as has
been assumed in all the examples quoted below.
Note that the four symmetry groups separate as discussed above The additional symmetry between x_{o}, y_{o} and $x_{o}{ }^{\prime}, y_{o}{ }^{\prime}$ is expected, since the expansions for x^{a} and y^{a} are similar and the coefficients are labeled in a symmetric way. This symmetry may be described by stating that the expressions for the maximum aberration displacement and mean aberration displacement are invariant under the permutation of indices: $12345 \rightarrow 34125$. What this means is that the spherical aberration and astigmatism contributions are as important as the diatortion and coma contributions, respectively,
in determining the characteristic size of the aberration displacements provided the normalized coefficients are comparable in magnitude.

The expression for $\left\langle x^{a}\right\rangle$ reveals the relative importance of the coefficients. For instance, the coefficients \underline{C}^{333} and C^{111} are the most important contributions; these terms correspond to the contribution from $x_{0}{ }^{3}$ and $x_{0}{ }^{3}$, respectively.

For a numerical comparison of the maximum and rms aberration displacements, refer to example $\neq 1$ in Appendix $X I I$. This system consists of a symmetrical quadrupole triplet of 8 in. diameter aperture, with elements having lengths 16 in., 32 in., and 16 in. . respectively. The separation of elements and the excitations are adjusted to produce a point image of a point source, with source and image symmetrically located at 275 in. from the triplet. The maximum slopes of trajectories that can pass through an 8 ino bore beam tube are $\bar{x}_{o}^{\prime}=14.3 \mathrm{mc}, \bar{y}_{0}^{\prime}=9.30 \mathrm{mr}$. Let us assume a source 1.50 in. in diameter and a relative momentum spread $\bar{\Delta}=2.5 \times 10^{-4}$ 。 We find that the maximum displacements due to aberrations are 0.94 in. in the x plane and 1.35 in. in the y plane; these figures do not include the second-order chromatic aberration terms. The rms aberration displacements, when model \#3 is used, are $\left\langle x^{a}\right\rangle=0.053$ in.,$\left\langle y^{a}\right\rangle=0.073$ in. . If we next assume a point source with $\bar{x}_{o}^{\prime}, \bar{y}_{o}^{\prime}$, and $\bar{\Delta}$ unchanged, we find the maximum displacements are 0.54 in. and 0.77 in. in the x and y planes, respectively, while the rms displacements are 0.050 in. and 0.068 in. We discuss these examples at length at the end of this chapter.

We can also calculate the rms aberration displacements for the other two models. For model \#l, we find

$$
\begin{align*}
\left\langle x^{2}\right\rangle= & \frac{1}{30}\left\{\left(2 C^{333}+C^{311}+C^{443}+C^{322}+C^{553}\right)^{2}+2\left(C^{311}\right)^{2}+2\left(C^{443}\right)^{2}\right. \\
& +2\left(C^{322}\right)^{2}+2\left(C^{553}\right)^{2}+2\left(C^{432}\right)^{2} \tag{VxX-10}\\
+ & \left(2 C^{111}+C^{331}+C^{221}+C^{441}+C^{551}\right)^{2}+2\left(C^{331}\right)^{2}+2\left(C^{221}\right)^{2} \\
& \left.+2\left(C^{441}\right)^{2}+2\left(C^{551}\right)^{2}+2\left(C^{421}\right)^{2}\right\}
\end{align*}
$$

For model $\# 2$ we find

$$
\begin{align*}
\left\langle x^{a}\right\}^{2}= & \frac{1}{192}\left\{\left(3 C^{333}+C^{311}+2 C^{443}+2 C^{322}\right)^{2}+2\left(C^{443}-C^{322}\right)^{2}\right. \\
& +6\left(C^{333}\right)^{2}+2\left(C^{311}\right)^{2}+2\left(C^{432}\right)^{2} \tag{Vxx}\\
& +\left(3 C^{111}+C^{331}+2 C^{221}+2 C^{441}\right)^{2}+2\left(C^{221}-C^{441}\right)^{2} \\
& \left.+6\left(C^{111}\right)^{2}+2\left(C^{331}\right)^{2}+2\left(C^{421}\right)^{2}\right\}
\end{align*}
$$

By inspection of these two expressions, we can determine the relative importance of different coefficients for the different models. Continuing with the point source in the above example. we find $\left\langle x^{a}\right\rangle=0.161$ in. with model $\not H 1$ and $\left\langle x^{2}\right\rangle=0.102$ in. with model \#2。

B. Region of Least Confusion

In classical optics for rotationally symmetric systems, the best image, known as the "circle of least confusion", is not generally found at the paraxial image plane but at another value of 2. Quadrupole beam systems, lacking the rotational symmetry, do not generally form a "circle" of least confusiom; however, there is a region of least confusion near the paraxial image where the beam width is a minimum.

For a paraxial point image, the best focus in the $x-z$ plane is usually found at one value of z, whereas that in the $y-z$ plane is found at another value. For a line image, we are interested only in the region of least confusion in the plane orthogonal to the image line. We wish to determine the width of the region of least confusion as well as its location $X \hat{f}$ our purpose is to use the beam system to provide a momentum or mass resolution, we place the resolving slit at the region of least confusion. The smaller this region, the better resolution we attain.

1. The Beam Envelope Near an Image --Single-Parameter Trajectory Distribution

If z is measured from the image plane, the equation for the family of trajectories issuing from a point source and restricted to single values of y_{0}^{\prime} and Δ is $\mathscr{S}_{0}(x, z)=x-c x_{0}^{\prime 3}-\mathrm{Dx}_{0}^{1-h z x_{0}} 1 / m+0(4)=0$.

As x_{o}^{\prime} varies the family of trajectories is swept out. In Eq. (VIT-12), m is the magnification, d and h depend upon $y_{o}{ }^{\prime}$ and Δ, and c, d, and r represent spherical and chromatic aberration contributions.
'In the absence of aberrations, all the trajectories would lie within the envelope formed by the two extreme trajectories $\bar{T} \bar{x}_{0}=0$ and $\bar{D}_{x_{0}}=0$. The aberration terms alter the envelope in the region near the image plane; in this region the envelope is defined by the characteristic points of the family of trajectories.

The characteristic point is defined by the intersection of the trajectories $\vec{D}_{x}=0$ and $\vec{B}_{x}+d x^{\prime}=0$ or equivalently by the equations $G^{-}=0$ and $\frac{\partial}{\partial x^{\prime}} \cdot \operatorname{l}^{0}=0$.

The caustic is tangent to the extreme trajectories at some value of which we will call z_{1} and tangent to the 2 axis at z_{2} 。 Between z_{1} and z_{2} the caustic exists, and at every value of z is tangent to that trajectory for which $|x|$ is a maximum. We eliminate x_{o}^{\prime} from Equations (VXTm13) to obtain the equation of the caustic, $x^{2}=-(4 / 27 c)(d+h x / m)^{3}$.

At this point it is convenient to introduce the dimensionless parameters \varnothing 活 $x / c \bar{x}_{0}^{3}$ hand $V \equiv v(w+S)$, where $S=2 / m{ }^{3}$, $w=d / r c+3 x_{0}^{2} / 4 h$ and $v=h x_{0}^{2}>0$ o This choice of parameters yields relatively simple expressions and at the same time avoids dividing the results into a number of separate cases according to the sign of m and the sign of c.

In terms of these parameters, the equation for the
caustic takes the form $X^{2}=\frac{1}{16}\left(1-\frac{4}{3} U\right)^{3}$
$(V I I-16)$

The total envelope consists of three parts and is referred to as the "threempart envelope"" The equation for the extreme trajectories $\left(x_{0}{ }^{\prime}= \pm x_{0}{ }^{0}\right)$ is $\not^{2}=\left(\frac{1}{4}+W\right)^{2}$.

The envelope is drawn in dimensionless coordinates in figo 4o The part of the envelope defincd by $(V I X-16)$ is between $V=-9 / 4$, . where the caustic is tangent to the extreme trajectories, and : $=0$, where it intersects the extreme trajectories. The caustic Lies within the extreme trajectories between $U=0$ and $U=3 / 4 ;$

MU. 30406

Fig. 4. The three-part envelope in dimensionless coordinates.
it is tangent of the zaxis at $Y=3 / 4$, the paraxial image for this choice of h, d, and c. The minimum beam width, the region of least confusion, occurs at $Y=0$, where the caubtic intersects the extreme trajectories.

Between $(U, \phi)=(\ldots 9 / 4,2)$ and $(\psi, \phi)=(0,1 / 4)$ the envelope is defined ky Eq. (VII-16); elsewhere, it is defined by the extreme trajectories ($V 1 X-17$).

The half width of the region of least confusion at $\psi=0$ is $\phi=2 / 4 ;$ this is one-fourth of the half width at the paraxial focus $(V)=3 / 4)$. The half width of the beam at the other end of the caustic $(V=-2)$ is twice the width at the paxaxial focus. Since $x=4 x_{0}^{3}$, it is clear that the beam widths at these points depend only upon the coefficient c and the maximun initial slope \bar{x}_{0}^{\prime}; these widths do not depend upox the coefficients d, h, and m, However, the location of the paraxial focus does depend upon d and r, and, in addition, upon c. $X f$ moc >0, the caustic will be on the upstream side of the paraxial focus, and vice versa.

We will illustrate the three-part envelope by giving numerical results for the double-focusing triplet referred to previously. Consider a point source on the axis with no momentum spread, and assume that the trajectories are constrained by a slit to lie entirely un the $x-z$ plane. For this example $c \bar{x}_{0}^{3}=C^{333}$ $=-0.1 .62$ in. The half width at the paraxial image is 0.162 in . while the half width at the region of least confusion is 0.04l in Here $m=-1, h=1$, and $d=0$; hence $w=0.000154$ and $z=(55434) 5$.

Whe location of the region of best focus $(/ / /=0)$ is $z=(55434)(-0.000154)=-8.53$ in. These figures may be verified by referring to cathode-ray tube (CRT) plot HA2 in Appendix TII.
2. The General Beam Envelove Near the Image For a Point Source

We now consider a more general situation in which we have spreads in $y_{o}{ }^{\prime}$ and Δ as well as in $x_{0}{ }^{\prime}$. Fox each choice of $y_{o}^{\prime \prime}$ and Δ, we obtain anique value for both d and h i the envelope obtained by wanying x_{0}, differs from the threempart envelope discussed above only in scale and in origin of the abscissa (axis). Our goal is to obain the envelope that contains the entire beam in the region near the image plane for the range of parameters

$$
\begin{aligned}
&-\bar{x}_{0}^{\prime} \leqslant x_{0}{ }^{\prime} \leqslant \bar{x}_{0}^{\prime},-\bar{y}_{0}^{\prime} \leqslant y_{0}{ }^{\prime} \leqslant \bar{y}_{0}^{\prime},-\bar{\Delta} \leqslant \Delta \leqslant \bar{\Delta}_{0} \\
& \text { As } y_{0}^{\prime} \text { and } \Delta \text { are varied within the stated bounds, the }
\end{aligned}
$$ parameters w and v vary within the bounds $\quad \omega \leqslant w \leqslant w$ and $0<v \leqslant v \leqslant v_{0}$ The parameter w determines the point where the caustic is tangent to the z axis, and v is acaling factor. For any value of w, all the trajectories ror $-\bar{x}_{0} \quad \leqslant x_{0}{ }^{\prime} \leqslant \bar{x}_{0}$ ' and $v \leqslant v \leqslant v$ lie within the three-part envelope: $\phi^{2}=\left[1-\frac{4}{3} \bar{v}(w+5)\right]^{3}$ for $-9 / 4 \leqslant \bar{v}(w+5) \leqslant 0$,

$$
\begin{equation*}
\phi^{2}=\left[\frac{1}{4}+\bar{v}(w+5)\right]^{2} \text { el sewhere. } \tag{VIx-18}
\end{equation*}
$$

(As v and w are not necessarily independent, we may have $\underline{v}<\underline{v}\left(w_{1}\right) \leqslant v\left(w_{1}\right) \leqslant \bar{v}\left(w_{1}\right)<\bar{v}$ for a particular $\left.w_{1}\right)$ 。

A variation in w now merely translates this envelope along the 5 axis. The total envelope, containing the entire beam, consists of a portion of the three-part envelope with $w=\bar{w}$ for $S \geqslant S_{0}$ and a portion of the three-part envelope for $w=w$ for $S \leqslant S_{0}$ where S_{0} is the intersection of the envelope for $w=w$ with the
envelope for $w=w$.
(VII-1.9)
We now define U as $V=v(\underset{w}{w}+J)$ and introduce $\Delta \psi \approx=v(w-w)>0_{0}^{\infty}$ The quantity ΔV determines whether the total envelope consists solely of two paixs of extreme trajectories or whether it contains a cautic region。 for $\Delta y \geqslant 4$, the total envelope consists of two pieces, both of which are pairs of trajectoriesi this is the case When the dispersive efiects completaly overshadow the spherical aberxation efxects. The envolope ig given by

$$
\begin{align*}
& \phi^{2}=\left(\frac{1}{4}+V\right)^{2} \operatorname{san} U \leqslant U_{0} \\
& \phi^{2}=\left(\frac{1}{4}+\Delta V+V\right)^{2} \text { for } V \geqslant U \tag{vxx-20}
\end{align*}
$$

where \bigcup_{o} is the location of the region of least confusion;

$$
\begin{equation*}
W_{0}=-\frac{1}{4}-\frac{1}{2} \Delta V<-\frac{9}{4} \tag{VIX-21}
\end{equation*}
$$

If $\Delta V<4$ (but $\Delta \psi \neq 0)$, the total envelope consists of three parts, the additionel part being a caustic because of the spherical aberration terms

$$
\begin{array}{ll}
\phi^{2}=\left(\frac{1}{4}+U\right) & \operatorname{cor} U \leqslant \frac{9}{4} \\
\phi^{2}=\frac{1}{16}\left(1-\frac{4}{3} U\right)^{3} & \operatorname{sor}-\frac{9}{4} \leqslant U \leqslant\left(V_{0}\right. \tag{VIx-22}\\
\phi^{2}=\left(\frac{1}{4}+U+\Delta V\right)^{2} & \cos U \geqslant U
\end{array}
$$

Hece $\|_{\theta}$, the location of the region of least confusion, is given by

$$
\begin{equation*}
\left(1-\frac{4}{3} \psi_{0}\right)^{3}=\left(1+\frac{1}{4}\left(\psi_{0}+\frac{1}{4} \Delta \psi\right)^{2}\right. \tag{VIX-23}
\end{equation*}
$$

this equation has the approximate solution

$$
\begin{equation*}
=-2 / 3 \Delta V+14 / 384(\Delta V)^{2}-(\Delta \psi)^{3} / 384 \tag{VXX-2A}
\end{equation*}
$$

In fig. 5, we plot both the minimum halfowidth (at the region of least confusion) and (the logation of the region of least

MU. 30407

Fig. 5. The determination of the location and size of the best image.
confusion) as functions of ΔY. Figure 6 shows the composite envelope for $\Delta \psi=5 / 8$.

For any value of $\Delta V^{\prime \prime}$, the minimum halfowidth, \varnothing^{*},
is given by $\phi^{*}=\frac{1}{4}+(U)+\Delta U$.
(VIX $10-26$)

We have now determined the location of the region of least confusion and the beam width at that point for beam issuing from a source on the axis with a spread in momentum. If the purpose of the beam system is to produce a line image at a slit for momentum or mass resolution, we have determined where the slit should be placed and the resolution achieved.

The powermsexies expansion of x near the image for trajectories issuing from a point source $\mathrm{Cq}_{\mathrm{m}} \mathrm{E}(\mathrm{V}-52)$ is $x=c^{333} x_{0} 1^{3}+c^{433} x_{0} y_{o}^{12}+c^{53} \Delta x_{0}+c^{553} \Delta^{2} x_{0},+C^{663} x_{0}$ $+z \cdot x_{0} 1 / m+z \cdot D^{53} \Delta x_{0}{ }^{\prime}+\cdots$,
with z again measured from the paraxial image plane. In terms of these coefficients, we find $c=C^{333}$, whence $x=6 C^{333}, h=1+m \Delta D^{53}$. $d=C^{443} y_{o}^{\prime}+C^{53} \Delta+C^{553} \Delta^{2}+C^{663}$. and
$\Delta V=\left|\frac{C^{443}}{C^{333}}\right|+2\left|\frac{C^{53}}{C^{333}}\right|+\cdots \quad$. The location of the region of least
confusion is given by
$z_{0}=\frac{m}{x_{0}}, \frac{C^{333}}{}\left\{\bigcup_{0}-\frac{3}{4}-\frac{c^{663}}{C^{333}}+\left\{\frac{c^{53}}{C^{333}}\right\}+s^{\left.\frac{C^{443}}{C^{333}}+\cdots\right\} \text { for } \Delta<4,}\right.$ (VII-28)
and by $z_{0}=\frac{m}{x_{0}} C^{333}\left\{-1-\frac{c^{663}}{C^{333}}+\left(s-\frac{1}{2}\right) \frac{\frac{C}{}_{443}^{c^{333}}}{\{ }\right\}$ for $\Delta \geqslant 4$
Here $s=1$ if. $\mathrm{C}^{443} \mathrm{C}^{333}<0 ; s=0$ if $\underline{C}^{4 \pi 3} \mathrm{C}^{333}>0$ 。

MU. 30408

Fig. 6. The composite envelope.

3. Example of the Region of Least Confusion

For an example, let us return to the double-focusing triplet referred to proviously; we now consider a spread in $y_{o}{ }^{\prime}$, x_{0}^{\prime} and Δ_{0}. We have $\ddot{x}_{0}^{\prime}=0.0143, \bar{y}_{0}^{\prime}=0.0093$ ($d c \ldots$ mined by the 8 in. bore), and $\triangle=0.00025$. The normalized coefficients calculated by the digital computer are $\underline{C}^{333}=-0.1621, \underline{C}^{443}=-0.3768, \underline{C}^{53}=0.000301$, and $C^{553}=10^{-8}$. We calculate $\Delta V=2.36$, which shows that the total envelope consists of three pieces. From Fig. 5, we determine $\emptyset^{*}=1.2$ and $\psi_{0}=-1.4$. The minimum half width is then $1.2 \mathrm{C}^{333}=0.19 \mathrm{in}$. ; the region of least confusion is located at $z=-24$ in. The family of trajectories corresponding to the values of $\bar{x}_{o}^{\prime}{ }^{\prime}, \vec{y}_{o}^{\prime}$, and $\bar{\Delta}_{\text {given }}$ above is shown on CRT plot \#34 in Appendix IXI.

Provided the momentum spread is less than $\pm 1.13 \%$ in this example, there will be a three-part envelope, the middle piece being a caustic of sherical aberration type. A larger momentum spread will result in the entire caustic region being buried within the extreme trajectories.

As another illustration, we give numerical results for the doublet system described above which provides a line image 275 in. from the doublet of an incoming paralled beam. The two quadrupole magnets are 16 in . long with 8 in. diameter apertures; they are separated by 9.25 in . fo study the envelope in this example we replace $x_{0}{ }^{\prime}$ by x_{o}, y_{o}^{\prime} by y_{o}, c^{333} by $c^{1 l l}$, etc., because the trajectories forming the envelope all have zero initial slope but vary in initial displacement. We consider a monoenergetic beam with $\bar{x}_{0}=\bar{y}_{0}=3.0$ in. We find $C^{111}=-0.017$ in.
and $\underline{c}^{221}=-0.072$ in. the beam half width at the paraxial line image is the sum of the abrolute values of these two numbers, or 0.089 in. Δy, their ratio is 4.25 ; thus the envelope consists of the extrome trajectories only. Ve find $\mathscr{D}^{*}=\Delta V / 2=2.12$; hence the minimum beam width is 0.0361 in. $\bigcup_{0}=-2.38$. The quantity corresponding to m may be determined from the expression for x near the line image: $x=C^{111} x_{0}{ }^{3}+C^{22 l x_{0} y_{0}}{ }^{2}-z x_{0} / f+\cdots$, where f is the focal length of the leas. We replace in by $-f$ in the expression for the location of the region of least confusion, obtaining $z=-6.52$ in.. This agrees with the graph, CRX plot \#\#51, in Appendix $I I X$. For comparison, the calculated rms displacement at the paraxial image is 0.00755 in. For more general objectoplane distributions, calculation of the width and location of the region of least confusion becomes more complicated, generally involving all the coefficients of aberration. The computer plots representative sets of trajectories to scale, thus allowing easy deterimination of both the width and the location of the image of least confusion from the resulting graph. All the preceding formulas, which have been presented for the $x-z$ plane, hold for the $y-z$ plane when the appropriate substitutions are made.

Having discussed the projection of the envelope on the $y=0$ plane, and (by symmetry) the projection of the envelope on the $\mathrm{x}=0$ plane, let us now turn our attention to the projection of the envelope on planes near the image that are orthogonal to the optic axiso
C. The Aberration Figure .

In classic optics for rotationally symmetric systems, a point source on the optic axis is not imaged to a point in an uncorrected system, because of spherical aberration. Rather, the set of trajectories that form a given angle with the optic axis at the source are imaged on a circle whose radius depends upon the initial slope and also upon the point of observation. The image of a point source produced by a beam system lacking rotational symmetry is generally more complicated. The image produced by a quadrupole magnet system retains the two-plane reflection symmetry characteristic of the magnets. In this section, we analyze the shape of the figure traced out by the portion of the beam from an axial point source which passes through an elliptical aperture. The parametric equations for the group of trajectories that pass through this, aperture are $\mathrm{x}_{\mathrm{o}}=\mathrm{y}_{\mathrm{o}}=\mathrm{O}_{\mathrm{V}} \mathrm{x}_{\mathrm{o}}{ }^{\prime}=\overline{\mathrm{x}}_{\mathrm{o}}{ }^{\prime} \cos \theta_{0}$, $y_{0}{ }^{\prime} \doteq \bar{y}_{0} \cdot \sin \theta$, and $\Delta=0$ 。
(VII-29)
At the paraxial image plane the linear terms vanish, yielding, for the aberration $\mathfrak{i x}$ gure traced out by this group of trajectories, the equations

$$
\begin{align*}
& x=\underline{C}^{333} \cos ^{3} \theta+\underline{C}^{443} \cos \theta \sin ^{2} \theta \\
& y=\underline{C}^{444} \sin ^{3} \theta+\underline{C}^{433} \sin \theta \cos ^{2} \theta, \tag{VIX-30}
\end{align*}
$$

with $0 \leqslant \theta<2 \pi$.
The scale of this figure is proportional to the cube of the scale of the elliptical aperture; all the trajectories that would pass through the interior of the aperture region, if the intexior aperture were removed, would also pass through the interior of the figure in the paraxial image plane define by the foregoing parametric
equations.

$$
\begin{align*}
& \text { We may wite these equations in the form } \\
& x=C^{333} \cos \theta+\left(C^{443}-\underline{C}^{333}\right) \cos \theta \sin ^{2} \theta \\
& y=C^{424} \sin \theta+\left(C^{433}-C^{444}\right) \sin \theta \cos ^{2} \theta \tag{VII-31}
\end{align*}
$$

Since the linear terms, the fringing-field terms, and the chromatic aberration terms are proportional to $x_{0}{ }^{\prime}$ in the $x-z$ plane and y_{o}^{\prime} in the $y-z$ plane, we see that we may include them without increasing the complexity of the family of figures to be studied. However, if these terms are added or if the plane of observation is not the paraxial image plane, the scale of the figure will not be directly proportional to the cubs of the spe of the elliptical aperture. To treat the gencral case of the figure traced out by the set of trajectories passing through the elliptical aperture on some plane orthogonal to the optic axis and near the image plane, we must consider the equations

$$
\begin{align*}
& x=A \cos \theta+B \cos \theta \sin ^{2} \theta \\
& y=C \sin \theta+D \sin \theta \cos ^{2} \theta \tag{VII-32}
\end{align*}
$$

These equations contain four parametexs which determine the shape and size of the aberration figure.

Two of these parameters may be effectively removed by scaling the x and y axes; the qualitative shape of the figure is not changed by this scaling. We set $x=(A D+B C) X / 2 D$ and $y=(A D+B C) Y / 2 B ;$ then

$$
\begin{align*}
X & =(1+\varepsilon) \cos \theta+\alpha \sin ^{2} \theta \cos \theta \\
Y & =(1-\varepsilon) \sin \theta+\alpha \cos ^{2} \theta \sin \theta \tag{VII-34}\\
\text { where } \quad \varepsilon & =\frac{A D-B C}{A D+D C} \text { and } \alpha=\frac{2 B D}{A D+B C} \tag{VII-35}
\end{align*}
$$

The shape of the aberxation figure depends upon the two
parameters ε and α. Changing the sigm of ε is equivalent to interchanging x and y : hence we need only consider positive ε to classify all possible abercation figures.

$$
\begin{equation*}
\text { Let } X=x \cos \phi \text { and } X=x \sin \phi \tag{VIX-36}
\end{equation*}
$$

then we find

$$
\begin{align*}
& x^{2}=\varepsilon^{2}+(\alpha / 2+1)^{2}+2 \varepsilon \cos 2 \theta-\alpha(1+\alpha / 4) \cos ^{2} 2 \theta \tag{Vxx-37}\\
& x \frac{d x}{d \theta}=\frac{1}{2}[(\alpha+4) \alpha \cos 2 \theta-4 \varepsilon] \sin 2 \theta \tag{m3}\\
& \frac{\partial \phi}{d \theta}=-1+(\alpha+2)(1+\varepsilon \cos 2 \theta) / x^{2} \tag{VIT}
\end{align*}
$$

providing tan \emptyset is defined. Byeraming these equations and the equations for X and X, we can determine the desired characteristics of the aberration figure as function of the parameters α and ε 。 1. Illustrative Aberration Figures

We first note some distinctive figures that are obtained for certain integral values of the two parameters; several figures are reproduced ix Fig. 8.

With $\varepsilon=0$, we obtain several highly symmetric figures. A circle is obtained with $\alpha=0$, corresponding to the pure spherical aberration characteristic of systems with rotational symmetry. A circle is also obtained with $\alpha=-4$; however, this circle has the - interesting property that \varnothing is swept through three revolutions when θ advances through one revolution. With $\alpha=-2$ the figure is a rosette with the tips of the leaves lying on the coordinate axes. As $|\alpha| \rightarrow \infty$, a rosette is obtained which is rotated 45° relative to the rosette obtained with $\alpha=-2$.

As the plane of observation is moved further from the image plane, α is diminished, becoming small in comparison with
unity; the resulting aberration figure approaches an ellipse with semiaxes of lengths $l+E$ and $l-e$ respectively. As u is incroased in comparison to $1+\varepsilon$ and $l-\varepsilon$, the complexity of the figure increases, with as many as four loops or leaves developing in the figure. We now turn our attention to classifying figure types.
2. Classification of Pigure Types

As the parameters ε and α are varied, the aberration figure varies assuming shapes intermediate to the characteristic special cases described above Figure 7 shows the division of the ε, o. space into 22 regions, each of which yields a characteristic aberration figure. The significance of the curves that divide these regions is discussed below.

The number of loops in the figure is determined by the number of roots in the equations $X(\theta)=0$ and $Y(\theta)=0$. There are no loops if the only roots to these equations are $\theta=0, \pi / 2, \pi$, $3 \pi / 2, \cdots$, in which case the aberration figure may be considered a distorted ellipse with a maximum extent in the X direction of $1+\varepsilon$ and in the Y direction of $1-\varepsilon$. For $1+\varepsilon+\alpha<0, X$ also vanishes at $\sin ^{2} \theta=(1+\varepsilon) /(\ldots \alpha) ;$ here $X=(2+\alpha)[(1+\varepsilon) /(\ldots \alpha)]^{1 / 2}$ 。 $X=0$ has additional roots provided either $-\alpha>1-\varepsilon>0$ or $-\alpha<1 \cdots \varepsilon<0$. X and Y will both vanish at the same θ provided $\alpha=-2$ and $0<\varepsilon<1$, yielding a generalized rosette. Ghese regions have been separated in fig. 7 by the appropriate straight lines.

Inother distinctive feature of the aberration figures is whether they are concave or convex at the x axis and at the Y axis. For $2 \dot{\alpha}>E+1$, the figure is concave at the X axis; it is

MU-30A60

Fig. 7. Division of $\varepsilon_{\text {, }} \alpha$ space into regions yielding dixferent aberration figures.
at the X axis only for $2 \alpha>1-\mathrm{E}$.
A rosette-type figure is characterized by the fact that $r^{2}(\theta)$ has four maxima and four minima in the interval $0<\theta<2 \pi$ 。 This is characteristic of all figures in the region for which $|4 \varepsilon| \leqslant\left|(\alpha+2)^{2}-4\right|$. The curves separating the ε, α space into regions with four maxima and minima and region with two maxima and minima are the two parabolas shown on Fig. 7 .

Finally, for $-4 \leqslant 0 \leqslant 0, x^{2} \leqslant(1+\varepsilon)^{2}$ everywhere on the figure, and $r^{2} \geqslant(1-\varepsilon)^{2}$ for $\alpha \geqslant 0$ or $\alpha \leqslant-4$.

With the above criterea, the figure corresponding to any pair α, ε can easily be drawn. Figure 8 is an array of figures for six different values of ε (that is, $\varepsilon=0,0.5,0.75,1.0$, 2.0, and 3.0) and 12 different values of α (that is, $\alpha=-6,-5$, $-4,-3,-2,-1,-0.25,0,0.25,0.375,1.0$, and 2.0$)$; the figure is in three parts, 8a, 8b, and 8c.

3. Incoming Parallel Beam to Point Image

In the discussion above, we have been referring to the image of a point source on the axis, so that $x_{0}=0, y_{0}=0$, while $x_{o}{ }^{\prime}$ and y_{o} ' were varied. An inconing parallel beam, passing through the same elliptical aperture and then focused to a point (ior paraxial trajectories), produces exactly the same types of aberration figures on planes orthogonal. to the optic axis and close to the image plane. For a parallel beam, we set $x_{0}{ }^{\prime}=y_{0}^{\prime}=0$, $x_{0}=\bar{x}_{0} \cos \theta$, and $y_{0}=\bar{y}_{0} \sin \theta$, and scale as before. The coefficients involved are those of x_{0} and $y_{o}\left(\underline{C}^{111}, \underline{C}^{221}, ~ e t c o\right) ;$ the same separation into figure types applies.

4 anem motmentin

MUB-1892

Fig. 8a. Illustrative aberration figures.
$\epsilon=0$
$\epsilon=1 / 2$
$\epsilon=3 / 4$
$\epsilon=1$
$\epsilon=2$
$\epsilon=3$

$$
a=-2
$$

$$
a=-1
$$

$$
a=-1 / 4
$$

$a=0$

7.

Fig. 8b. Illustrative aberration figures.

आप

Fig. 8c. Illustrative aberration figures.
A. Remarks on the General Figure Types

In the above pages, we have discussed the considerations that lead to a great many distinctive figure types. Although some quantitative statements were made about the size of the figure, complete expressions for the maximum extent in the x, y, and radial directions would have to be divided into so many cases that this type of description would have little usefulness. As an alternative, the computer program was equipped to plot the aberration figure to scale, thus immediately showing quantitatively every characteristic of the figure.
D. Concluding Remarks on the Two Examples

In the previous parts of this chapter, we have examined the projections of the beam envelope in the neighborhood of an image. We have also developed expressions for the maximum and rms aberration displacements, which are useful for comparing aberrations of different beam systems. In this section we compare the aberrations due to misalignments, etco, with the inherent aberrations. We also discuss an improvement in the point-source to point-image beam system which reduces the aberrations.

1. Tolerances

Whe measure of tolerances required is that the effects due to misalignments, etc. should be smaller than the maximum aberration displacement. We use example $\not \equiv 1$, the double-focusing quadrupole triplet with unit magnification in both planes to illustrate the use of our results. In this example the maximum aberration displacements are 0.94 in . in the x direction and 1.35
in。 in the y direction.
The most important tolerance coefficionts (V-54) for the middle magnet are

$$
T_{1}^{0}=5.61, \quad X_{2}^{0}=-10.3, \quad T_{1}^{2}=-14.7, T_{1}^{4}=-4500 .=T_{2}^{3} \text { and }
$$

$f_{2}^{1}=13.10$ If δx and δy are the displacements of the midale magnet and ω its rotation, the displacements introduced are

$$
\begin{align*}
& \Delta x=5.61 \delta_{x}-14.7 \omega y_{0}-4500 \omega y_{0}^{\prime} t^{\circ} \cdot \tag{VII-40}\\
& \Delta y=-10.3 \delta y+13.1 \omega x_{0}+4500 \omega_{x_{0}}^{\prime}+\cdots
\end{align*}
$$

Thus, a displacement of 0.17 in. in the x direction would displace the imace by an amount equal to the maximum aberration displacement in the x direction; a displacement of 0.14 in. in the y direction would displace the image by an amount equal to the maximum aberration displacement in that direction.

A rotation of 1.3° in the second magnet will smear the image in both directions by an amount equivalent to the maximum aberration displacements. 'hhis damages image quality more than the simple displacement caused by the shifting of the magnet.

The smearing in the image due to the higher harmonic
components present in this magnet is
$\Delta x=5.6{\underset{n}{n=3}}_{\sum_{n}}^{\mathbf{i}_{n}} \rho^{n-1} \sin \left[(n-1) \theta+\delta_{n}\right]$
and $\quad \Delta y=10.3 \sum_{n=3}^{\infty} f_{n} \rho^{n-1} \cos \left[(n-1) \theta+\delta_{n}\right]$,
(VII-4L)
where $a=4 \mathrm{in}$. . If these effects are to be less than the maximum aberration displacements then we must have

$$
\sum_{n=3}^{\infty} f_{n}<0.035 \text {, That is to say, the total contribution }
$$

to the mafinctic fiold at full radius due to the harmonics must be
less than 3.5% 。

It is important $\%$ note that all the above rigures have been based on a comparison with the maximum aberration displacements. A comparison with the rms displacoments would yield tolexances that are smaller, by an order of magnitude。

The corresponding tolerances for the first and third magnets are slightly larger than the tolerances stated above for the middle magret. For example, $T_{1}^{0}=-3.80$ for both the first and the third magnets.

Since none of these tolerances should prove difficult to meet, it is clear that the inherent aberrations limit beam system performance in the example considexed.
2. The Reduction of Aberrations

In III. is. it was noted that the introduction of octupole magnetic field components frequently can be used to advantage to reduce offensive aberrations. Although we have tried to do so with the computer code in the examples described above, the results Were poor. Jmprovement of the linear programming techniques used in the code could probably enable it to prescribe octupole field components in a beneficial way.

The triplet magnet used for the calculations in example $; t$ may be replaced by two doublets; this is equivalent to splitting the center magnet of the triplet into two magnets. The effect of separating the two doublets up to 150 inches while mainta: \because ing the same location of the souxce and image points was studied with the code. For each separation the quadrupoles were readjusted so as to retain the doublemfocusing properties with
unit magnification in both planes. A separation of 50 in reduces the distances to the source and image from 275 in. to 250 in. t thus increasing the maximum slopes of the trajectories that pass through the magnets without encountering a wall along the way With equal solid angles, the aberrations for the system with a 50 in separation axe 25% to 30% less than the aberrations for the system with no soparation.

Even if the aperture of these magnets remains filled, the aberrations are reduced as the separation is increased. The tolerances in displacing a magnet are relaxed by about 4% since the same figure applies to the higher haxmonic influence, those tolerances are reduced by the same amount. The tolerances on rotating a magnet are xelaxed 13%. The maximum aberxation displacemeats are reduced about 5% though some coefficients are reduced by as much as $30 \%\left(C^{333}, c^{444}\right.$, and c^{111}, for example)。 The maximum abexrations aro reduced by small amounts because the maximum slopes permitted are larger than in the case with no separation between the doublets. Other than the increased power requirements, the only cosi in this separation is that of replacing one 32-in. magnet by twombine magnets. In this example the excitation of the center quadrupole magnets is increased from 1.79 $k_{g} /$ in. to $1.86 \mathrm{~kg} /$ in. . and that of the other quadrupoles is increased from J. $95 \mathrm{~kg} / \mathrm{in}$. to $2.05 \mathrm{~kg} / \mathrm{in} .0$

The effects of changing the separation of the quadrupole magnets in a triplet were also studied with the code. The quadrupole magnets in example the are separated by an effective length of 8.5 ino. If this separation is increased to 20 ino,
rotaining the image and object drift lengths at 275 in. the aberrations are reduced by 30% to 35%; the power requirements are also reduced, since the fradients are 20% smaller. If the separation is eliminated, the aberrations are 60% to 70% larger than those described in example $\not \mathbb{Z}$; the required gradients are increased by 34%. The solid angle admitted by the quadrupole magnets was assumed to remain unchanged in these illustrations.

VILE TMM 7O9O QUAD:RUPOLH ABERRATION PROGRAM
To chaculate abocrations and other properties of beam systems, a computer progran has been written for the $1 B M 7090$ digital computer.

A. Program Scope

Known as " $4 p^{\prime \prime}$, this progxam calculates firstmordex optical properties, including dispersion, of an arbitraxy beam system consisting of no more than thirty of the following types of beam elements:
(a) drift space;
(b) quadrupole magnet;
(c) octupole magnet;
(d) bending magnets with bends in ejther plane, with arbitrary angles of ontxy and exit, and with an arbitrary rield exponeat:
(e) pseudo-elemonts; which provide a drift space in one plane but not in the other, providing a handy device for specifying properties that occur at a different location in the x wa plane than in the $y-z$ plane;
(f) solenoid magretsi
(() any other type of element whose optical properties are described solely by fixed $3 x 3$ transfer matrices in cach plane.

In addition, the program calculates ald the aberrations, through third-order in the previously defined small parameters, of a beam system consisting of quadrupole and octupole magnets and driit spaces. The tolerance requirements on placements and construction of all constituent quadrupole marrots are also calculated. Convenient and easily interpreted output is provided

He prowran is esaijucu to execute very aeneral

Variations of all cesionatud paramoters of the beam system in order to obtain, as closely as posisible, desired first order optical properties while restricting each varied parameter to previously determined bounzs. In addition, the program will seek to minimize objectionable aberrations while keeping the first-order properties unchanred. May other features of the code allow the widest latitude in its application while retaining simplicity in its use.

Control of the 1 low through the program is specified by a sequence of "CilL cards" that are put in a memonic format similar to mnomonic computer instructions. Input and dutput options are mainly controlled through a series of internal switches that are set by a single card and that may be independently changed at any time.

B. Dasic Computer Required

'ihe present version of the program is designed to operate under the DOADRAN-II monitor on a 7090 computer equipped with seven index-registers, a cathode-ray-tube (CRI), and a direct data clock on channel D. The code is approximately onem half rai coded and one-half fok'inN coded, with FAP coding on most of the highly repetitive calculations and on the supervisor routines.

C. Required Injut Data

Whe input data needed to calculate the first-order
optical propertics of a beam system consist of the appropriate paxameters of length and field for each constifuent beam element: length, gradient for quadrupoles;
length, field, field exponent, orientation angles for bending magnets;
length, field fox solonoid magnets;
length for drift spaces and octupole magnetsi
Rlements described solely by their transfer matrices require the input of those matrices.

A beam system consisting solely of quadrupole magnets and duift spaces may be complotely describod by giving the field gradient as a function of distance along the optic axis. Given these data and a minimum of information about magnet locations, the code will calculate effective magnet and drift-space lengths, effective field gradients for the magnets, and the shape coefficio ents required for the calculation of aberrations. An additional feature provides for the construction of the field-gradient function, given the location ami agth of each quadrupole magnet and the "half width" characteristic of the fringing field of each magnet

A subsidiary feature of the code provides for direct integration of the differential equations for several trajectories by using the field gradient function, $\phi(z)$ 。

If it is desired to alter the parameters to effect a desired optimization, then the following additional data are required:
(a) Jist of the parameters that may be varied including
desigration of parameters to be varied together;
(b) minimum and maximum constraints upon each parameter to we varied;
(c) list of conditions to be satisfied, the desired properties.
D. Output brociuced by the Program

1. Field Data

When the beam system parameters are derived from a gradient dunction, either given or calculated by the code, the code plots graphs showing the gradient function and showing the separation, for each magnet, into a step function and a difference function.

2. Linear Properties

The primary output describing the linear properties consists of a full description of each element in the beam system and the $3 x 3$ transfer matrices in each plane If desired, transfer matrices to intermediate points may be provided.

Beam widths may be calculated and listed as well as the location and size of the virtual waists seen by each element in the system. In addition, the code may be directed to plot the beam profile in each plane for the entire system and also to plot the phase ellipses, in each plane, between each constituent element.

3. Optimization of Linear Properties

When asked to adjust certain parameters to achieve specified first-order properties, the code provides the usual data yielded by linear programming techniques. These data include
initial and final erxors in moeting the specified properties, the variations made in the parameters, the dependence of the error upon the constraints imposed, and the errors in meeting the constraints.
4. Aborrations

Additional data needed to calculate the aberrations of a system including only quadrupole and octupole magnets and drift-spaces consist of tho fieldmshape coofficients for the quadrupole magnets and the third derivative of the magnetic field for magnets having octupole field components.

The primary output for the aberration calculations consists of a list of the coefficients describing the tolerances of each magnet with respect to displacements, rotations, and undesired harmonics of the magnetic field, followed by a list of the coefficients in the expansions of x, y, x^{\prime}, and y^{\prime} in terms of $x_{o}, y_{o}, x_{o}{ }^{\prime}, y_{o}^{\prime}$, and Δ grouped by type of aberrationo These data are followed by the normalized aberration coefficients appropriate to the given bounds on the object-plane parameters. The maximum displacements in x and y due to the aberrations, assuming a rectangular object space, are calculated as are the rms displacements, which assume a hyperellipsoid objectoplane distribution.

If desired, the code will plot the aberration figure which is the image of a point source on the axis.

A five-dimensional raster of coordinates $\left(x_{0}, y_{0}, x_{o}^{\prime}\right.$, $\left.y_{o}^{\prime}, \Delta\right)$ may be specified by giving upper and lower bounds and increments in each parameter. Whe code will then calculate the
linear wiad aberration termis in x, y, x^{\prime}, and y^{\prime} for each trajectory whose object-plane coordinates are given by one of the points in the five-dinensional raster. Data may be plotted in addition to being listed. If they are plotiod, one may specify any or all of the three projections of the trajectories upon the coordinate planes. With the scales given upon the plots, the location and sizes of the "images of least confusion" may be quickly determined. The plots also show whether a small or large proportion of the trajectories is adversely afiected by the system's aberrations. Frequently the virtual sources are distinctively shown upon the plots. As all of these data aro highly dependent upon the region of object-plane phase space occupiod, provisions are included for changing this region and observing the effects of this change. With the exception of the plots, all the other data are calculated very rapidly. lhe code initiates a beam system, adjusts it to provide the spocified first-order properties, and then calculates all the first-order projerties and the aberration properties in a fraction of a minute. Plotting is considerably slower, taking between 2 seconds and a half minute, depending upon the complexity of the plot.
appendix I. Equattons for ablefration coefficientis

A complete list of the expressions that yield the coefficients of aberration follows. The symbolic notation used is that introduced in Chapter V, and is here redeffned for convenience. The following integral types axe referred to:

$$
\begin{aligned}
(m n)=\int_{0}^{z} \phi(\zeta) x_{m}(\zeta) x_{n}(\zeta) d \zeta, & \text { for example } \\
& (22)=\int_{0}^{2} \phi x_{2}^{2} d \zeta=\int_{0}^{2} \phi y_{e}^{2} d \zeta
\end{aligned}
$$

$(m \mathrm{mpq})=\left\{\begin{array}{lr}\int_{0}^{z} \phi^{2}(\zeta) x_{m}(\zeta) x_{n}(\zeta) x_{p}(\zeta) x_{q}(\zeta) d \zeta & \text { if } m \leqslant 4, n \leqslant 4, p \leqslant 4, \\ \text { and } q \leqslant 4 \\ \int_{0}^{z} \phi(\zeta) x_{m}(\zeta) x_{n}(\zeta) x_{p}(\zeta) x_{q}(\zeta) d \zeta \quad \text { if any } m, n, p, q>4,\end{array}\right.$
$\langle m n p q\rangle=\int_{0}^{z} \psi(\zeta) x_{m}(\zeta) x_{n}(\zeta) x_{p}(\zeta) x_{q}(\zeta) d \zeta$,
$(m n \mid p q)=\int_{0}^{2} d \zeta x_{m}(\xi) x_{n}(\xi) \gamma(\xi) \int_{0}^{\zeta} d \xi x_{p}(\xi) x_{n}(\xi) \phi(\xi)$.

The cums taken over the frincing fields are denoted by
$\operatorname{smn}=$

$$
c_{i} \phi_{s i} x_{m}\left(z_{i}\right) x_{n}\left(z_{i}\right) \text { for example }
$$

(all fringe fields)

$$
S 42=\sum_{i} c_{i} \phi_{S i} y_{o}\left(z_{i}\right) y_{e}\left(z_{i}\right),
$$

where
$x_{1}(z)=x_{e}(z), \quad x_{y}(z)=x_{0}(z), \quad x_{5}(z)=x_{e}^{\prime}(z), \quad x_{7}(z)=x_{0}^{\prime}(z)$,
$x_{2}(z)=y_{e}(z), \quad x_{4}(z)=y_{0}(z), \quad x_{6}(z)=y_{e}^{\prime}(z), \quad x_{8}(z)=y_{0}^{\prime}(z)$.

We have
$x_{c}(z)+x^{a}(z)=\sum_{1<k<j<i<6}^{\sum_{1}^{x+m}} \mathrm{C}^{i j k}(z) \quad \psi_{i} \psi_{j} \psi_{k}$,
where
$\psi_{1}=x(0), \quad \psi_{2}=y(0), \quad \psi_{3}: x^{\prime}(0), \quad \psi_{4}=y^{\prime}(0), \quad \psi_{5}=\frac{\Delta n}{p}, \quad \psi_{6} \equiv \psi_{0} \equiv 1$.

The tolerance coefficients are defined by:
$x^{\mathrm{t}}=\frac{\mu}{\phi} \mathrm{T}_{1}{ }^{o}+\frac{\delta \phi}{\phi} \mathrm{T}_{1}^{1} \psi_{1}+\dot{\phi}_{1} \mathrm{~T}_{1}^{2} \psi_{2}+\frac{\delta \phi}{\phi} \mathrm{T}_{1}^{3} \psi_{3}+\frac{\lambda}{\phi} \mathrm{T}_{1}{ }^{4} \psi_{4}$,
and.
$y^{t}=\frac{\nu}{\phi} T_{2}^{0}+\frac{\lambda}{\phi} T_{2}{ }^{3} \psi_{1}+\frac{\partial \phi}{\phi} T_{2}^{2} \psi_{2}+\frac{\lambda}{\phi} T_{2}^{3} \psi_{3}+\frac{\delta \phi}{\phi} T_{2}^{4} \psi_{4}$.

The equations defining the coefficients are
$c^{4 / 44}=\frac{1}{3} x_{2}(4444)-\frac{1}{3} x_{4}(4442)+\frac{1}{2} x_{2}(8844)-\frac{1}{2} x_{4}(8644)$
$\cdots x_{2}(8844)+x_{4}(8842)+\frac{1}{3} x_{2}\langle 4444\rangle-\frac{1}{3} x_{4}\langle 4442\rangle$,

$$
\begin{aligned}
& c^{333}=\frac{1}{3} x_{1}(3333)-\frac{1}{3} x_{3}(333.1)-\frac{1}{2} x_{1}(7733)+\frac{1}{2} x_{3}(7533)+x_{1}(7733) \\
& -x_{3}(773.1)+\frac{1}{3} x_{1}\langle 3333\rangle-\frac{1}{3} x_{3}\langle 333.1\rangle, \\
& c^{222}=-\frac{1}{3} x_{4}(2222)+\frac{1}{3} x_{2}(42222)-\frac{1}{2} x_{4}(6622)+\frac{1}{2} x_{2}(8622)+x_{4}(6622) \\
& -x_{2}(6642)-\frac{1}{3} x_{4}\langle 2222\rangle+\frac{1}{3} x_{2}\langle 4222, \\
& c^{1.11}=-\frac{1}{3} x_{3}(1.121)+\frac{1}{3} x_{1}(31111)+\frac{1}{2} x_{3}(551.11)-\frac{1}{2} x_{1}(7511)-x_{3}(5511) \\
& +x_{1}(5531)-\frac{1}{3} x_{3}\langle 2121\rangle+\frac{1}{3} x_{1}(3212\rangle, \\
& c^{422}=x_{2}(4422)-x_{4}(4222)+x_{2}(8642)-x_{4}(6642)+\frac{1}{2} x_{2}(8822)-\frac{1}{2} x_{4}(8622) \\
& -2 x_{2}(8642)+2 x_{4}(8622)-x_{2}(6644)+x_{4}(6642)+2 \cdot x_{2}(4422\rangle \\
& -x_{4}\langle 4222\rangle, \\
& c^{311}=x_{1}(3511)-x_{3}(3111)-x_{1}(7531)+x_{3}(5531)-\frac{1}{2} x_{1}(7711)+\frac{1}{2} x_{3}(7511) \\
& +2 x_{1}(7531)-2 x_{3}(7511)+x_{1}(5533)-x_{3}(5531)+x_{1}(3311) \\
& \left.-x_{3} \text { (3.2.1.) }\right\rangle \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& c^{4.42}=-x_{4}(4422)+x_{2}(4442)-\frac{1}{2} x_{4}(6644)+\frac{1}{2} x_{2}(8644)-x_{4}(8642) . \\
& +x_{2}(8842)+2 x_{4}(8612)-2 x_{2}(8644)+x_{4}(8822)-x_{2}(8842) \\
& -x_{4}\langle 4422\rangle+x_{2}(4442), \\
& c^{331}=-x_{3}(3311)+x_{1}(3331)+\frac{1}{2} x_{3}(5533)-\frac{1}{2} x_{1}(7533)+x_{3}(7531) \\
& -x_{1}(7731)-2 x_{3}(7531)+2 x_{1}(7533)-x_{3}(7711)+x_{1}(7731) \\
& -x_{3}(3311)+x_{1}(33321), \\
& c^{433}=x_{2}(4433)-x_{4}(4332)+\frac{1}{2} x_{2}(8833)-\frac{1}{2} x_{4}(8633)-x_{2}(7744) \\
& +x_{4}(7742)+x_{2}(8743)-x_{4}(8732)-x_{2}\langle 4433\rangle+x_{4}\langle 4332\rangle, \\
& c^{44.3}=x_{1}(4433)-x_{3}(4431)-\frac{1}{2} x_{1}(7744)+\frac{1}{2} x_{3}(7544)+x_{1}(8833) \\
& -x_{3}(8831)-x_{1}(8743)+x_{3}(8741)-x_{1}(4433)+x_{3}(4431\rangle, \\
& c^{211}=-x_{4}(2211)+\lambda_{2}(4211)-\frac{1}{2} x_{4}(6611)+\frac{1}{2} x_{2}(8611)+x_{4}(5522) \\
& -x_{2}(5542)-x_{4}(6521)+x_{2}(6541)+x_{4}\langle 2211\rangle-x_{2}(4211\rangle,
\end{aligned}
$$

$$
\begin{aligned}
& c^{221}=\cdots x_{3}(2211)+x_{1}(3221)+\frac{1}{2} x_{3}(5522)-\frac{1}{2} x_{1}(7522) \div x_{3}(6611) \\
& +x_{1}(6631)+x_{3}(6521)-x_{1}(6532)+x_{3}\langle 2211)-x_{1}\langle 3221\rangle, \\
& c^{411}=x_{2}(44111)-x_{4}(4211)+\frac{1}{2} x_{2}(8811)-\frac{1}{2} x_{4}(8611)-x_{2}(5544) \\
& +x_{4}(5542)+x_{2}(8541)-x_{4}(8521)-x_{2}\langle 4411\rangle+x_{4}\langle 4211\rangle, \\
& c^{322}=x_{1}(3322)-x_{3}(3221)-\frac{1}{2} x_{1}(7722)+\frac{1}{2} x_{3}(7522)+x_{1}(6633) \\
& \cdots x_{3}(6631)-x_{1}(7632)+x_{3}(7621)-x_{1}\langle 3322\rangle+x_{3}(3221), \\
& c^{332}=-x_{4}(3322)+x_{2}(4332)-\frac{1}{2} x_{4}(6633)+\frac{1}{2} x_{2}(8633)+x_{4}(7722) \\
& -x_{2}(7742)-x_{4}(7632)+x_{2}(7643)+x_{4}\langle 3322\rangle-x_{2}(4332), \\
& c^{441}=-x_{3}(4411)+x_{1}(4431)+\frac{1}{2} x_{3}(5544)-\frac{1}{2} x_{1}(7544)-x_{3}(8811) \\
& +x_{1}(8831)+x_{3}(85111)-x_{1}(8543)+x_{3}\langle 4411\rangle-x_{1}\langle 4431\rangle, \\
& c^{321}=2 x_{2}(4321)-2 x_{4}(3221)+x_{2}(8631)-x_{4}(6631)-2 x_{2}(7542) \\
& +2 x_{4}(7522)+x_{2}(6543)-x_{4}(6532)+x_{2}(7641)-x_{4}(7621) \\
& -2 x_{2}\langle 4321\rangle+2 x_{4}\langle 3221\rangle,
\end{aligned}
$$

$$
\begin{aligned}
& c^{421}=2 x_{1}(4321)-2 x_{3}(4211)-x_{1}(7542)+x_{3}(5542)+2 x_{1}(8631) \\
& -2 x_{3}(8611)-x_{1}(6543)+x_{3}(6541)-x_{1}(8532)+x_{3}(8521) \\
& -2 x_{1}\langle 4321\rangle+2 x_{3}(4211\rangle, \\
& c^{431}=2 x_{4}(4321)-2 x_{2}(4431)-x_{4}(8631)+x_{2}(8831)+2 x_{4}(7542) \\
& -2 x_{2}(7544)-x_{4}(8532)+x_{2}(8543)=x_{4}(8721)+x_{2}(8741) \\
& +2 x_{4}\langle 4321\rangle-2 x_{2}\langle 4431\rangle, \\
& c^{432}=-2 x_{3}(4321)+2 x_{1}(4332)+x_{3}(7542)-x_{1}(7742)-2 x_{3}(8631) \\
& +2 x_{1}(8633)+x_{3}(7641)-x_{1}(7643)+x_{3}(8721)-x_{1}(8732) \\
& +2 x_{3}(4321)-2 x_{1}(4332), \\
& c^{52}=-x_{4}(22)+x_{2}(42), \\
& c^{51}=x_{3}(11)-x_{1}(31), \\
& c^{54}=x_{2}(44)-x_{4}(42), \\
& c^{53}=-x_{1}(33)+x_{3}(31),
\end{aligned}
$$

$$
\begin{aligned}
& c^{552}=-x_{4}(22 \mid 42)+x_{2}(42 \mid 42)+x_{4}(42 \mid 22)-x_{2}(44 \mid 22), \\
& c^{551}=-x_{3}(11 \mid 31)+x_{1}(31 \mid 31)+x_{3}(31 \mid 11)-x_{1}(33 \mid 11), \\
& c^{554}=-x_{2}(44 \mid 42)+x_{14}(42 \mid 42)+x_{2}(42 \mid 44)-x_{1}(22 \mid 44), \\
& c^{553}=-x_{1}(33 \mid 31)+x_{3}(31 \mid 31)+x_{1}(31 \mid 33) \cdots x_{3}(11 \mid 33), \\
& c^{661}=-x_{1} 571-x_{1} 553+2 x_{3}^{551}, \\
& c^{662}=x_{2} 582+x_{2} 564-2 x_{4} 562, \\
& c^{663}=x_{3} 553+x_{3} 571 \cdots \cdot 2 x_{1} 573, \\
& \text { and } \\
& c^{664}=-x_{4} 564-x_{4} 582+2 x_{2} 584 .
\end{aligned}
$$

The coefficients in the expansions for $x^{\prime a}$ and $y^{\prime a}$ are obtained from the corresponding coefficients in the expansions for x^{a} and y^{a} by replacing each X_{k} appearing in the expression by its derivative, X_{k+4}. For example:
$D^{4.44}=\frac{1}{3} x_{6}(4444)-\frac{1}{3} x_{8}(4442)+\frac{1}{2} x_{6}(8844)-\frac{1}{2} x_{8}(8644)-x_{6}(8844)$

$$
+x_{8}(8842)+\frac{1}{3} x_{6}\langle 4444\rangle-\frac{1}{3} x_{8}\langle 4442\rangle
$$

Tolerance Coefficients

The tolerance coefficients for the k th quadrupole magnet are given by the following expressions with the integrals taken over the kth quadrupole, having no contributions elsewhere.

The tolerance coefficients are given by

$$
\begin{aligned}
& T_{1}^{0}=x_{1} \int_{k} \phi_{k} x_{3}-x_{3} \int_{k} \phi_{k} x_{1}, \quad T_{2}^{0}=-x_{2} \int_{k} \phi_{k} x_{4}+x_{4} \int_{k} \phi_{k} x_{2}, \\
& T_{1}{ }^{1}=x_{1} \int_{k} \phi_{k} x_{3} x_{1}-x_{3} \int_{k} \phi_{k} x_{1} x_{1}, T_{2}^{1}=2 x_{2} \int_{k} \phi_{k} x_{4} x_{1}-2 x_{4} \int_{k} \phi_{k} x_{2} x_{1}, \\
& T_{1}^{2}=-2 x_{1} \int_{k} \phi_{k} x_{3} x_{2}+2 x_{3} \int_{k} \phi_{k} x_{2} x_{1}, T_{2}^{2}=-x_{2} \int_{k} \phi_{k} x_{4} x_{2}+x_{4} \int_{k} \phi_{k} x_{2} x_{2}, \\
& T_{1}^{3}=x_{1} \int_{k} \phi_{k} x_{3} x_{3}-x_{3} \int_{k} \phi_{k} x_{3} x_{1}, \quad T_{2}^{3}=2 x_{2} \int_{k} \phi_{k} x_{4} x_{3} \cdots 2 x_{4} \int_{k} \phi_{k} x_{3} x_{2}, \\
& T_{1}^{4}=-2 x_{1} \int_{k} \phi_{k^{\prime}} x_{4} x_{3}+2 x_{3} \int_{k} \phi_{k} x_{1} x_{1}, T_{2}^{4}=-x_{2} \int_{k} \phi_{k} x_{4} x_{4}+x_{4} \int_{k} \phi_{k} x_{4} x_{2},
\end{aligned}
$$

ATPERUDIX'II

OPERATING INSTTRUCTIONS FOR QUADRUPOLE ABERRATION CODE
The scope of the code as described in Chapter VIII consists of two primary functions: (a) calculation of the linear and aberration properties of a beam system, and (b) adjustment of specified parameters of the beam system to provide desired optical properties. These calculations are executed by a large number of subroutines which operate under the direction of the program supervisor; it in turn is governed by a sequence of cards directing the order of calculations to be performed.
A. Supervisor

1. Call Cards

The cards that control the sequence of calculations are called "CALL cards". Each CALT card contains four fields, the first of which contalns a memonic word of from one to six letters. This word is matched against a table in the supervisor known as the "call list". For each name on the list, a location in the program is given; this location may be the entry point of some subroutine or the start of some calculational sequence within the supervisor. The name given on the call card must be left adjusted in the field and must contain no blanks. Upon recognition of the name on the card, the supervisor transfers control to the location corresponding to that name. If the name is not contained in the call list, that fact is noted and the supervisor reads the next card and again examines the call list.

The second and third fields of the call card each contain an integer whose function depends upon the particular call card involved. The last field is a print control field which is described, under subroutine

TRAP, in section D. $4 . \mathrm{b}$. The names that may be used on CAL工 cards are

- listed at the end of the next sectjon.

2. Repeating groups of Cntu cards

A sequence of CATI cards may be repeated a specified number of times by means of a subroutine in the supervisor called into action by the CALL card, REPEAT. The card, RFPPAT $m \mathrm{n}$, is followed by m CALT cards. The m CALJ cards are stored and each is executed in sequence, the sequence being repeated a total of n times. For example, the sequence of cards repeatoz75
DESTGN
SYSTEM
would cause the execution of 75 iterations of the linear programming problem set up by subroutine Design, and the resultant beam system is listed after each iteration under control of the SYSTMM card. Further description of the CALI cards DESTGN and SYSTHM is deferred until later.

Following the CAJL cards under the control of a REPEAT card, all data cards to be read by the CALI cards must appear in the order in Which they will be called. Many CALL cards may not be included in the domain of a REPEAT card -. for instance, a second RIEPEAT card or a CALI card that uses data in the second and third fields (these fields are not read for CALL cards in the domain of a REPEAT). Those cards which can be used in the domain of REPEAT are so noted in the CALL list.

Prion to the execution of the first CALT card in the domain of a REPEAT card, the following line is written; "REPEAT TFFE NEXT m CARDS n TTMES ."

In some instances the REPPAT sequence can be terminated before the normal exit. For example, if the error in meeting specifications in the
optimization routines is sufficientiy small at the end of a given iteration, the optimization routine exists to CAII, which executes the next call card after the REPEAT sequence.

When the execution of one CALI card has been completed, the code reads the next CALL card and initiate execution of this card. This is also true of REPEAT cards.
3. The CALT IIst

The following names comprise the CALL list; they are listed in three groups. The first group consists of those names which may be used on CALL cards in the domain of a REPEAT card as well as on CALt cards not in the domajn of a REPFAT card. The second group are those names which should not be used on CALI cards in the domain of a REPEAT card but which may be used on other CAJL cards. The third group consists of names which may not be used on any CAJL card but which may be used as reference names on AITER, PEFK, and TIEST cards.
a. Names that may be used on CALI cards in the domain of a REPEAT card RKY3--integrates orbits through system using exact equations, BELL--creates gradient function for beam system using bell shape, INCHI--clears all aberration integrals, SHAPE--calculates quadrupole magnet parameters from gradient function, SUMI--forms aberration coefficients without octupole terms, SUM2--adds octupole term contributions to aberration coefficients, STATE--outputs aberration calculations, written and plotted, EKIT---ierminates calculations and returns control to monitor, FIRST--calculates first-order displacements and slopes of a trajectory, TrIRRD.acalculates higher-order terms in displacements and slopes,

FOCUS--adjusts two parameters to meet two conditions,
DESIGN-sets up and executes linear programming problem to adjust many parameters to meet many specifications,

PAUSE--executes halt and proceed, with clock disconnected, for operator action,

NORM-wcalculates normalized coefficients and mean aberrations, Stivet-changes program switches controlling various options, TMME-writes line showing time remaining for job, RJECT--starts new page with heading, shows time remaining, TJTLE--enters new heading text,

AITER---modifies stored instructions or constants,
READ--enters parameters of bearn system,
"IRACE---calculates first-order properties of beam system, SOLVE--claculates aberrations for system and lists them, SYSTEM--writes system parameters and calculates first-order properties, DUMPC---dumps COMMON region and exjits to monitor DUMPAL--dumps COMMON region and program region, exits to monitor, PRTYD--plots CRT identification preceding plotting, sets IF (10) to 0 , POSTID-plots CRI identification completing film, sets $\operatorname{IF}(10)$ to 1 , TUNCF--punches beam-system parameter cards, PRERK...sets up and executes snapshot dump,

VARY--changes the parameters of a single beam-system element, ASSIGN-assigns dumm variables to system parameters for optimization, FRRSETI---sets specifications to be met by optimization routines, TNITRR-w-calculates initial errors in meeting desired speciffcations, RJITINE--adjusts parameters to minimize aberrations, NHWP..-enters new design momentum, SAVE--writes current beam-system parameters on select tape,

NOIE-reads text and prints on-line for operator instruction, OBJECT--rreads object-plane parameters, SCWRIT SHOW writes transfer matrices and locations of focal points.
b. Names that may be used on CALL cards not in the domajn of REPEAT card SCAN-acans Rivemdmenstonal object-plane space, print, plot, REPEATmexecutes a group of CALH cards sevexal tines in succession, CHANGE--same as RTPPAT except that the parameters of one element change, UNIDAD--writes end of file and unloads selected tape, ourtap-mselects new output tape, TEST--skips or executes a group of call cards, depending upon test outcome, REMOVE---removes selected element from beam system, TNSERT---inserts additional element into beam system, SAVTAP.--selects utility tape for saving system parameters, RELOAD--reloads system parameters from tape, locates "best" system, SELECT---assigns two utility tapes for use of SCAN, STATE, and RESCAN DEFINE--defines an user-chosen function to be used by optimization routines.
c. Subroutine names that may not be used on CALL cards

STEP--directs stepping linear or abberation calculations through elements of beam system,

SIMPLX, DEL, ERR, GEI, JMY, MTN, NEW, PIV, ROW, VER, XCK---subroutines in RS MSUB linear programming subroutine,

SHAPES-asets up calculation of parameters of quadrupole magnet, IABETR~~CRT plotting routine called BRLL, GRID--CRT plotting routine to plot coordinate grids, SOLVES--calculates aberration integrals and tolerance coefficients,

CHICHI--carries Pirst-order solulizions through quadrupole magnet, TINT--interpolation subroutine,

COEPT--determines five-point intexpolation coefficients, FPSI-calculates bell function in creating gradient curve, .WRKY--Runge-Kutta integration routine, W-mealculates higher-order terms for Runge-Kutta integration, WWRK--calculates dexivatives for Runge-Kutta routine, ABS--dummy entry point corresponding to location zero, RESCAN--plots aberration envelopes from data on utility tapes.

4. Program Options--SENSE cards

Thirty-one locations in the code are reserved for switches that are tested by the program to determine which options should be executed. Thirty of these switches form the array $\operatorname{IF}(k), k=1,30$. The other cell contains a single word, BOOL, which is always interpreted as a collection of bits and is usually inserted into the SENSE INDICATOR register for testing. .

All these switches are set and reset from a single card which follows the CAL工 card, SENSE (which instructs the supervisor to read the SENSE card). The first thirty columns of the SENSE card are interpreted as the thirty integers $\operatorname{IF}(\mathrm{k})$. A blank in one of these columns signifies "that the corresponding $\operatorname{IF}(k)$ is to remain unchanged; thus only those columns containing punches change the switch settings.

BOOL is always inserted as a twelve-digit octal word. Only the left half of the word is interpreted and stored. The right half of BOOL can be changed only by the program (or through an ALTER card). The word consists of 36 bits or binary digits, each of which may take the value zero or one. Groups of three bits are represented by a single octal
digit. The correspondence is: $000=0,001=1,010=2,011=3,100=4$, $101=5$, $110=6$, and $111=7$. BOOL must contain no blanks when entered on the SENSE card.

Some of the switch settings are changed by the program, particularly when conflicts arise.

Also on the SLINSE card is the CHIF field; CHEF is a flooting. point number which is used only in the Runge-Kutta integration routines. CHIF is the value of z at which a new SENSE CARD is to be read (to set new output options).
a. Significance of TP (k) settings. The listing of the significance of the switches which follows js for co ruenience; fuller explanations will be found in the description of the calculations affected by a particular switch.

TT(1) selects linear programming problem and is normally zero, $=0$ minimizes maximum error and sum of errors, $l=$ minimizes sum of errors, $=2$ minimizes sum of errors and prevents errors from changing sign.

IF(2) determines recovery procedure from IEXEM (normally I), $=0$ read-write error terminates current CALit card, reads next one, $=1$ code attempts to salvage data, and continue calculations.
$\operatorname{IT}(3)$ debug output from WWRX if nonzero (prints derivatives);
IF(5) normally zero; subroutine BELI prints PHI (z) if nonzero.
IF(7) " frequency of printing of solutions under RKY3, $=0$ no printing, $=k$, $k \neq 0$ then print every kth Runge-Kutta step.
-124-
Ir(9) number of times trajectory points are plotted in "Beam Crosssection" plots; $\operatorname{Ir}(9)=4$ is satisfactory.

ITP(10) CRT plotting switch; no plotting can be done unless $\operatorname{IF}(10)=0$ 。
$\operatorname{Tr}(11)$ relative intensity of plotted lines (as the magnet locations in BELI, and SHAPE plots) ; intensity is proportional to exp [-IF(11)]; $\operatorname{IF}(11)=1$ is satisfactory.
$\operatorname{IF}(12)$. intensity of grid lines is proportional to $\exp (-\operatorname{IF}(12))$; $I F(12)=6$ gives optimum appearance.

IF(13) number of times curves are plotted; $\operatorname{IF}(13)=3$ is good.
IF(14) intensity of trajectories in "Aberration Envelope" plots; jntensity is proportional to $\exp [-\operatorname{Tr}(14)] . \operatorname{IF}(14)=6$ is good provided about 100 trajectories are plotted.
$\operatorname{IF}(15)$. number of times heading text is plotted; $\operatorname{IF}(15)=3$ is good.
IF(16) normally zero. If nonzero, transfer matrices and error are printed every time the linear properties of the beam system are calculated (TRACE, SYSTMEM)。

IF(17) normally zero. If not zero, the constraint matrix for the linear programming problems set up by DESIGN and RRPTNE are printed.

IF(18) controls output of DESTGN and REPINE, $=0$ minimal output printed--initial and final errors and the arrays INFTX and KOUT, $=1$ medium output lists solutions, errors, basis (suggested output), $=2$ advances page and prints constraints in addition to above. IF(20) normalily zero. If nonzero, aberration coefficients are printed after each magnet under SOLVE, showing partial contributions due
to that magnet:
IF(21) controls plotting of phase ellipses under SYSTEM or TRACE, $=0$ no phase ellipses are plotted, $=1$ phase ellipses before the first element and after the last element are plotted, $=2$ phase ellipses between elements are also plotted.
$\operatorname{IF}(22)$ controls output of beam envelope properties under SYSTEM $\neq 1$ no output of envelope properties, $=1$ virtual waists at the end of the system are printed, $\geqq 2$ virtual waists seen by each element are printed, $=3$ or 4 - mbeam widths are printed for entire system $=4$ or 5 --beam envelope is plotted.

Those switches which are not listed above are presently not used.
b. Significance of BOOL options. The bits are numbered from left to right with the sign bit denoted as bit number l. Following each bit number is the octal word which place a 1 in that bit. Bits 2 m 18 are set from the SENSE card while $19-36$ are set by the program.

Bit Octal equivalent Significance

1. 400000000000 normally 0 ; debug dump of integral formulation by SOLVES if J.

2200000000000 normally 0; debug dump of partial sums for coefficient formulation by SUMI, SUM2 if 1.

3100000000000 normally 0; if 0, then aberration coefficients calculated at intermediate points ($\operatorname{IF}(20) \neq 0)$ refer to the expansions at the end of the system; if 1 , then coefficients refer to expansions at that
intermediate point.
4040000000000

5020000000000 set $5 y$ STPP; 0 denotes quadrupole field; 1 denotes no quadrupole field in given magnet.

6010000000000 set by STEP; 0 denotes octupole field; I denotes no octupole field component.

7004000000000 - if 0 , the third column of the transfer matrices will not be calculated through quadrupoles, if 1 , the third column will be calculated.

Bits $4-7$ are set by the program to avoid calculations that are not needed; such as calculating dispersive terms when there are no dispersive elements in the beam system, calculating the quadrupole components of the coefficjents through octupole magnets, or calculating octupole contributions in pure quadrupole magnets. Obvious time savings result. We now continue with the listing of the bits.

Bit Octal equivalent Significance
8002000000000 not used.
9001000000000 not used.
10000400000000 if 1, then partial sums in the formulation of the mean aberrations and maximum aberrations will be listed by STATE; if 0 , sums not listed.

11000200000000 if 1 , linear and total displacements and slopes will be listed for each trajectory in the SCAN raster by STATE; if 0 , trajectories not listed.
$12 \cdot 000100000000$ if 1 , abercation tigure will be plotted by STATE; if 0 , abberation figure not plotted.

13000040000000 not used.

14000020000000

15000010000000
16.000004000000

17000002000000

18000001000000 not plotted if 0 .

19000000400000
$20 \quad 000000200000$
21. 000000100000

22000000040000 if 1 , both utility tapes required for aberration envelope plots are available and have been written; if 0 , tapes are not available (indicates either no SELECT card or error in SELECT card).

23000000020000 if 1, utility tapes have been requested by STATE
(request granted by SCAN if tapes are available); if 0 , tapes have not been requested.

24000000010000 indicates which utility tape iss being written (SCAN)
25000000004000
through not used.
$30 \quad 000000 \cdot 000100$
31. 000000000040 if 1 , too much printing has been attempted under current CALL card.
32000000000020 if 1. more than 2300 lines have been written.
33000000000010 , if 1 , time is about to expire ($<0.15 \mathrm{~min}$ remains).
34000000000004 controls calculation of beam envelope properties by TRACE; if 0 , envelope not calculated.

35000000000002 if 1, at least one print line has been suppressed because of exceeding 2300 printed lines.

36000000000001 if $1, x$ and y transfer matrices are interchanged for current, beam element (used for BENDY).
5. General Considerations in Operating Code

The first card in the datia deck must be a MOMENIUM card which contains the desj.gn momentum. A IIIIE card with the heading text may be inserted following this card. A SENSE card should follow next since all switches are initially zero. The suggested first five cards are demonstrated in the following example.

The sense card should be followed by the CALI card, which initiates the first calculation. EJECT cards should be freely interspersed among the subsequent CALL cards to improve the clarity of the output . IITLE cards may also be inserted to denote different calculations.

All the cathode-ray tube output should be executed after a PREID card and before a POSTID card. The plots will be numbered; the corresponding number will appear on the printed output, showing exactly where in the calculations a particular plot occured. All plots will be dated and labeled with the identification "4P".

Every page of the printed output will be dated and identified. The current heading text will appear at the top of each page along with the page number.

Utility tapes must be assigned by SAVIAP or SELECT before they are needed; if they are not assigned, the calculations requiring their use will be skipped.

The card deck should end with one of the cards EXIT, DUMPC, or DUMPAL, followed by the monitor end-of-file card.

B. Calculation of Bearn Properties

1. Input and Output of Beam-System Parameters

The code is currently equipped to execute calculations on beam systems containing no more than thirty elements. Of the thirty elements, no more than five may be "black-box" elements whose optical properties are determined by (input) transfer matrices. Because of the number of parameters that may be varied in a bending magnet, the code considers a bending magnet to consist of two elements.

The parameters are stored in six one-dimensional arrays. For element k, $\operatorname{ITYPE}(k)$ determines the type of element (QUAD, DRIFT, ...) and also identifies the transfer matrices used with a black-box element. The three arrays $\mathrm{ZL}(k)$, XPHI (k), and XPSI (k) contain the primary parameters for element k, i.e., those which can be varied. The remaining two arrays, $X C L(k)$ and $X C R(k)$, contain parameters that cannot be independently varied. Of course many types of beam elements do not have this many parameters.
a. READ. The primary means of entering the parameters of the beam system is by means of the CALL card, READ, followed by one card giving the number of elements in the beam system and scaling parameters. This card is followed by one card for each beam element, giving the type of elenent and the parameters for that element (bending magnets, each thought of as two elements, require two cards). These cards, called EIEMENT cards, are fully described in Section E .5 of this appendix.

Bach parameter may be entered directly by means of the EIEMENT cards. If desired the previous value of any parameter may be retained
upon entering a new beam system mercly by putting a -l immediately to the left of the parameter's field on the EIEMBNT card.

Section B. 4 , below, describes the method of calculating the parameters of a quadrupole magnet, or series of quadrupole magnets, given the gradient as a function of distance along the optic axis. This calculation is executed by the subroutine SHAPE, and the resurts are stored in COMMON.

Any of the four parameters effective length, gradient, left shape coefficient, and right shape coefficient for any quadrupole magnet in the beam system (including magnets with octupole field components called 4 PLUS8 types) can be loaded from the stored results of the SHAPE calculations. The quadrupole magnets considered in SHAPE are numbered 1, 2, 3, \cdots; to enter a paraneter from quadrupole magnet number 3, for example, a 3 is placed imnediately to the left of the parameter field on the EIEMENT card for that element. Suppose we wish to enter the effective length and the left and right shape coefficients from the third quadrupole marget (in SHAPE) while entering the gradient directly. If this same magnet occurs at two different locations in the beam system, the deck could be as follows:

SHAPE				
READ				
07				
DRTPr.	300.0			
QUAD	3	2.0	3	3
DRIFT	9.75			
QUAD	34.0	-3.0	8.0	-8.0
DRIFP	9.75			
QUAD	3	2.0	3	3
DRIFP	600.0			
SYSTEM				

The significance of other cards in this deck is described e.lsewhere.

The same means may be used to enter the length of the drift space between two adjacent magnets in the SHAPE calculations, the code calculates the length between the effective ends of the kth and the $k+l$ th quadrupole magnets and inserts this length as the length of the intervening drift space. This is accomplished by placing the integer k immediately to the left of the $Z L$ field in the element card, DRIFT. An example of a doublet follows.

SHAPE
READ 04 $\begin{array}{lllll}\text { QUAD } & 0.1 & 01 & 0.1 & 01\end{array}$ $\begin{array}{lllll}\text { QUAD } & 02 & 02 & 02 & 02\end{array}$

In the above example, the system analyzed by sHAPE has been inserted as the beam system. The last eloment, the 500-inch drift space, had to be specified directuy, since it does not lie between two quadrupole macnets. The first card following the RWAD card is written in the format (I2, TFIO.5). The first field contains the number of elements in the beam system, KMAX; KMAX element cards must follow this card. The next five flelds describe the object-plane phase space, giving the largest displacements and slopes in the two planes and the bounds on $\Delta p / p$. These quantities are $\bar{x}($ columns $3-12), \bar{y}(13-22), \overline{x^{\prime}}(23-32), \overline{y^{\prime}}(33-42)$, and $\bar{\Delta}(43-52)$. These maxima are interpreted as the semi-axis lengths for the phase ellipes and the phase-space hyperellipsoid in X, X^{\prime}, Y, and Y^{\prime} introduced in Chapter II. They are also the quantities used to normalize the aberration coerficients to refer to a unit hypersphere in
the normalized phase space (Cnapter VII). Any one (:) five naxima may be later changed by insertion of the call cur UNECT. The last two fiejds on the first card lollowing the RAD ard determine the scaling to be used in the "beam profille" pot and the "bean phase space" plots. The scaling factor for displacomonts (whel muet be laseg than any displacement encountered along the beam system) appeare in colums 53-62. The scaling factor for slopes is placed in column $63-72$ and is the upper bound of the slopes encountered in the beam system.

Black-box elements, described by matrices, are entered into the beam system by inserting the element card MATRIX, followed by three cards on which the twelve nontrivial clements of the two 3×3 transfer matrices are punched. The element card, MTRIX, may contain a length in the ZL field which will be printed when the bean system is listed but otherwise enters into no calculation. Five matrices may be stored and each call card, MATRIX, must contain one of the integers $1.2,3,4$, or 5 which determines where the matrices are to be stored. It is possible to store one riatrix that refers to two elements by this scheme. Of course, different matrices should not be stored in the same locations. If this integer is negatịve, the matrices are not read, and the code assumes that the matrices were inserted by a previous READ seguence and are stored in the same location. This is consistent with the treatment of otner parameters; they remain unchanced when a -1 is inserted just to the left of the field that would otherwise have replaced them.
b. PUNCA. The call card, PUNCH, cauges the beam system to be written on the punch tape in the format described above. The resultant cards, when preceded by a READ card, may be used to insert the beam systern for a
subsequent job. The punched cards are labeled in columns 73-80 with the date and sequential numbering. A card containing the current page heading text, for identification, precedes the card sequence. The card, PUNCH, should be inserted following optimization sequences so that the optimized system can be loaded at some future time for aditional calculations.
c. INSERT. At any time the existing beam system may be augmented by reading the call card, INSERT m, which inserts a new bean element between elements m and $m+1$ of the current beam system. INSRRT 0 places the new element in front of the current beam system, while JNGRRS m with m- MAX places the new element after the current beam system.

The INGERT card must be followed by one EIENENT card punched in exactly the same manner as the ELEMEND cards for READ. If the new element is a bending magnet, then there must be a second ELEMENT card following the first. If the new element is a matrix, then three MATRIX cards must follow the ETEMENT card, MATRIX.
d. REMOVE. Any beam element can be removed from the beam system by inserting the call card, REMOVE m. The mth element is removed and the following line is written: "REMOVE BEAM ELEMENT 13 (BENDY)." In this example the call card would be RBMOVE 13 and the ljth beam element is a bending magnet. To remove a bending magnet, the first element of the two should always be the element referenced; removing a bending macnet reduces the number of elements in the beam system by two. c. VARY. The call card, VARY, is designed to allow the replacement of the paraneters ZT, XPHI, and XPST of a beam element. The card contains the number of the element, winch is to be varied in the first two columns.

The parameters ZL, XPHI, and XPSI are placed in the same locations as they would appear in on an Elewevir card. To chance the parameters of a bending magnet, the card must distinguish between the two elements comprising the bending magnet.
f. CHANGE. Frequently one wishes to observe the behavior of beam propertics as the paraneters of a single beam element are systematically changed. The call card, CHANGE $m \mathrm{n}$, executes a group of m call cards, in sequence, a total of n times. Before each execution of the sequence of call cards, the parameters of a selected beam element are incremented. Immediately fojlowing the call card, CHANCE, (preceding the first call card in the domain of CHANGE) a single card appears designating the element, k, to be changed and containing the numbers to be added to the paraneters of that element. The number k is placed in the first two columns while the numbers to be added to $\mathrm{ZL}(\mathrm{k}), \operatorname{XPHI}(\mathrm{k})$, and $\operatorname{XPSI}(\mathrm{k})$ appear in the same locations as those in which ZL, XPHI, and XPSI are punched in the ELEMENT cards. In the repetition aspects CHANGE m n is equivalent to REPEAT m n.
I. SAVI, RELOAD. Provisions have been incorporated into the code for writing the important parameters of many beam systems on binary tapes for future reference. Any one of these beam systems may be "reloaded", becoming the current beam system. The code may be requested to reload the "best" beam system, which is defined as the system satisfying the beam specifications (set up ty one of the subroutines ERRSET, DESIGN, REPINE, or FOCUS) with the minimum error. The use of these provisions is described in Section D.I of this appenaix.
2. Calculation of the First-Order Properties

After a beam system has been installed by one of the methods described above, all the desired first-order properties are calculated when the CALL card, SYSTEM, is read.
a. SYSTEM. The output obtained from SYSTMM depends upon the switches, $\operatorname{IF}(21)$ and $\operatorname{IF}(22)$, which are set by the SENSE card. SYSTEM first causes the listing of the elements contained in the beam system, giving the primary and derived paraneters for each element. The total length of the beam system concludes this part of the written output. IRACE is then called to calculate the optical properties.
b. TRACE. The primary function of TRACE is to calculate the transfer matrices for the beam system, TRACE nay be called by the call card TRACE; it is also called by the optimization routines. When called in these two ways, TRACE normally does not produce any written output. If the switch $\operatorname{IF}(16)$ is not zero, the transfer matrices are printed every time TRACE is called; this provision allows checking of the optimization routines.

When IRACE is called by the CALL card, SXSTMM, general output options apply. These range from as little as the transfer matrices, error in beam specifications, and the virtual waists at the end of the system to as much as a complete set of cathode-ray tube plots showing the envelope and phase-space ellipses throughout the system. The switch $\operatorname{IF}(21)$ controls the plotting of the phasewspace ellipses. The switch IF(22) controls the listing and ploting of the bean envelope. The $\operatorname{IF}(22)$ options include: (a) the listing of the virtiai waists seen by each element and the transfer matrices between object plane and each elcment,
(b) the listing of the beam half-widths at five equally spaced locations within each element, and (c) the beam envelope plot.

The beam envelope plot assunes a double waist to be present at the object plane; this represents no restriction, since the pseudo elements, DRTFTX and DRIFTX, may be used to provide a virtual dowle waist at the object plane for any system. Bach beam element is divided into five equal parts, the widths calculated at each of the five locations, and the envelope constructed of line segments between these points.

If a beam envelope plot is specified by $\operatorname{IF}(22)$, the code resets IF(21), if necessary, to prevent phase-space plots from appearing at intermediate points in the system. If both the profile and the intermediate phase-space plots are desired, the call card SYSTEM must appear twice, separated by a SENSE card changing IF (21) and IF(22). TRACE calls subroutine MERR, described in Section C below, to calculate the error in meetinc the beam specifications. MIDERR is called to calculate beam specifications involving DeFINE type functions.

The transfer matrices are printed by subroutine SHOW which also calculates and lists the locations of the focal points. c. STPP. Subroutine STEP is the master routine that guides the calculations of the beam properties. Coded in FORTRAN, STEP occupies nearly 2000_{10} (subscript indicates base of 10 as opposed to base of 8) locations in the core. STEP operates in three modes: the SYSTEM mode, the TRACE mode, and the SOLVS mode. Its primary function is to guide the calculam tions through the beam system, calling the necessary subroutines to carry out the requested calculations for each type of beam element encountered.

In the SYSTEM mode, STEP lists the current beam systern as described above.

In the MRACE mode, STPP calculates the envelope data and executes the profile and phase-space plots. It calls the follering subroutines to carry the first-order solutions of the trajectory equations through the various element types:
(1) CHICHI for quadrupole macnets, octupole magnets, and drift spaces.
(2) AXIAL for solenoid magnets.
(3) EDGE for the entrance and exit thin-lens effects of bending magnets.
(4) BBND to carry the solutions through the interior regions of a bending magnet.
(5) MPYMAT for black-box elements. MPYMAT is also called by AXTAL, EDGE, BEND, and DRIFT.
(6) DRIFTP for the pseudo elements DRIFTX and DRIFTY.
(7) JNCMI to initialize the solution vectors, $\mathrm{CHI}(\mathrm{k})$ and $\operatorname{DCHI}(k)$, at the start of the system.
(8) FSCIII, which moves the solution vectors from CIII k) and DCHI(k) to CHIO(k) and DCHIO(k) before each element. All of these subroutines comprise a single package requiring 370 _10 locations in memory. This package is FAP coded and is optimized with respect to space required and speed of calculation.

The SOLVE mode of subroutine STEP differs from the TRACE mode in two respects. The envelope properties are not calculated. The calculations for quadrupole and octupole magnets are carried out by the subroutine solve. Aberrations induced by other bean elements are ignored;
the same routines are used in the SOLVE mode as in the TRACE mode to carry the calculations through these elements.

3. Calculation of nberrations

a. SOLVE. The single call card, SOLVA, causes the code to calculate all the aberrations of the beam system. If bending magnets or solenoid magnets are included in the bom system, the aberration calculations are conducted as if these elements had no aberrations. The call card, SOLVE, causes two passes through subroutine STEP, the first in the trace mode and the second in the solve mode. The trace mode is required to obtain the final values of the solution vectors which are needed for the tolerance coefficients; these final values of $\mathrm{CHI}(\mathrm{k})$ are stored in the array SAVCHI (k).

In the solve mode, STEP first initializes the solution vectoxs by calling JNCHI and clears the aberration integrals by calling INCHI. For each quadrupole or octupole magnet in the system, solve is called to carry the integrals through that magnet. CHICHT is used by GOLVE to calculate the first-order solutions; one pass throuch SOLVE requires 111 passes through CHICHI. When the abermation integrals have been calculated, STEP calls SUM and SMATE to cive the output of the aberrotion calculations in the absence of octupole components. If there are any octupole components SUM2 and STAME are called to repeat the output, this time with the octupole components.

When aberrations are being minimized under subroutino RirTNE, the aberrations are calculated in the same manner except that no output is produced. When the integrals have been calculated, SUM and SUic are
called to calculate the coefficients of aberration, NORM is called to calculate the mean and maximum aberration displacements, and SCAN is called to calculate the data required by REFTNE.

Once the aberration integrals have been calculated they remain available to the program until they are recalculated. This is also true of the aberration coefficients. The normalized aberration coefficients are destroyed by either DESIGN or REFTNE; these coefficients can be restored by entering the call card NORM. The tolerance coefficients, calculated by SOLVE for each quadrupole magnet, are not available for use by the program. They are listed as they are calculated. b. STATE. Subroutine STATP lists the aberration coefficients, calls NORM, and then lists object-plane phase-space parameters, several derived quantities characterizing the aberrations, and the normalized aberration coefficients. BOOI is examined and, depending upon the switch setting in BOOL, additional output deta may be provided, primarily as plots.

The dexived quantities characterizing the aberrations listed consist of:
(a) The maximum displacements and slopes, including the fringing field aberrations and the second-order chromatic aberrations: These maxima are calculated for the model of object-plane phase space in which the beam is contained in the region enclosed by ellipses in the $x-x^{\prime}$ and yoy' planes.
(b) The maximum aberration displacements, calculated from the rectangular model of the object-plane phase space using Eq. (VII-5). The second-order chromatic aberration and the fringing-field terms are excluded.
(c) The sums of (a) and (b), which give an upper bound to the total beam half-width, including aberration terms.
(d) The root-mean-square aberration displacements calculated for the hyperellipsoid model of the object-plane phase space by using Eq. (VII-9)

These quantities are all available to the program for subsequent calculations, such as minimizing by REFINE.

Depending upon the setting of BOOL, STATE next calls SCANS to plot the beam cross section or list the final coordinates and slopes of the raster of trajectories considered in SCAN (see c, below).

Following the above, STATE then plots the aberration figure if instructed to do so by the setting of BOOL. The aberration figure is that figure which is traced out by the parametric equations $x=x^{\text {a }}$, $y=y^{a}, x^{a}=x^{a}\left(0,0, \overline{x_{0}^{\prime}} \cos \theta, \overline{y_{0}^{\prime}} \sin \theta, 0\right)=x^{a}\left(x_{0}, y_{0}, x_{0}^{\prime}, y_{0}^{\prime}, \Delta_{0}\right), 0 \leqslant \theta<2 \pi$, and $y=y^{a}\left(0,0, \overline{x_{0}^{\prime}} \cos \theta, \overline{y_{0}^{\prime}} \sin \theta, 0\right)$. This is the innage of an axial point source in a double-focusing system with an elliptical annular aperture.

Following the aberration figure, STATE calls RESCAiv twice if instructed to do so by BOOL. RESCAN plots the aberration envelope in the $x-z$ plane and then in the $y-z$ plane. The aberration envelope consists of trajectories in the neighborhood of the end of the system. The trajectories plotted are those considered in SCAN. In the event that an error occurs in assigning the two utility tapes required for these plots, RESCAN imnediately returns control to STANE. The tapes are assigned by the call card, SH:TECT m n.
c. SCAN. The call card, SCAN m, is equivalent to the FORTRNN statement, $Q=\operatorname{SCANSF}(m)$; both cause the execution of calculations upon a croup of trajectories originating from a raster of points in the objectplane phase space. The raster is constructed by defining lower bounds, $\operatorname{XINF}(\mathrm{k})$; upper bounds, $\operatorname{XSUP}(\mathrm{k})$; and increments, $\operatorname{XDEL}(\mathrm{k})$ in the five. object-plane coordinates $x_{0}, y_{0}, x^{\prime}{ }_{o}, y^{\prime}{ }_{o}$, and Δ. In each of these coordinates, we then consider the initial values, $\operatorname{XINF}(k), \operatorname{XINF}(k)+\operatorname{XDEL}(k)$, $\operatorname{XINT}(k)+2 * \operatorname{XDEL}(k), \cdots \operatorname{XINF}(k)+[n(k)-1] * \operatorname{XDEL}(k)$; where $\operatorname{XINT}(k)+n(k) * X D E L(k)$ $\{\operatorname{SSUP}(k)<\operatorname{XINF}(k)+[n(k)+1] * X D E L(k)$. SCAN then performs the specified calculations on the $N=n(1) *_{n}(2) *_{n}(3) *_{n}(4) *_{n}(5)$ trajectories which are obtained by including all the possible combinations of the object-plane coordinates obtained in the above manner. Note that if $\operatorname{XINF}(\mathrm{m})=\operatorname{XSUP}(\mathrm{m})$ and $\operatorname{XDEL}(m)>0$ for some m two groups of trajectories are run, one with the mth coordinate set to XITNF(k), the other with the mth coordinate set to $\operatorname{XINT}(m)+\operatorname{XDEL}(m)$. If one wishes to include just one value of that coordinate, then $\operatorname{XSUP}(\mathrm{m})<\operatorname{XINF}(\mathrm{m})$. $\operatorname{XDEL}(\mathrm{k})$ must always be positive, never zero.

These quantit:es, together with two others to be defined below [XMEAN(k) and $\operatorname{XDEV}(k)]$ are loaded by inserting the call card, OBJECT, followed by five cards containing the coordinates. The maximum values of the object-plane coordinates, which are used in calculating the bean widths and the quantities characterizing the aberrations, may also be entered on these cards (i.e., $\overline{x_{0}}, \overline{y_{0}^{\top}}$, etc.). Blank fields on these cards are ignored; the corresponding quantities remain as they
were before the card was read. To set a quantity to zero, an explicit zero must appear in the corresponding field. Following reading of the cards, the values of these parameters are listed in the same order as they are punched in the cards. This listing is also produced by STATE, and may be written at any other time by the insertion of the call card, SCWRTIT.

The calculations performed by SCAN depend upon the integer m punched on the card, SCAN m, or that which is the argument in the calling sequence, $Q=\left\{\begin{array}{c}\text { SCANSP } \\ (m)\end{array}\right.$. The possibilities are as follows.
(a) $m=0$. SCAN calculates the final displacements and slopes for every trajectory in the set considered. For each trajectory, a line is written containing Δ and the initial displacements and slopes, followed by the final values separated into linear and aberration parts (written as $x=2.34004+0.04502$.).
(b) $m=1$. The same calculations are excuted as above, but the resultant total displacements are both plotted (beam cross-section plot) and written on the output tape. If requested by a flag in BOOL (set by STATE), the final coordinates and slopes are written on the utility tapes assigned by SELECT. In order not to delay the tapes that are written at the same time the trajectories are plotted, the printed output contains the final slopes and trajectories, separated.into linear and (lineartaberration) terms. Plotting may be overridden by BOOL.
(c) $m=2$. The calculations are as above, but there is no printed output. Plotting may be overridden by BOOL.
(d) $m=3$. The root-mean-square displacement due to both linear terms and aberrations is calculated. For each trajectory, the radial displacement is calculated, weighted as described below, and added to the others to form the mean displacement.
(e) $m=4$. The root-mean-square displacement due to the aberration terms alone is calculated as above.
(f) $m=5$. The weighting coefficients are calculated and stored. This is done once to save time in calculations. The weighting coefficients used are calculated as follows. Let XIN(k) be the objectplane coordinates of the trajectory, then if \mathbb{N} is the total number of trajectories considered, the weighting factor w, is

$$
w=\frac{1}{N} \prod_{k=1}^{\frac{5}{k}} \operatorname{ExP}\left\{[\operatorname{XiN}(k)-\operatorname{XMEAN}(k)]^{2} / \operatorname{XDEV}(k)^{2}\right\}
$$

(g) $m=6$. Calculate aberration function specified on the condition card with condition no. zero.

The limit on the number of values permitted for each coordinate is 7 , putting the maximum number of trajectories treated at $7^{5}=3 \times 10^{8}$. The number of values permitted is not limited for the plotting of the trajectories. It is obvious that a great deal of care must be exercised in the selection of the number of trajectories to be considered, since' it is quite easy to set up calculations requiring hours to complete because of the excessive number of trajectories.

The calculation of the mean displacements as described above is time-consuming. The rms values, calculated by NORM from the formulas
given in chapter VII, axe preferablo for calculational uso.
Subroutines Prirst and Mind calculate the linear and abercation components, respectively, oit tic trajectoxy whose object-plane coorainates are stored at XIM(k). The fival displocenents and slopes are stored

 4. Calculation from Cradient Slot

An altemative method of calculating the optical properties of a bean systen that consists solely of quadrupole marnets and drift spaces, is the direct integrotion of the equations of notion using field values derived fron stored values of the magnetic field gradient along the z axis. rinis method is also available to the user of the code, prinarily to check the calculations carrjed out by the main body of the code.

The function (z), wiicin is proportional to the Rield gradiont, is stored in the array, por k), $k=1$, kudx. The fpacing in a between consecutive values in the arroy, Didinz, is eatered on the mommen card. Ife first value in tice array corresponds to $z=0$ (this defines $z=0$), and the last value in tire array corresponds to $z=Z \mathrm{Em} . \mathrm{D}$. The dimension of the array is 2000, hence (zmid/DELAA $)<2000$.

The gradiont aray \dot{A} entered by subroutine BiELL, Whicin constructs it from "bell-shaped" curves for each negnet. Provisions will be nade for entering this arrey directly sinould one possess the required neasurements of the gradient as a fuaction or distance along the optic axis.
a. BELL. To calculate the gradient array, the call card, BELL, is entered, followed by one MAGNIT card for each quadrupole mognet in the system. The magnet cards are followed by a single card giving ZEND. Prior to calling BETIL, the system BORE the increment between gradient values, DETTAZ, a reference gradient, GRAD, and the design momentum p_{o} must have been read on a MOMENTUM card such as the first card following the *DATA card.

The magnet cards contain a nonzero integex; the location of the center of the magnet, $Z M I D(k)$ (relative to $z=0$); the magnet's length, $Z L O N G(k)$; a factor $\operatorname{Fr}(k)$ that determines the length of the central plateau of constant gradient within the magnet; the "halfwidth", of the magnet's fringing field, $B W(k)$; and a relative exitation, $\operatorname{EX}(k)$. EX(k) is chosen so that the gradient at the center of the magnet is $\operatorname{EX}(k) * G R A D$. Ihe gradjent is assumed to be constant in the center of the magnet, starting to fall at a distance of $F R(k) * B O R E$ from either end. If $Z Z 2(k)>Z Z I(k)$ and the plateau region extends between $Z Z I(k)$ and $Z Z 2(k)$, then the magnetic field gradient function for $z>Z Z 2(k)$ is given by

$$
\operatorname{PHT}(z)=\operatorname{EX}(k) * \operatorname{GRAD}\left[1+(z-Z Z 2(k))^{2} / \operatorname{BW}(k)^{2}\right]^{-2}
$$

The gradient function for $z \forall Z Z l(k)$ is given by

$$
\operatorname{PITT}(z)=\operatorname{EX}(k) * \operatorname{GRADM}\left[1+(z-Z Z 1(k))^{2} / \operatorname{BW}(k)^{2}\right]^{-2}
$$

There should be no more than ten magnets in all. The gradient array, POT(k), is obtained by calculating the gradients separately for
each magnet and then adding them together. If the magnets are separated by a distance greater than three times their bore, this is a reasonable approximation. If the magnets are closer together, then the approximation suffers to the extend that there is leakage flux between neighboring magnets.

The resultant gradient function is plotted provided $\operatorname{TF}(10)=0$. The physical extents of the magnets are shown on the plot, and the locations of the magnet centers are listed. In each fringing-field region the half-width of the bell curve is shown by a line segment of length $B W(k)$, plotted slightly above the z axis.
b. SHAPE. With the gradient array, calculated by BELL, stored in POT(k), the program calculates the parameters of the quadrupole magnets which produce that gradient. To execute this calculation, the call card SHAPE is inserted. No computations other than the direct integration of the trajectory equations under control of the call card RKY3 should intervene between the call cards BELI and SHAPE; this is because some of the data needed by SHAPE would be destroyed by some of the other calculational routines, particularly the optimization routines, DESIGN and REPINE, which use the array, POT(k), to store the linear programming constraint matrices.

For each quadrupole magnet entered by BELL, SHAPE calculates the locations on either side of the magnet where the gradient vanishes. These two points define the region of integration to be used in the calculation of the effective lengths of the magnet and the shape coefficients
describing the fringing tield. Ihis calculation fais if the gradient does not vanish between consecutive magnets, a limitation in the code which will be overcome in a future version.

The integrals $\int \phi d z$ and $\int z \phi d z$ are calculated by a ten-point Gaussian integration formula; the integrals are taken over both the entrance- and the exit-field regions. From these integrals, the code determines the locations of the effective ends of the magnet, which are defined to be those points which would yield the same value to the integral. $\int \phi d z$ wexe ϕ a constant betreen the effective ends and zero beyond them.

The output consists of a listing, for each magnet, of the physical length, the effective length, the difference in the two lengths, the shape coefficients, the location of the effective ends, and the region of integration. For convenience, the physical and effective lengths are also listed separately for each half of the magnet. $Z M I D(k)$ is taken to be the center of the magnet for this purpose even though ZMID (k) may not bisect the effective length. If $I F(10)=0$, additional output in the form of cathode-ray tube plots is produced. There is one plot for each magnet considered. On each plot, the physical extent of the magnet is shown by a pair of horizontal lines, one near the top of the plot and the other near the bottom. The curve plotted is che "PHI complicated," whidn has been c, "Pher defined as the difference between the actual scalar potential and the step-function scalar potenticil, which vanishes outside the effective
ends of the magnet. The left and right shape coefficients (entrance and exit, respectivel.y) are listed on the plot. 'The portion of the z axis shown on the plot is the region of integration.

The results of the SHAPE calculations would be destroyed by the execution of any of the optimizing routines, and must therefore be used prior to the calling of an optimizing routine.
c. Direct, interration of the equations of motion. The code provides for the direct integration of up to twenty-five trajectories using the Runge-Kutta method. This calculation uses the gradient array developed by BEIT. No optimization routine may intervene between BELI and the dircet integration calculations. The Runge-Kutta calculations are involed by the call card ROY 3 . This card is followed by a single card containing DRIN and DROUT, cefined as the initial drift distant to the point $z=0$ (deined in BELI) and the final drift distance after the point $z=Z E N D$, respectively. DRTN and Diroull may be negative as well as positive. The card containin; DRIN and DROUT is followed by cards containing the inital displacements and slopes and the momentum of the trajectories to be integrated. There is one card for each trajectory. Ihese cards must contain no punches in the first two columns except the last card of the group, which must contain a positive integer in those columns. The first two trajectories, corresponding to the first two cards, are calculated from the linearized equations

$$
x^{\prime \prime}+\frac{n}{p_{0}} \cdot \frac{C}{P}(z) \cdot x=0 \text { and } y^{\prime \prime}-\frac{p}{p_{0}} \cdot \frac{P}{p}(z) y=0
$$

The remaining trajectories are calculated from the complete equations (to third order).

The trajectories are brought through a drift space to $Z=\operatorname{DELIAZ}$ and ane integrated from this point to the point $Z=Z_{1}$ where
 space from Z_{1} to ZEND+DROUN. The region of integration is chosen so that gradient values are always available forthe five-point intexpolation formulas.

The trajectories are listed before and after both the inital drift and the final drift. The listing at intermediate points is under the control of the switch TF(7). They are listed at every Runge-Kutta step exactly divisible by $I F(7)$ unless $I F(7)=0$, in which case they are not listed at all. If $\operatorname{IF}(7)=5$, for example, then they are listed at $z=5 H, z=10 H, z=15 H$, etc. The field CHIF on the SFASE card permits changing switches during the course of the integration. At each RungeKutta step, CHIF is examined; a new SENSE card is read if $z \geqslant C H I F$.

The Runge-Kutta method of solution is much slower than the Green's function power-series method used in SYSTEM, 'RRACE, and SOLVE. Calculation of twenty-five trajectories takes approximately one hundred times as much time using RKY3, as does calculation of the same trajectories to third order by SYSTEM, SOLVE, and SCAN(O). In addition, the output is much less useful, since few statements about the quantitative nature of the aberrations can be made from these trajectories.

C. Optimisettion of Paraneters

- The code contains three optimizing subroutines; two of these autines, DISIGN and RIPTNI, perform the desired optimization by the methods of linear prorramming (I.P.). The third subroutine, FOCUS, adjusts two parameters to meet two specified conditions by elementary methods. The methods using linear programing are very powerful; the number of independent variables considered and the number of conditions which may be specified are limited only by the number of storage locations available and time considerations. With linear programming, constraints may be imposed upon the variables to prevent the construction of nonphysical or undesirable solutions.

1. Linear Programming Theory and Application
a. The linear prosramming problem.

The general statement of the L.P. problem is, "choose a set of variables such that a given linear functional of the variables is minimized while a set of linear constraints upon the variables is satisfied."

- Let $x^{j}, j=1, \ldots, n$ be the set of variables. Let the functional to be minimized be

$$
\begin{equation*}
z=\sum_{j=1}^{n} c_{j} x^{j} \tag{A-1}
\end{equation*}
$$

and the constraints be

$$
\sum_{j=1}^{n} a_{j}{ }^{i} x^{j}=b^{i}, \quad i=1, \ldots, m, \text { where } m<n
$$

and $x^{j} \geqq 0, j=1, \ldots, n$. This is the standard form of the L.P. problem and is known as the primal problem.

An equivalent problem, known as the dual problem, is the more
useful problem for our purposes. The statement of the dual problem is, "choose the values of the variables $w_{i}, i=1, \ldots, m$ that minimize the functional

$$
\begin{equation*}
y=\sum_{i=1}^{m} b^{i} w_{i} \tag{A-C}
\end{equation*}
$$

subject to the constraints

$$
\sum_{i=1}^{m} a_{j} i_{W_{i}} \geqq-c_{j}, \quad j=1, \ldots, n
$$

The arrays $a_{j}{ }^{i}, c_{j}$, and b^{i} are the same for both forms of the problem. The value of z which is obtained as t' solution to the primal problem is the negative of the value of y obtained as the solution to the dual problem. The relationship between the primal and dual solution vectors is

$$
\begin{equation*}
w_{i}=-\frac{\partial z}{\partial b^{i}} \quad \text { and } \quad x^{j}=-\frac{\partial y}{\partial c_{j}} \tag{A-3}
\end{equation*}
$$

Referring to the primal problem, any set of the variables, x^{l}, \ldots, x^{n}, that satisfies the equations of constraint is called a feasible solution. The feasible solution which also minimizes the linear functional is known as the optimil fecsible solution. A feasible solution with no more than m of the n variables x^{j} positive (the rest being zero) is termed a basic feasible solution; a basic feasible solution for which exactly m of the variables x^{j} are positive is nondegenerate.

Let us visualize the n-dimensional space of the variables, x^{j}. Each of the equations of constraint defines a plane in this space. It can be shown that the region of this space that satisfies all equations of constraint is either void, a convex polygon (called a simplex), or a
convex region which is unbounded in sonc direction. A void solution sxace is realized if there is no facible solution of the problern. An unbounded region may lead to an unbounded solation.

The region of the n-dimensional space, for which the lincar functional takes a constant valuo, is also a plane. Farallel planes correspond to different values of the linear functional.

A convex region is derined to be a region for which every point, lying on the line connecting any two points in the region, also lies in the region. The family of planes, on which the linear functional takes constant values, progresses toward a vertex of the convex region, with each succeeding plane yielding a smaller value for the linear functional. Thus the minimum value of the linear functional (the optimal feasible solution) will occur at a vertex ox along the line connecting two vertices, in which case the planes correspondins to constant values of the lin. ear functional are parallel to the line connecting the two vertices. If. no bound exists in the direction of decreasing values of the linear functional, then the solution is unbounded.

It can be shown that each vertex in the convex region of feasible solutions corresponds to a basic feasible solution. Each basic feasible solution corresponds to setting ($n-m$) of the x^{j} to zero, reducing the equations of constraint to m equations in m unknown variables to which there is a unique solution, the vertex. The m columns of the constraint matrix, $A=\left|a_{j}^{i}\right|$, belonging to the positive x^{j} constitute the basis B corresponding to the vertex.

The solution procedure is to move from an extreme point to a neighboring extreme point by replacing a column in the basis with one
not in the basis. There is a tert to select the column to be replaced; this is, "the column to be replaced shall be the one which ylelds the greatest reduction in the linear functional." Anothex test determines when the optimal feasible solution has been found.

For further information on the formulation, solution, and theory of the linear programming problem, one should turn to a text on the subject such as that by Gass. 13

b. The Applica,tion of Linear Programming to Beam Design

We now turn our attention to the problem of adjusting the param meters of a beam system to provide specified optical properties while satisfying a number of constraintis. Let $f_{k}=f_{k}\left(v_{2}, v_{2}, \ldots v_{N}\right), K=1, M$ be a set of functions of the variables $v_{I} \ldots V_{\mathbb{N}}$ The f_{k} describe certain optical properties and may be chosen to be particular transfer matrix elements or functions of the transfer matrix elements. We define a set of exrors, $E_{k} f_{k}\left(v_{X} \ldots v_{N}\right)$ - F_{k} where F_{k} is the desired value of the function f_{k}. Deftne the set λ_{k} by $\left(\ldots \lambda_{k} \leqq \Psi_{k} \leqq \lambda_{k}\right)$, We deftne the upper bound of the errors to be $\lambda_{0} ; x_{0} e, \lambda \geq \lambda_{k}, k=1, M$. We define a total error, E, as follows: $E=\sum_{k=1}^{M} w_{k}^{k} \lambda_{k}+\mu \lambda$. Here the $w^{k}\left(w^{k}>0\right)$ are arbitrary Weighting factors that determine the relative importance of the errors $\mathrm{F}_{\mathrm{r}}{ }^{\text {g }}$ the factor $\mu(\mu \geqq 0)$ is also an arebitrary number that may be chosen to relate the importance of the largest error to the importance of the weighted sum of exrorse We shall assume the following constraints on the variables, $v_{i}: v_{1} \leqq v_{j} \leq v_{i}, i=1, N$.

Our problem is to choose the set $V_{1} \ldots V_{N V}$ satisfying the constraints that minimizes E. From the definition of E, it is clear that we desire $\mathrm{E}=0$ (I cannot be negative). We will assign the variables $V_{I} \ldots V_{N}$ to vary

In proportion to specified paramcters of the beam system with $v_{i}=0,1=1$, corresponding to the parameters of the indtial beam system. For small variations in these parameters, j.e., for small v_{i}, we have

$$
\begin{equation*}
B_{k}\left(v_{1} \cdots v_{k}\right)=\Psi_{k}(0, \ldots 0)+\sum_{i=1}^{N} v_{i} \frac{\partial E_{k}}{\partial v_{i}}+\ldots, k=I, M \tag{A-4}
\end{equation*}
$$

If this expansion is terminated with the Jinear terms then the problem which has been descxibed is the dual problem to a jinear programming problem. The constraints on this problem force the solution vector to lie within a closed surface, a simplex, in the N dimensional V_{i} space. An optimal feasible solution must exist to the problem as stated, since the constraints prevent an unbounded solution whereas there always exists at least one feasible solution, namely $v_{i}=0, i=1, N$, that yields the initial beam system parameters. Since the actual expansion of the error functions includes terms of higher order than the linear terms, we need to iterate the procedure of setting up the linear programming problem, solving it, and making the specified adjustment in the parameters.

In addition to the constraints v_{i} and $\overline{v_{i}}$ already introduced, more constraints may be added to the problem to maintain other properties of the system within certain bounds. We constrain the total length of the beam system to remain fixed; this constraint may be relaxed or removed if desired.

The variables, v_{i}, are brought into the problem as follows. Letting P_{r} be the \underline{t} th physical property of the beam system (length, grade ient, field, etc.), we set $p_{r}=p_{r_{0}}\left(1+v_{i}\right)$ for some i; the rth physical property then varies in direct proportion to v_{i} with $v_{j}=0$ corresponding to the initial value, $p_{r_{0}}$. In this mannex we indirectly obtain the error
functions F_{k}, and thus \mathbb{E}, as functions of the variables $\mathrm{v}_{1} \ldots \mathrm{~V}_{\mathrm{N}}$, Any group of parameters may be forced to remain in proportion by assigning them to the same variable, v_{i}.

The minimum and maximum constraints upon each $v_{i}\left(v_{i}\right.$ and $\left.v_{i}\right)$ are calculated so that each length assigned to v wili remain within the mino imum and maximum values permitted, and each field and gradient will remain Lessthan or equal in magnitude to the maximum value speciried.

The standard linear programming tableau for the problem as outLined is shown in table 1 . The first row of this tableau is known as the cost row. Bach column except the last one determines one constraint in the dual problem. Ihe \mathbb{N} rows following the cost row contain the coefficients of the \mathbb{N} independent variobles v_{i}. The next M rows contain the coefficients of the λ_{j} whereas the last row contains the coefficients of λ_{0} For each column, the sum of the entry from the cost row and the entries from the other rows, each multiplied by the appropriate v_{i}, λ^{\prime}, or λ is constrained to be nonnegative. The last column, called the "right hand side" (B), contains the coefficients of $v_{1} \ldots v_{N}, \lambda_{l} \ldots \lambda_{\mu}$, and λ used to calculate the total emor, E, which is to be minimized. The columns $2 N H$ and $2 N+2$ constrain the total length to remain fixed. 1 is the sum of the lengths which are allowed to vary with the variable v_{k}. 2. DESIGN

The call card, DFSIGN, will cause one linear programming problem to be set up and solved. Fxcept as noted below, DESIGN will call subroutine ASSIGN which reads the variable assignment from cards; DESIGN then calls subroutine RRRSET which reads the cards containing the specified

Table I. Standard linear programming tableau for beam-design problemo

optical properties that are to be achieved. ASSIGN and ERRSIRT are deso cribed later; the instructions for punching the cards are given in Sections E9 and E10 of this appendix. These cards are not read (the variable assjenments and specified optical properties are not changed) when DESIGN is in the domain of a REPEAT card or when columns $7 \ldots 8$ of the call card destin contain a nonzero integer.

After the parameters have been entered as noted above, DESIGN calls subroutine VSAVIS to save the current parameters of the beam system. Subroutine INTTTR is then called to calculate the errors in the specified optical properties for the current parameters of the beam system. The constraint matrix is set up next, using subroutine VPRTME which calculates the derivatives of the errors in each specified optical property with rew spect to the variables, v_{i}. In order to improve accuracy, each column of the constraint matrix is scaled so that the geometric mean of the column is unity. The first $2 N$ columns are not scaled since they contain two identity matrices, one of which can be used as the initial basis for the solution of the linear programming problem.

The linear programming problem which has been formulated is then solved by the RAND Corporation linear programming subroutine, MSUB. ${ }^{14}$ The entire adjustment, specified by the solution to the L.P. problem, need not be made. The code calculates the new error, after the parameters have been adjusted by $\frac{1}{2} v_{i}, i=1, N$ where the v_{i} are the solutions to the linear programming solution. If the error is smaller than the initial error, the parameters are adjusted by $\frac{3}{4} \mathrm{v}_{\mathrm{i}}$. However, if the error is larger than the initial error, the parameters are adjusted by $\frac{1}{4} v_{i}$ 。 This procedure is repeated a total of twelve times wi.th the factor multiplying the v_{i} increased by $\frac{1}{2} \cdot 2^{-\mathrm{k}}$ if the resultant error after the
kth ad.justment i.s smaller than the error before the adjustment; a den crease in the factor by the same amount is made if the error increased after the last adjustment.

If there is no optimal feasible solution (due to an error in input), the original system is restored and the parameters punched,

The output follows, according to the setting of IF(18). The min: imum and maximum constraints on the variables, the solution, rightwhandw side, current basis, primal solution, and constraint errors may be written. The initial and final arrors, the calculated improvement (the error calm culated by the linear programming subroutine), and the factor multiplying the vaniables v_{i} (chosen as outlined above) are always written, followed by the two arrays, INIIX and KOUP, described in the writesup to the MSUB routine.

VARMAX is reduced as the solution is approached; VARMAX is set to seven times the maximum adjustment made, if this results in a reduction. The absolute values of the variables, v_{1}, are constrained to be less than VARMAX.

If no optimal feasible solution exists, DESIGN exits to CALL; this results in terminating the REPEAT sequence if DESIGN was called in the domain of a REPEAT. Ihls exit will also occux if no further improvement can be made.

In order to execute a second iteration of the linear programming problem set up in design, a second DESIGN call card must be inserted. By placing a non-zero integer in colums $7-8$ of this call cark, the code will continue with the same problem. A large number of iterations can be executed under a REPEAT card; when so executed, no ASSIGN card or CONDTTION
cards will read. The REPEAT will be terminated before its normal conclusion if the code is unable to make any further improvement.

The subroutines which are used in the calculations controlled by DESTGN are described in the following paragraphs.
a. ASGTGN. ASSIGN is called by the subroutines DESIGN, FOCUS, and REPINE unless these subroutines are executed in the domain of a Reprat card. ASSIGN may also be called by the call card, ASSIGN. This subroutine assigns the parameters of the beam system, which are to be varied, to the specified v_{i}. It also reads the constraints upon each porameter that is allowed to vary. The cards read are described in Section $E 9$ of this appendix. The reading of cards is terminated by a card with wl punched in the first two columns. The variable assignment js printed offline; (the index k of the variables $v_{k} \equiv \operatorname{VAR}(k)$ is printed in octal)。 b. ERRSET. Subroutine ERRSIEP reads the CONDITRON cards; each of these specifies one optical property to be satisfied, the desired value of the specified parameter, and the weighting factor which determines the relative importance of the specified parameter. The group of CONDITION cards is terminated by a card with -l punched in the first two columns. The directions for punching these cards are given in Section ElO of this appendix.
C. TNTPER. Subroutine TNITER calculates the initial error in each specificd optical property and prints the desired value, initial value, error, and weight for each condition. The subroutine returns the total crror to the calling subroutine.
d. MIRRR. Subroutine MERR is called by subroutines TRACE and STEP and indirectly by subroutine INITIR to calculate the errors in the specified cotical properties. If more than 12 conditions have been assigned,
no errors will be calculated, as the limit on the number of conditions permitted 1 is 12.
e. VPRTME. The derivatives needed by the optimizing routines are cal.culated by subroutine VPRTME. Four point derivative formulas are used; the functions whose derivatives are required are evaluated for $\operatorname{VAR}(\mathrm{k})=$ $\cdots{ }^{*}$ VARFIX, -VARITIX, VARIIX, and 2^{*} VARFIX. VARIFIX is set to .0001, but may be changed by an AISER card (VARFIX is located at MERR+1248). VRRIME is called once for each independent variable $\operatorname{VAR}(k)$. The derivatives of the specified conditions (set by ERRSEP) are stored in the array DMAT(j). If the REFTNE problem is being solved, the derivative of the aberration function being minimized is calculated and returned in ZEND.
f. VSAVE. Subroutine VSAVE saves the inftial parameters; ZI(k) is stored at $\operatorname{SZL}(k), \operatorname{XPIII}(k)$ is stored at $\operatorname{SPHI}(k)$, and $\operatorname{XPSI}(k)$ is stored at $\operatorname{SPFI}(k)$. g. VRESTIT. Subroutine VRESTP restores the initial values of the parameters of the beam system and then alters the parameters as needed to calculate the derivatives under VRRIME. VRESET also calculates v_{jk} and $\widetilde{\mathrm{v}}_{\mathrm{k}}$ from the constraints entered on the ASSTGN cards.
h. VSET. Subroutine VGET is called at the conslusion of the optimjizing calculations to make the directed changes in the system parameters. i. DIFTNE, Twenty optical properties of the beam system are normally available for reference by the CONDIIION cards: These twenty include the twelve nontrivial elements in the two 3×3 transfer matrices, and certain functions of these elements that determine the locations and widths of the (virtual) waists. Subroutine DEPTNE enables additional functions to be constructed when the program is executed. Up to seven functions
may be defined by this subroutine. Fach function is defined by a maximum of twenty arithmetic operations. To definethe \sqrt{n} fifunction ($n=1, \ldots, 7$), the call card, DIFINE n, is entered, followed by three cards which define the function; the function number, n, must be placed in column 8 of the DEFINE card. The first card following the DEIPINE card contains the constants used in the arithmetic operations. The second card locates the parameters which are required. The thixd card contains the arithmetic statements which define the function; each of these statements is of the form: $A \otimes C$ where \otimes is one of the operations $(+, *, 1,, \infty)$. The format for punching these cards is explained in Section Fl4. The functions defined by DETHNE cards can be referenced by CONDIMION cards to specify some optical property; these functions may be calculated at some inter mediate point in the beam system, if desired.
j. MTDTRR. If any conditions require one of the define functions, MIDERR is called to calculate the error in that condition MIDERR is called once for each element in the beam system.
3. FOCUS.

A second optimization routine, that adjusts two parameters to meet two specified conditions, is called by the call card, FOCUS. The parameter assignment and condition specifications are entered in exactly the same manner as are those for DESIGN. If FOCUS is not in the dow main of a REPFAT card, then ASSTGN and ERRSET will be called provided columns $7-8$ of the FOCUS card are blank. The assign cards must assign $\operatorname{VAR}(1)$ and $\operatorname{VAR}(2)$; no other variables may be assigned. There must be exactly two condition cards. FOCUS calls VPRTME to calculate the derivatives of the two specified conditions with respect to the two indepen-
dent variables. The initial errors are calculated by INITER. The equations, $E_{1}+V_{1} \frac{\partial E_{1}}{\partial v_{1}}+v_{2} \frac{\partial I_{2}}{\partial v_{2}}=0$ and $E_{2_{0}}+V_{1} \frac{\partial E_{1}}{\partial V_{1}}+V_{2} \frac{\partial E}{\partial V_{2}}=0$, are solved for v_{l} and v_{2}. The adjustments are made by subroutine VSET. There can be no constraints on this problen. If the initial error is less than 0.000001 of if an error has been made in assigning parameters or con ditions, JOCUS exits to CAJL; this will terminate a REPEAT.
4. RIFTINE.

Subroutine RETTNE js called to minimize aberrations. RTFTNE operates through subroutine DrSIGN and solves the same problem except that the total error is defined as follows;
. $\mathbb{E}=v \sum_{j=1}^{\mathbb{N}} v_{i} \frac{\partial A}{\partial v_{i}}+\sum_{j=1}^{M} w_{j} \lambda_{j}+\mu \lambda ; \quad v$ is an arbitrary constant. The aberration function, A, is derined by a CONDITION card on which the first two columns are blank or zero; A may be defined as XRMS, YRMS, RRMS, XAMAX, YAMAX, ... (these quantities are defined in chapter VFI). If $\operatorname{IT}(2)=2$, RHITINE will minimize the aberration function but will hold the spectal optical properties fixed.

The other operating instructions for RIFINE are the same as those for DESTGN.

D. Utillity Routines

In this section, we discuss the remaining routines
available to the user of the code. The first group of routines is designed to enable wide latitude in the assignment and use of tape units for output use and utility use.

1. Tape Manfpulating Routines
a. Outtap.

In the event that a large amount of output printing may not be used but should be available in case it is needed, provisions have been made to put this output on a tape separate from the monitor output tape. The second tape can be saved and subsequently printed if the data is needed.

To change the output tape to logical tape m, the call card, OUTTAP m, is inserted: Subsequent output then appears on tape m provided that that tape is available. Should tape m not be listed in the IOU table, the call card, OUTTAP m, will be ignored. The message, $1 * * *$ operator *** dial tape c3 (LOGICAL 23) TO RECEIVE OUTPUT -- SAVE TAPE." is printed both on-line and offwline to notify the operator to hang the tape (this example is appropriate to the call card, oUTTPAP23).

This card may be followed by the call card, PAUSE, if the operator has not previously been instructed to prepare the tape.

The output may be returned to the monitor output tape or put on a third tape by inserting another OUTTAP card. b. Unload.

The call card, UNLOAD m, causes logical tape m to be terminated with an end of rille, rewound and unloaded. If logical.
tape m is not listed in the IOU table, then the UNLOAD card is ignored.

Since non-monitor output tapes are not unloaded, each tape assigned by an OUTPAP card should be subsequently unloaded by inserting an UNLOAD card when the tape is no longer needed.
c. Savtap.

The subroutine group, SAVPAP, SAVF, and RITHAD, makes possible storing the parameters of several beam systems so that a particular beam system may be restored for subsequent calculations. For example, one may wish to design a beam system to meet certain specifications, and to try several magnet arrangements. He may optimize the parameters, by subroutine DESTGN, for each magnet arrangement, storing the result on tape. When all arrangements have been optimized, the code may then be asked to restore that arrangement which best met the specifications.

The call card, SAVIAP m, prepares logical tape m to receive system parameters. The card is ignored if logical tape m is not included in the IOU table. If the tape is available, the operator will be notified to hang the selected tape. For instance, inserting SAVIAP13 will select logical tape 13 (machine tape B3 for the Iawrence Radiation Laboratory Fortran monitor) and print the following message on-line and off-line, "DIAT TAPE B3 (LOGICAL 13) FOR UTTIITY TAPE USE". It is recommended that utility tapes normally dialed for the monitor system be used.
d. Save.

The call card, SAVI, causes the parameters of the current beam system to be written on the tape selected by the last preceeding SAVIAP card. While writing the current system on the tape, the code
checks to see whether it is a better system than all of the systens previously stored on the tape. A system is said to be "better", if the total error in meeting specifications calculated by DESIGN, FOCUS, or RHerINE j s smaller than the total exror for any other stored bean system.

Upon completion of writing, the accuracy is checked; if an error is detected, the tape is backspaced and the writing done over. This process will be repeated untill no redundancy check is detected.

In the event that the utility tape has not been selected by a previously executed SAVTAP m card, a SAVE card will be ignored. A subsequent SAVIAP card will reset the register containing the location of the "best" system on the current tape. c. Reload.

The call card, RHILOAD m n, reloads the nth beam system from logical tape m. If $m=0$ and $n=0$ (or both blank), then the best system from the current utility tape is reloaded as the current bean system. If the selected tape is not available, the RELOAD card is ignored.

If a system is reloaded, the tape and the record read is printed off-line. For example the card, RELOAD2307, reads the 7 th beam system from tape C3 and prints the following message off-line, "GYstem no. 7 from tape c3 has berin reloaded."

As is the case when the beam systems are written on the utility tape by SAVE, the sy:stem read by RELOAD is checked for accuracy in reading, and will be reread until read accurately.

No more than 129_{10} beam systems should be placed on one tane. If one desires to locate the best system among a greater number of systems, he should enter a RELOAD card after about 100 systems have been stored on the tape, reassign the tape by a SAVTAP card, store the
system just reloaded by a SAVE card, and then continue with the comparisons.

Several utility tapes may be used in sequence, but the code will be able to locate the bost system only on the last tape assigned. f. Select.

If "aberration envelopes" in either the $x-z$ or the $y-z$ planes are to be plotted by subroutine STATE, then two utility tapes must be assigned prior to entering that subroutine. The call card, SELECT m n, assigns logical tiapes m and n as utility tapes for this purpose. If either of the logical tapes m or n is not listed in the IOU table, a flag is set which prevents any subsequent attempt to use the tapes.

An on-line message is printed requesting each tape specified.
The tapes chosen must be distinct, must be on a different channel than the cathode ray tube, and should not be any of the monitor input or output tapes or the current output tape assigned by a SAVPAP card. For the most efficient use, both tapes should be on channel B since the input and output topes are on channel A whereas the cathode ray tube is on channel C. These tapes may be changed at any time.

The tapes greatly speed up plotting the aberration plots, since the same data must be calculated for three separate plots. Two tapes are available so that one may be used while the other is being rewound, eliminating waiting for a tape to be rewound. Writing and reading of the tapes is fully buffered. While the last record read is being plotted, a new record is being transmitted. The new record is then checked for accuracy and reread if necessary. In most cases, both the tape units and the cathocle ray tube are in continuous simultaneous use. The tapes are always loft in the rewound position.

Example: The call card, SELECT1109, will assign logical tapes Bl and A9 for utility tape use for cathode ray tube plotting. 2. Output Control Utility Routines

Several Call Cards control offoline and on-line printed output and Cathode Ray Tube Output. These cards and their functions are described below.
a. Eject.

The call card, EJECP, staxts a new page of off-line printed output by writing a line of heading which includes the time remaining on the interupt clock. This card also resets the line count that determines when a page is full (see h., below)
b. Time.

The call card, TIMT!, causes the time remaining to be calculated and writiten on the output tape.
c. Title.

The page heading contains 72 arbitrary characters which are entered by the call card, TITTE, followed by a single card with the heading text in columns 1-72. A new page is started with the new heading text. The text may be changed at any time by inserting another THTE card.
d. Note.

Occasionally one desires to instruct the computer operator regarding operation of the program. The call card NOTE followed by a single card with Hollerith text in column`1-72, causes that text to be printed on-line and also off-line. If desired, this card may be followed by the call card PAUSE to halt the computer while the instructions printed on-line are carried out.

The call card PAUSIS halts the computer, with $\operatorname{FHP} 11111_{8}$ in the storage register, to notily the operator that some instruction, to be carried out, has been printed on-linc. Depressing the start key will cause calculation to proceed. The Interrupt clock is suspended during the halt.
f. Preid.

When the cathode ray tube is used, the film must be labelled to identify it. The call card PRETD causes initial labelling of the film output and should precede all CRT plots. This card will also set the "switch" $\operatorname{IF}(10)$ to zero, thus allowing the CRT to be used. f. Postid.

The call card, POSPID, causes the final labelling of CRT output and should follow the last plot. This card will also prevent future CRT use by setting $\operatorname{IT}(10)$ to a non-zero value. h. Automatic Page Advance.

Every time a "WRTTE OUTPUT TAPE 3" statement is executed, the program checks to see whether the current output page is full; if it is full, a new page is started by the BJECT subroutine. The current number of lines allowed on a page is 50; this may be changed by placing the desired number of lines per page in the address portion of location FULI ($=$ TRAP- -23_{8}) by means of the ALTER routine (section 7, below). 3. Exit Routines

When calculations are concluded, several options are available with regard to terminating the job.
a. Exit.

The call card, fXIl', immediately returns control back to the monitor.
D. Dumpe.
-170 .

The call card, DUMPC, dumps the common area of the program in both floating point and octal formats after which control is neturned to the monitor.
c. Dumpal.

The call card, DUMPAT, dumps the program in octal with mnemonies in addition to the DUMPC dumps.
4. Print Subroutines

The following subroutines are used by other parts of the program and are mentioned for completeness.
a. Print Routine.

The subrouting CVRT converts up to twelve BCD words to a binary card image and then prints this card image on line Control is returned to the calling routine while the line is still being printed. so that, in most cases, no time need be wasted for on line printing. b. Octal to BCD Conversion.

Subroutine ocral converts a single octal word to two binary coded decimal words for output purposes. c. Elimination of Preceding Zeros.

A 16 place table is located at A. in the supervisor routine for use with a CRQ instruction to replace leading zeros in $B C D$ words with blanks. d. Printing IOF Buffer.

Subroutine PRINJB will print the IOA buffer on-line, thereby reproducing on-line the last line of off-line output. 5. Test Subroutine

Provisions have been incorporated in the program for a general conditional branching of program control. The subroutine TEST
allows skipping or execution of a number of call cards, depending on the result of several tests which are specified.

Fach test specifies a location in the core (relative to one of the names given in the call list), a value, and a tolerance. The test is passed if the absolute value of the difference between the number stored at the specifind core location and the specjfied value is less than the tolerance. The test is fajled if the difference is greater than the tolerance.

This routine is exccuted by entering the call card, TEST m n, followed by m cards, each of which specifies one test. Whether or not the n cards following the test cards are skipped depends on the outcome of the tests.

If all the tests are passed then the next $|n|$ cards are listed and skipped if $n<0$; no cards are skipped if $n>0$. If any one of the m tests results in a failure, then the next n cards are skipped if $n>0$; no cards are skipped if $n<0$.

The format of the test card is described in Section E.11, below.

EXAMPIE: The error in meeting the specified beam conditions is stored at location 70712 by subroutine DESIGN. We wish to plot phase ellipses for the system only if the conditions have been met sufficiently well; if the errox is less than 0.001 , we will plot the ellipses. The following cards are entered:

SENSE

1				IF (10) $=1$
TEEST	01-3			
ABS	70772	0.	0.001	
SEENSE	0			$\operatorname{IF}(10)=0$

The first GENSIE card prevent; cathode ray tube plotting by setting $\operatorname{IF}(10)$ to 1 . If the flowting point number stored at location 70712_{8} is less than 0.001 in absolutie value, the next three cards will be executed. The SENGE card Collowing the TEST card resets IT (10) to zero, permitting ploting during the execution of the following SYSTrM card. If the number stored at 707.2 is larger than 0.001 in absolute value, the three cards following the Trer card will be skipped (but listed off-linc), and the call card immediately following the SYSTEM card will be executed next.

If any of the IESST cards refer to a subroutine name that is not, found on the call list, the test comparison specified on that card is ignored.
6. Alter Routine

No matter how general a code may be, the user will frequently wish to change constants used by the code or portions of the code itself to accomplish a particular aim. The ALPRR routine provides for the replacement of part or all of any instruction or constant in any subroutine by a word entered in any format on an "ALTER" card.

The call card, ALIMR, is followed by a single card which specifies the subroutine name (any name in the call list) and the octal location of the word boing altered relative to the subroutine entry point. The relative location is defined as the address of the word being modified minus the address corresponding to the subroatine name in the call list. To change constants or other data in COMMON, a pscudo-subroutine ABS is specified; the octal address relative to ABS is the absolute address of the word to be modified. If the subroutine name specified is not in the call list, no changes will
be made.
The name and location fields are followed by an octal word that is used as a mask; a bit in any location of this word prevents the corresponding bit in the word being modified from being changed. for example if the mask is 777777700000 only the address portion of the word will be modified.

The next field contains a variable format such as A6, F8.3, 012, 15, This format specifies how the new word is to be read. If one is changing a floating point decimal constant, he obviously wants to enter the replacement word in an E or F format. But if. an instruction is being changed then the 0 format is more convenient.

A s.ingle digit field follows the format field. If this field is blank or zero, the address of the replacement word is not relocated. If, however, the field is not blank, the address field of the replacement word will be relocated relative to the location of the word being modified. The relocation will be ignored if the address portion is masked out by the mask word.

The nex.t rield on the card is the replacement word, to be read by the variable format described above. The variable format also specifies the length of this field.

Immediately following the replacement word, 24 characters of descriptive text may be added. This text is reproduced off-line in addition to data showing what was altered. The subroutine name, the octal location relative to the entry point corresponding to that name, and the absolute location of the word being modified are printed off-line together with the octal digits of the word before and after modification. Examples of the use of ATrER cards are reproduced in Appondix III.

7. Peek Routine---Arbitrary Snanghot Dumps

A variable snopshot dump may be executed at any time by inserting the call card, plirk, followed by a card giving the region to be dumped and the type of conversjon to be employed.

The first two fields on the card contain the subroutine name (which must be in the call list) and the octal address, relative to the subroutine entry point, of the first word to be dumped, exactl.y as in the case of the MLTER card. The third field is the address of the last word to be dumped minus the address of the first word to be dumped, in octal (this is one less than the number of words to be dumped). The fourth field contains one of the integers $0,1,2$, or 3; this field specifies the conversion to be followed: 0 results in octal conversion, 1 results in floating point decimal conversion, 2 results in decimal conversion with decrements interpreted as decimal quantities, and 3 results in octal conversion with memonic machine instructions printed. Thus the card PFEK is equivalent to the Fortran statement, "CALT PDUMP (TWA, LWA, I)"。

If the subroutine named in the PRHK card does not appear in the call list the octal address will be taken as an absolute address. HXAMPLE: Some numerical quantities are stored between locations SOLVBS 624 and SOLVESt 654 which are used in calculating the aberration integrals; we can dump these numbers by inserting the cards:

PEETK
soLviribb62 4 bbb 301
Note that 654-624 $=30$.
8. Mror Routinos

The most likely crars are those relating to joput and output functions. Most of linese errors are detoctod by the Fortran input-output routinos IOI, Rif, WIR, or IOS; detection of errors by one of these routines rosults in a transfer to subroutine EXbin after the crror code and return address have been loaded into the srives TNDICATORG. The standard rontran monitor EXEM routine will correct some crrors, but in most cases, a transfer to lixM results in termination of the job.
a. 1 EXPM

In order to attempl; to continue with calculations, a separate Exliv routine has bem built into the supervisor routine for the cole. This routine prints the message, "(EXEM) CALLATD...BUFIGR CONTPNTS NRIF。", off...linc, followed by the Fortran IOH buffer in BCD; this is the card image or output line image that was being processed when the error was detected. The buffer data is followed by the octal contents of:
(a) ThC SHRGE INDICAIORS: the address and tag portions contain the error code while the decrement portion contains the return address.
(b) The LOGICAL ACCUMULATOR
(c) The MULTIPLIER-QUOTTENT; the acc and MQ generally contain the portion of the input-output toxt which caused the trouble.
(d) Tocation zoro-madress of calling sequence
(a) Location two - address tonsferred to by the STR instruction
(f) $\Lambda C C U M U A T O R-$ in $B C D$
(G) MQ-ain BCD

Tho code then attompts rocovery in the same manner as if
the START key were pressed when under non-monitor control. For further information refer to Appendix VIII of the IBM 7090 FORTRAN OPIRATTONS MANUAL.

The common errors and the actions taken are as follows: (a) 0, I illegal character in formal; treated as end of format (b) 1,$1 ; 2,1 ; 3,1 ; 4,1 ; 5$, 1 illegal character in data field; the offending character is treated as zero.
b. Tran.

Every WRITE OUTPUT TAPE 3 statement is trapped before it is executed. Subroutine TRAP tests for too much writing for the job; the current limit is 2300 lines. If the line about to be printed off-line is the first line to exceed the limit, then the warning, "EXCESSIVIS WRTTTNG CURTATIFD" is written and all subsequent writing is suppressed with the exception of important results. This feature may be over-ridden at any time by inserting a 2 in the fitth octal digit of BOOL on the SITNSE card (i.e. BOOL=BOOLt 000020000000). The limit of 2300 lines may be changed to any other number of lines by inserting the desired limit in the address portion of location LNDEST (LNTLEST=TRAPH-777578) by an AUIER card.

The last field on each CALL card gives the maximum number of lines which may bo printed during the execution of that card. An attempt to print a greater number of lines results in terminating the execution of that CALL card and the reading of the next CALJ card. If this field is zero or blank, no limit is placed on the amount of writing permitted under the CALI card.

These two tests may be used to prevent unforseen loops involving large amounts of writing; their main use was in debugging the code.

Subroutine IRAP also advances the output page when the current page is full. Fach page starts with a heading line, giving the data and time of the run, the amount of time remaining, the page number, and the text entered by the last TITIE card.

If the output tape has been reassigned by an OUTITAP card, TRAP inserts the correct output tape in place of logical tape 3 called for in the WRITE OUTPUT TATE 3 statement.

E．Input Card Formats

In this section，the exact placement of all data on the various types of input cards is described．The use of these cards is described in preceding sections．All lengths are in inches，all gradients in kilogauss／in．，all magnetic fields in kilogatiss，all momenta in $\mathrm{NeV} / \mathrm{c}$ ，and all slopes in radians．

1．CALL Card

The CALL card controls the execution of the many lifferent parts of the program．Its format is（AG，2I2，X5）．
colum description of use
l－6 Name of subroutine or program section called（left
adjusted）；the name must be one of those in the call list．
7－3 MREP field；integer（rightwadjusted）。
9－10 NREP field；integer（right－adjusted）。
The two fields above are used in REPEAT，CHANGR，INSERT， deletes Vary，saviap，outtap，unload，reload，etc．，cards．
llols LINMAX field；this is the maximum number of lines that can be written under the control of this card．If blank or zero，no limit will be imposed．The field is right－ adjusted。

2．SENSE Card
The SENSE card controls program options；its format is （3011，012，8XP6．1）．
column description of use
$1,2,3, \cdots, 30$
MF（k）；the first thirty colums give the changes to be made in the switches， $\operatorname{IF}(1)$ to $\operatorname{IF}(30)$ 。A blank
column indicates that the corresponding switch is not to be changed. If a switch is to be reset to zero, the corresponding column must contain an explicit zero. Refer to A. 3 for the switch assignmentso 3X-42 BOOL; these twelve colums may contain no blanks; they form an octal word which is loaded into the sense indicators. Only the first six columns are interpreted; the right half of this word is set by internal subroutines. 51-56 CIITi; this field is used only by subroutine RKX3.

3. TITLL Card

Following the call card, TXTLX, a TXLE card, containing the llollerith text to be insented into the output pare headinir, must appear. The text is to be written in the format (12A6) and consequently must appear in the first 72 columns of the card.

4. MOMBNCUM Card

The first card in the data deck must be the MOMENNUR card. This card also follows the call card, Nowl. The format for this card is (5rl4.6)
columns description of use
1-14 BORS; the diameter of the quadrupole magnets to be used.

This quantity is used only by subroutine BLLL.
15-28 P_{0}, the design momentum in MeV/c; the momentum is required for most calculationso

20-42 GRAD; a reference gradient in Kgauss/in. used by BELL。 43-56 DELTAZ; the increment in inches between values of PHI (k) (used by BELL and RKXZ).

57－70 M；the kungemkuta step size（increment in z）in inches．H is required only if the call card，RKY ${ }^{\prime}$ is used．

5．ELEMENT Cards

Following the call cards，READ，INSERT，CHANGE，and VARY， one or more cards containing beam system parameters must appear． For READ and INSERT，these cards are read by the format（AG． $5(12, F l 1.7))$ ．The first field ${ }^{\text {nives }}$ the element type whereas the remaining five groups，of two ficlds cach，specify up to five parameters．The element cards read by VARY or CHANGis differ slightly；they are described later．The locations and names of the fields for the element cards read by READ or INSBRT are： column field，doscription of use
l－6 TYPE；type of element，must be leftmadjusted and one of the following words：DRIFT，QUAD，4PLUSB，OCT，BENDX， BENDY，DRIPCX，DRLFRY，AXTAL，OE MATRXX．

7－8 IZL；directs loading of \quad ZL（normadly zero or blank） 9－19 ZL；length of element（in。）（a floating point no。）。 20－21 IPMf；directs loading of XPMI（normally blank）． 22－32 XPHX；parameter of element．

3ひ̈－3女 \quad PPSI；directs the loading of XPSI；always blank or zero． 35－45 XPST；parameter of element．

46－47 XCL；directs loading of xCL（normadly blank）。
48－58 XCL；left shape coefficient for quadrupole（entrance）．

59－60 \quad XCR；directs the loading of $X C R$（nommally blank）．
61.71 XCR; the right shape coefficiont fortquadrupole (exit)。
 zero; if they are zero then the next field is read into its normal location (for example, if $1 Z L=0$ then $2 h$ is loaded from the $Z L$ field on the card). If any of the integers are negative then the field following is ignored and the parameter corresponding to that field retains the value it had before the card was read (if IPIX $=-1$ then XPHI is unchanged)。 If any of the integer fields aro positive then the corresponding parameter is located in CONPON as described in B.l.a above; this option should not be used except for the elements DRIFX, 4lPLUSB, or QUAD.

If the element type is not one of those in the above list, then the element will be taken to be a drift space. a. QUAD. Co enter a quadrupole magnet the name "QUAD" is placed in columns $1 .-4$ on the element card dil is the effective length in inches, XPHX is the gradient in Kgauss/in. (positive if convergent in the $x-z$ plane). $X C L$ and $X C R$ are the fringing field shape coefficients for the entrance and exit ends of the magnet, respectively. They are the chan described in V.D and have units of in ${ }^{2}$.
b. DRIPT, DRIPRX, or DiRXPY. To entex a drift space in both planes or in the x plane alone or the y plane alone, the element type is DRIRC, DRIPTX, or DRXPTX, respectively. The leagth of the drift space is placed in the $2 k$ field.
c. OCT. To enter an octupole magnet, the name "OCT" is placed in columns l-3 of the element card. The effective length of the manet is placed in the ZL field. The strength of an octupole magnet is
determined by the third radial derivative of the absolute value of the magnetic field, this derivative being constant throughout the aperture of an ideal magnet. The strength is entered in the XPSI field of the element card in units of gauss/ in ${ }^{3}$ (positive when the ficld is converging in the $x-z$ plane and the $y-z$ plane and diverging in the $x=y$ and $x=-y$ planes).
d. APLUSB. A quadrupole magnet that has been modified by shims or other means to induce an octupole component in the field may be brourint into the beam system by means of the element card, 4PLis8. The parameters on the card are the same as those on a QUAD card except that the third radial derivative is placed in the XPSX field as is the case in an OCX card.
e。 AXIAL. A solenoid magnet is entered into the beam system by means of the element card, AXXAL. The effective length, in inches, is placed in the ZL field; the magnitude of the axial field, in kilogauss, is placed in the XPHI field. The use of a solenoid is restricted to placement where the beam is rotationally symmetric. I. MMTRTX

Beam elements to be described solely in terms of their transfer matrices are entered by the element card, Marrix, followed by three "MnRRIX" cards (Section 6, below) containing the twelve nontriviai elements of the $3 x 3$ transfer matrices. The ZL (length) field on the element card is stored and listed as the "length" of the black-box element described by the transfer matrices; this length does not enter into any calculations.

Dach set of transfer matrices is labelled by one of the integers $1,2,3,4$, or 5. This integer, appearing in the IPII
field，directs the storing of the transfer matrices．If there are several elements in the beam system descinbed solely by transfer matrices，then no two of these elements may be labelled by the same integer，flMI，unless the transfer matrices for the two elements are the same．If TPly is negative，the code assumes that the matri－ ces have been loaded by a previous READ sequence and are not to be replaced．In this case the three matrix cards that normally Collow the eloment card，MiPRXX，must not appoar．IPHX may not be zero nor may it be an integer larger than five。 g．BENDX or DENDY

A bending marnet is entered on two element cards； the first card has＂BENDX＂punched in columns $1-5$ if the bend is in the $x-z$ plane．Bondy munched in columns $1-5$ signifies that the bend is in the $y-z$ plane．
（a）The first card contitins the length of the bending magnet， in inches，in the $Z \mathrm{~L}$ field．whe field strength，in kruass，appears in the XPII field．The XPSI field contains α ，the entrance angle， in degrees（refer to Pig．1）．
（b）The second card contains the field exponent：n ，in the XiPII ficld；X ，the angle the entrance edge makes with the exit edge，（in degrees）is placed in the XPSI field．The remainder of the card is irnored．The second element is of zero length．

The conventions on sign for the above quantities axe the same as the convention adopted in Chapter IX，shown as positive in ${ }^{p} i g$ 。 l 。
6. MinRTX Cards.

The three cards following the element card, MARRXX, are read in the format (4B15.8). Who first row of the x transfer matrix, followed by the second row of the x transfer matrix, the first row of the y transfer matrix, and the second row of the y transfer matrix comprise the matrix elements to be placed on these cards. The location of these olements follow.

columns	card thl	card $\neq 2$	card $/ / 3$
1-15	$M_{X 1}$	M_{22}	MX_{13}
16.30	MX_{12}	M1, ${ }^{\text {a }}$	MX_{21}
$31-45$	N_{13}	$\mathrm{MX}^{2} \mathrm{l}$	MY_{22}
46-60	MiX_{21}	MY_{12}	M_{23}

7. Micmora cards

Following the call card, BELL, a card must appear for cach quadrupole magnet to be entered into the DBLL calculations, resulting in the construction of the gradient array. There may be no more than ten such cards. This group is followed by a single card containing ZXND in columns $2-15$ with no other punches on the card. The magnet cards are read by the format statement (11,5P14.6); the significance of the fields is as follows. column field description
$1 \quad I C ; I C$ is any pasituve integer (O for ZeND card only). 2-15 $Z M O D$, the location of the midpoint of the magnet, in inches, relative to an arbitrary starting point. In order to allow an adequate length for the fringing field, the center of the first magnet should be at least $5^{*} B O M E$ from this starting point.

16-29 ZhONG, the physical length of the marget, in inches. 30-43 FR; tho plateau region of the marnet, ficere the fradient is constant, extends to a distance fiz*BORE from each end of the magrat. Reyond this point the gradient falls from its value in the plateauregion.

4-5-57 BW, the half width characteristic of the extent of the fringing ficld, in inches. The gradient falls to $1 / 4$ of its value in the plateau region at a distance BW from either end of the plateau.

58-71 EX, the relative excitation of the magnet. The gradient in the plateau region is EK" GR AD .

8. TRAJPCTORY Cards.

The cards read by subroutine kKY3, giving the initial displacemonts anc: nopes of the trajectories to be integrated, are read by the format statement (I: $5,5 \mathrm{Fla} .6$) . Immediately following the call card, RBMD, a single card is placed, containing DKIN in colums 3 through 1.6 and DROUT in columns 1.7 through 30 ; DRLN and DROUT are the initial and final drift distances, in inches, to the points $z=0$ and $z=2 d N D$, respectively.

The remainder of the cards is to be punched as follows:
columns
field description
1-2 $I C ; I C=0(b l a n k)$, acept for the last card for which $I C=1$.
3-16 $\quad x_{0}$, the initial displacement in x, in inches.
17-30 $\quad y_{0}$, the initial displacement in y, in inches.
31-44 x_{o}^{\prime}, the initial blope in the $x-z$ plane。
45-58 y_{o}^{\prime}, the initial slope in the y-a plane.
59-72 ($\left.\mathrm{p}-\mathrm{p}_{\mathrm{O}}\right) / \mathrm{p}$, the relative momentum.

The first two cards give the initial conditions for the two trajectories which will be calculated from the linearized equations. A maximum of 25 trajectories can be integrated.

9. ASSTGN Cards

The ASSIGN cards are called by the optimizing routines. DESTGN, REFPND, and FOCUS, and also be the call card ASSXXN for the purpose of instructing the code which parameters of the beam system may be varied, which dummy variable, VAR(k), is to be assigned to each parameter being varied, and the limits that are to be imposed upon the parameters being varied. There must be one ASSIGN card for each beam element containing a parameter that is to be adjusted. Two ASSIGN cards are therefore required for bending magnets if all the parameters are to be varied. The group of ASSIGN cards must be followed by a single card containing the integer -l in the first two columns. The format for the ASSIGN cards is (412, 2 X 4 F 15.6). The cards are to be punched as follows. columns field description l-2 k, the element number for this card (right-adjusted). 3-4 $\operatorname{ITX} ; \mathbb{Z} \mathbb{L}^{(k)}$ will be varied in proportion to $\operatorname{VAR}(\operatorname{TrT}(k))$: IrC $=0$ (or blank) prevents $Z L(k)$ from being altered. 5-6 JTT; XPHI(k) will be varied in proportion to VAR(JTR(k)); JTT=O (or blank) prevents XPIX from changing.

7-8 KTX; $\operatorname{XPSI}(k)$ will be varied in proportion to $\operatorname{VAR}(\operatorname{KTT}(k))$; $K T T=0$ (or blank) prevents XPSX(k) from being changed.

The integers used in the $I 2 \Gamma$, JTT, and $K T C$ fields should be assigned in sequence; i。e。, if 4 is punched on some card, then l_{0} 2, and 3 must appear on one or more ASSXGN cards. Elementsfor
which no $A \operatorname{sig}(\mathrm{NN}$ card appears, remaim unchanged in subsequent optimization calculations. We now continue with the description of the fields.
columns field description
11-25 $\quad Z M A N$, the minimum length (must be given if $x \neq 0$).
2G-40 ZLMAX, the maximum length (must be given if xTX $\neq 0$) $\operatorname{ZLMLN}(\mathrm{k}) \leqslant \operatorname{ZL}(\mathrm{k}) \leqslant \operatorname{ZMMX}(\mathrm{k})$ is the constraint imposed.

4-55 MIIMMX; must be given if JTT is not zero;
$|X P M X(k)| \leqslant \operatorname{PHIMAX}(k)$ is the constraint imposed.
56-70 PSXMAX: mast be given if kTR is not zeroi
$|X \operatorname{PST}(k)| \leqslant \operatorname{PSIM} X(k)$ is the constraint imposed.
The constraints are ignored by roCUS and need not be given for that routine. If the bounds are not given for any parameter which has been specified as a paramuter to be varied, then that parameter is held fixed by default by both DESXGN and REFTNE
10. COMDTTTON Cards

Condition cards form the vehicle for entering the beam specifications to be satisfied by the optimization routines. The maximum number of conditions that may be entered is 12 (excluding assigning the abercation function to be minimized). There is one condition for each card entered. The group of CONDXION cards must be followed by a single card with the integer - in the first two columns. The format of the CONiDTTON cards is (212, Il, 2F15.8). The cards are to be punched as follows.
columns . field descrijtion
l-2 condition number; this labels which matrix element or
or other quantity specified as a property to be achieved. i zero (or blank) signdifes an aberration function to be minimized is entered in columns 3-4. The condition number must be zero or a positive integer less than or equal to 30 . Conditions 11 through 30 are described below. Conditions 1 through 10 signify that the corresponding property is to be calculated from the DEPNU function punched in column 5 ; this function is to be calculated after the element number punched in columns 3-4. No two cards may contain the same condition no.

These columns are ignored for conditions 11 through 30 . If a DEPINE function has been specified by giving a condition number between 1 and 10 , then that condition is evaluated after element k, where k is punched in columns $3-4$. If condition 0 (aberration function definition) then the function to be minimized is identified in colums $3-4$; this number must be taken from the "aberration function" list below. Colum 5, interpreted only for conditions 1 through 10 , labels the DEPINE function to be used. Whis is the integer n on the DEFINX n card that defined the function. The desired value for the specified quantity (MATCRY); if condition 0 is; punched in columns l-2 then the arbitrary constant V is punched here; if blank or zero, D will be set to 1.0 (C.f).

2l-35 The waight to be used in multiplying the error in the specified quantity when summing to form the total
error. If blank or zero, a weight of 1.0 is assumed. $x f$ condition O, then the aribtary constant h is punched in this field. This field may not be negative (MATWC). CONDTPION List. The integers placed in the first field must be between 0 and 31. Conditions 11 through 20 refer to the $x-z$ plane or x transfer matrix whereas conditions $2 l$ through 30 refer to the $y-z$ plane or y transfer matrix. Conditions l-10 refer to "defined" functions; condition O defines the aberration function to be minimized.

No. quantity specified
11. 21 the transfer matrix element T_{l}

12, 22 the transfer matrix element T_{12}
13, 23 the transfer matrix element Tha
14. 24 the transfer matrix element T_{21}
15. 25 the transfer matrix element T_{22}

16, 26 the transfer matrix element T_{23}
17, 27 the ratio of matrix elements, $T_{11} / \mathrm{T}_{22}\left[\mathrm{~m}^{2} \mathrm{in}\right.$ (IX $-10 \mathrm{~d}$
18, $28 \quad x^{2}$ as defined in $(X-12): r^{2}=-\mathrm{T}_{11} \mathrm{~T}_{21} / \mathrm{T}_{12} \mathrm{~T}_{22}{ }^{\circ}$
19, 29 d, the distance to the virtual waist ($\mathrm{IX}-\mathrm{dl}$)
$20,30 \bar{w} / 2$, the maximum half-width in the system.
If any of the numbers $17-20$ or $27-30$ are specified then the object plane paraneters specifying the maximum displacements and slopes must have been ontered on the first card following the call card, ReAD, or on a subsequent sequence of OBJECT cards. Aberration Function List. The aberration functions defined in Chapter VII are calculated. The code may be directed to minimize one of them by identifying it in colums 34 of the condition card
with condition number O punched in columns l and 2 ．The numbers punched in columns 3 must be taken from the following list

No．aberration function
0 RRMSE $\left(\text { XRMS }^{2}+\text { YRMS }^{2}\right)_{0}^{-1 / 2}$ XRHS（VITM）．

2 XRNS（VIT－9）。
the maximum aberration displacement in x ，XAMLX，（VIX－5）．
the maximum aberration displacement in y ，Yamax． maximum displacement in x due to linear terms，and terms in $\Delta x, \Delta x^{\prime}, \lambda^{2} x$ ，and $\lambda^{2} x^{\prime}(e l l i p t i c a l$ distribution）。 maximum displacement in y due to terms in $y, y^{\prime}, \Delta y, \cdots$ ． sun of（3）and（5）：the maximum displacement．in x 。 sum of（4）and（6）：the maximum displacement in y ． XRMS $+\vec{x}$ where \vec{x} is the half－width due to the linear terms． YRMS $+\bar{y}(I X-8)$ ． mean aberration displacement calculated by SCAN． mean total displacement calculated by SCAN．

Numbers 11 and 12 are not recommended as they are very time－consuming．

11．OEJECT Cards．

Five cards follow the call card，OBJECT；these cards specify the parameters describing the object plane phase space． The format for these cards is（5Flo．5）．A blank in any field signifies that the corresponding parameter is to remain unchanged． The five cards refer to the coordinates $x_{0}, y_{0}, x_{o}^{\prime}, y_{o}^{\prime}$ and Δ ， respectively．The field specifications are as follows．

colum field shecification	
1.010	XTNF, the lower bound on the coordinate.
11.20	xisup, tho upper bound on the coordinate.
21.-30	XDEL, the increment between raster values of the coordo
31-40	dimin, the mean value of the coordinate (normally zero)
4.1-50	XDEV, the standard deviation in the distribution of the
	coordinate. Xhem and XDN are required only if aberration functions 1 and 12 are to be minimized.
51-60	XMax, the maximum initial value of the coordinate, used
	in plotting the phase ellipses, bean envelope, and the
	aberration figure; also used in the nomalized aberra..
	tion coefficients, The array Xhx (k) is the same array
	that appears on the first cardfollowing the call card,
	Read.
XXNF(k), XSUP(k), and XXNP(k) determine the trajectorjesto be run	
by SCAN by forming a rastor of initial values.	
12. $\operatorname{2cs}$	Cards.

The THS' cards are called by subroutine 'RBST; each card specifies a location in the memory whose contents are to be compared with the number givon on the card. A test is said to have been. passed if the absolute value of the difference between the stored number and the number given on the TEST card is less than or equal to the tolerance specified on the card. The format of the TEST cards is ($A 6,05,2025.8$); the field specifications are described below.

Colums fiold specification
to be examined.
7-1l Location of the number being tested relative to the subroutine entry point, in octal. This is the address of the core location containing the number less the address corresponding to the subroutine name.

12-26 The value against which the stored number is being compared:

27-41 The tolerance permitted in the comparison.
The number of test cards is given in columns 7 and 8 of the call card, TBST. A defined function may be tested as all defined functions specified on condition cards are automatically calculated by Track.

1\%. Beek Card
The call card, DEAK, causes one card to be read; this card specifies the dump limits and type of conversion for the PDUNP that is to be executed. The card, read in the format ($10,205,11$), is to be punchod as directed below.
colums fiold spocification
1-6 Subroutine name.
7-11 Pirst word address relative to entry point for subroutine.

12-16 Word-count less one.
17 . Type of conversion。
14. DEFTNE Cards

The first card following the call card, DEPINE n, is punched in the format (7×10.5) ; it contains u_{l} to seven floating-
point constants. The constant punchod in the kth fiold is referenced by the symbol (k+l). For examplo that number punched in columms i-10 is referenced by the symbol 2 ; the number in columms $31-40$ is referenced by the symbol 6 .

Whe second card locates the parameters required for the calculation; che format for this card is (10(al OG)). The lst, 7th, l3th, $19 t h, \cdots$ columns contain a BCD symbol (any symbol may be used). The five columas following each symbol tive the octal address of the floating point number to which the symbol is to be equateds a listing of the octad address of the available parameters will be wupplich with the code.

The third card, punched in the format (20aG), contains the simple arithmetic statmonts that define the function. Each ficld must be in the following format: $C=M 3 B$ where A, B, and C are any SCD symbols, O is one of the operations in the operation table (bedow), and b is a blank.

The calculation of the function is initiated by setting symbols 2 through 8 to the mumerical values specified on the first card.

Wach symbol punched on the second card is set to the number stored at the adjacent octal address. The symbols O and b (blank) are set to the namerical value, bero, and the symbol 1 is set to the numerical value 1.0 . The arithmetic statements are then executed from left to right. The first blank statement encountered (the test is for a blank in the first column of the field) terminates calculation of the function; the value returned is the last number calculated. If all twenty statement fields are
used then the calculation will cease with the twentieth statement, and the result of this statement will be returned as the value of the function. An error in formulating the function will cause an error return; an error return will be treated by the calling routine as if there were no error in the specified optical property determined by the function. This is equivalent to eliminating that specified optical projerty from consideration.

The function, once defined, may be used as many times as desired by the program. It may be redefined by inserting a subsequent Derfind n card。
a. Operation Table. The operation symbols used must be listed in the following table. An attempt to use any other symbol will result in an error return. The symbols punched, the equivalent FORTRAN statement, the operation type, and the generated instructions are described in the table below.

b. Bxample. Suppose that we wish to constrain the bend in element no, 3 , a bending magnet, to be 35°. This type of constraint must be entered by a DEWNE function. We will define function 3 to be $\theta-35^{\circ}$ where θ is the angle of bend of this magnet in degrees.

The angle of bend for element no. k (a bending magnet) is calculated and stored at $x C R(k+1)$; the $X C R$ array is at location 71243 in COMMON, and $X C R(4)$ is stored at 7.2240. We enter the following cards:

DENINE 3
35.0

172240
$A=A=-2$
The equivelanet FORTRAN statement is:
$\operatorname{FUNCTION} 3=\operatorname{XRK}(4)-35.0 \quad$.
To enter this condition for the linear programming
problem we insert the following CONDXXXON card 07053
i
The condition will We labeled as condition no. 7 (arbitraxy) and evaluated after element 5 (arbitrary, but must be after element 3) 。

It we now demard that the entrance and exit angles be the same in addition to the above specification, we deifne a second function, say function no. $5 ; \quad \alpha$ is stored at $\operatorname{XPSI}(k)$ and β is stored at XCL(k+1); the locations of α and β are 71335 and 71276 , respectively. We enter the following cards to define the function as $\operatorname{rUNCTLONE}=|\alpha-\beta|$:

DUPTNE 5
(blank card)
F71335Q71726
$Z=r-Q \quad R=0 . Z$
The equivalent FORTRAN statement is
FUNCTION5 $=\operatorname{ABSF}(\operatorname{XPSI}(k)-\operatorname{XCL}(k+1)) \quad$.
15. ALGR Cards

The ALPER cards are read in the format ($16,05,012$, A6, Il, **. 4A6); the ** ideld is the variable format field. The description of the fialds follows.
column ficld doscription
1-6 Kane of subroutine-must be in Call list (BCD text).
7-11 Octal location of word being entered relative to the entry point.

12-23 Octal mask (masked portions of selected word remain unchanged).

24-29 Variable format; this may be any legitimate FORTRAN single field format.

30 Relocation bit; no relacation if blank or zero; address relocated relative to location of altered word if a nonzero integex.
31.- Word being entered, read by variable format.
… 24 characters of text may imnediately follow the above field; the location of the text depends upon the length of the field specified in the variable format.

Applendx dxt. numerdcal exammes

The two sample beam systems referred to in Chapter VIX have boen analyzed numerically both with respect to their linear properties an \therefore *o their aborrationso The input deck and significant portions of the printed and plotted outhut are reproduced here. In describing these examples we shall try to demonstrate some of the many types of calculations the code can perform. The beam system in the first example consists of a quadrupole magnet triplet which is adjusted to provide a point image of a point source The physcial lengths of the magnets in the triplet are 16 ino, 32 in., and 16 ino, respectivelyo ddjacent magnets are soparated by 9.25 ino Drift spaces of 275 in. intervene between the source and the effective end of the triplet, and between the other end of the triplet and the image. The beam tube passing through the triplet is eight inches in diameter.

We construct thegradient function first and then determine the effective endpoints and shape coefficients of the magnets. We shall use these data, including the fringing field shape coefficients, to construct the beam system: this beam system is written on a utility tape. We then comstruct a second beam system which is identical with the first except that the shape coefficients are not included; this beam system is also written on the utility tape. The first beam system is reloaded and adjusted to provide a double iocus. Wethen calculate the aberrations for this system, which includes the fringing field shape coefficients. The second beam system is reloaded and adjusted to provide a double
focus. The aberrations are calculated; plots and calculations then follow for several different examples of object-plane phasespace occupation.

We then turn to the second example, for which the beam system, consisting of two quadrupole magnets of 16 in. length, is adjusted to produce a line image of an incoming parallel beam. The bore and separation of the magnets are the same as those in the first example; the numerical values of the effective length, etc. are entered directly. We adjust this system and then calculate and list the aberrations.

A. The Input Deck

Bach of the cards in the input deck, which is reproduced at the end of this section, is numbered in columns 78 to 80 . W.st of the cards perform obvious functions as explained in Appendix $I I$; those that are particularly significant are described.

Card itl is the required momentum card; this card must immediately follow the "Dara card. Cards \#t through \#l3 have been inserted to generate internal modikications in the code. Card \#14 labels the CRT film, and numbers 15 and 16 set the $X F(k)$ and BOOL switches to the desired initial values. Cards $\# 17$ through \#2l are required to set up the gradient array; the half-width, 7.38 in., yields the observed effective length for the magnets (V-27). The beam system is loaded from the stored results of SHANE by cards $\not \# 25$ through ${ }^{3} 33$; this beam system is written on the utility tape, Bl, as directed by cards $\# 36$ and $\# 77$. The beam system is read a second time
by cards /h3B through $/ 146$, drophing the shape coeftichents; the initial and inal dritt distancos of 275 ino remoin unchanged as a result of placing the m on the corxosponding eards. This system is writen as the socond rocord on utility tape Bl by card 1417.

Card /tse asstigh a difrerent utitity tape. The fingt boam system is relonded and adjustod by the mocus routine to produce a double focus while mantaining symmotrical gadients (cards 453 through Hod) STSMM is called twice to Inst the gystom propertios and to produce the complete sequence of CRT plots. The aborxations are caboulatod and listod.

Two whility tapes are assigned by card FBo The object plano panametexs are entered on carde w8, through \%ob The second system is roloadod and adjustod by cards moo through Hoo. Caxd Who3 changes the utility wape assignment for the Chr plotso The rembining cards, through card 1135 . list tho aboroations rox soveral differont occupations of objoctwplane phase space.

Staxting with caxd HoOG, a new beam system is reabo This system is adjusted to prodnce a Cocus in the xoz plane and a parallel beam in the yom phane.

Caxd fre3s places the Ginal CRS idontification on the film while card Fhza tommates the rung roturning control to the monitox.


```
TITLE
NOW ELIMINATE MOMENTUM SPREAD AND RE-EXAMINE PLOTS.
OBJECT
```



```
STATE
TITLE
NOW ELIMINATE SPREAD IN Y PRIME--POINT SOURCE WITH ANGULAR SPREAD IN }
OBJECT
1.0 .00143
0
STATE
```

TITLE								$4 P$	206
READ NEW BEAM SYSTEM, PRODUCING LINE IMAGE FROM PARALLEL BEAM-DOUBLET								$4 P$	207
SENSE								$4 P$	208
1	4016363		141	004426000000				$4 P$	209
READ								$4 P$	210
43.0	3.					4.0	0.06	$4 P$	211
4PLUS8	18.16		1.72	0.5				$4 P$	212
DRIF	8.51							$4 P$	213
4 PLUS8	18.16		-1.75	0.5				$4 P$	214
DRIFT	275.0							$4 P$	215
EJECT								$4 P$	216
SYSTEM								$4 P$	217
EJECT,								$4 P$	218
DESIGN								$4 P$	219
10001 400								$4 P$	220
300024.400								$4 P$	221
-1								$4 P$	222
11								$4 P$	223
24								$4 P$	224
-1								$4 P$	225
SAVE								4 P	226
REPEATO320								4 P	227
EJECT								$4 P$	228
DESIGN								$4 P$	229
SAVE								4 P	230
EJECT								4 P	231
SYSTEM								$4 P$	232
PUNCH								$4 P$	233
solve								$4 P$	234
POSTID								$4 P$	235
EXIT								4 P	236

B. The Mrintod Ottat

Rath maye of the prinbed output is mumbered in the upper righthand comer, Mages $1,2,23,26,26,27,28,20,30,36$,
 Most of tho output is solfooxplamatony

Page 23 is the output rosutthog from tho insertion of
 primal solution, and constraint omoxe are listod in the same ordos as the corrosponding lincax programing constratat matrixi the first row is tho cost row ror bhe primal problem, herae the Rirst row of cach of thoed colmas shonld be senopod VAB(I) through VAR (N) comrespond to rovs 2 though itl of the constratht matrixs these humbens have been shifted rox compotibility with the post of the progrum vas(x+1) is meaningless; the romatnder of the VhR colum comosponde to tho constratnt matatx (Tablo f) giving
 Fndoatos an opthat, Foasible solutions any othor valuo indicates an exrox. wown is tho number of linear programming therations (the number of vertioos extmined).

Page 27 contakn the toboxance coertachonts T, L=1, 4 coxecpond to the four columes each of which is arxanged in the nommat onder with rospoct to j dago 20 contains the
 plano phase space are roprotucod at the top of puge 20 , followed by soveral charactoristic manbors, and tho nomalizod aberration coefficiomts (nommhtaed acoording to the numbors in the column 1 SCALE FACDOR ${ }^{\text {a }}$.


```
G%P) SAMPlE PRGBLEMS FOR THE GUAORUPOLE AGERRATION CODE.
\(03 / 25 / 63\) 200.08 118.42 TO GO1 PAGE 2
```

carculation of effective magnet bengths anc fringing field shape coefficients from input fielo plot

					GRT PLUT NC. 3
*WAGNET VO 3--- ZMIC=	114.50COOC INCHES. entrance	$\begin{array}{r} \text { PHISTM }=0.000772193 \text { TNTH } \\ \text { EXAL } \end{array}$	$\begin{gathered} \text { THETA }=0.504549 . \\ \text { INCHES }) \end{gathered}$	$08 / 0 R=$	1.723966 K6findo
PEYSICAL HMLF LENGTH	8.600000	8.000000 16.000000			
Eefective half length	8.398183	9.758647 18.155830			
grfective length increase	0.398183	1.7586472 .156830			
SMAPE COEFFICIENT	-2.596169	9.814500			
amcaticn df efrective eads	106.101817	324.258647			
R'gicn of mitegration--- f	Rem 101.890156 10	162.500000			

tre variasle	assignment	FCR the	FOLLOWING LP teraticns	Is	
EqEMENT NUMBER	1 Colf	$2 L=72$	PHI $=$	PHI	PSE $=$ PSE
eqsment mlmber	$20: 300$	Z2＝ 3	PHI $=$	PHI $=(1.00$＊VAR\｛01）$)$	PSI＝PS：
Eq ement number	CRIFT	そし＝ 2	$\mathrm{PHI}=$	Ph	PSI＝PSI
eremeat number	quab		PHI $=$	PHIF（2．0＋VAR102］	$P S E=P S T$
element number	5 CRIF！	$z L=7$	9HI $=$	PHI	PSt $=$ PSI
gr Ement nember	6 OUAD	そL＝ 2	PHI $=$	PHIM（1．0 \％Var（0L1）	PSI＝PSI
eq ement Numeq	7 Drift	$2 \mathrm{~L}=12$	P\％I＝	PHI	PSt＝PS：

 RTPEAT THE NEXT ：CARES 5 TYMES．

N^{*} 。	solation UaRII	ccst. cosfo. 361	$\begin{aligned} & \text { BASIS } \\ & \text { SHII } \end{aligned}$
1	－ 0.00000133	0.	0
2	－0．00000238	0.	6
3	0.	0.	5
4	-6.0000022	$0.0595 ร 399201$	7
5	－0．00000022	0.09558909 OL	8
6	－0．00000022	$0.102 c c o 00502$	9

const．ERRGS
0.
$-0.252587895-04$
$0.305175785-04$
$-0.35762787 E-00$
$-0.484287745-07$
0.

Wry Error	0.00003433		$30^{\text {antmal }}$			0．00675964		calc．	Improvement＝			－0．	VAR FACTOR＝	0.997925
I＇Fixoosinflace	4	$N=$			6	$M=$	6	$M=$	2	$M C=$	1	MCUT $=100$	NVER＝ 0	
KOUT 0.0 K＝	3	\｛nant 3 ？		ITER＝	5	RNvC＝	5	Numbre		numpl $=$	7	INFS $=0$	$\Delta T=0$	

 CTNOITICN NO．12．DESIREC VALUE＝-0.0 －initial value＝－0． $\begin{aligned} \text {－ERRUR } & -0 . \\ -\quad \text { ERRUR } & 0 .\end{aligned}$ ．34332275E－04．WI＝$=0.1$ OOOE OI
$\stackrel{N}{\mathrm{~N}} \mathrm{~m}$
SOLUTIUN
VAR1I
$-C .00003002$
-6.00000003
0.
0.
0.
BASIS
HII

PRIMAL SOL。
$\times 151$
$-0.55721726 E-09$
$0.21944452 E \quad 02$
$0.21533453 E$ CONST．ERRORS $0.21533453 E 02$
(AP) LOAD SYSTEM WITH NC FRINGING FIELD TERMS FROM SAVE TAPE D DUUBLE FOCUS 03/25/63 200.08115 .44 TO GU1 PAGE 25

**** ThE SYSTEM NOW LNDER CONSIDERATICN CONSISTS OF THE FOLLCWRG ELEMENTS...

K Lengrh $P=1700.00$ NEV/C.
SPACE
LENGHH
275.0000

18.1568	quadrupdle	magnet	PGI $=$	$0.769112 \mathrm{E}-03$	THETA $=$	0.50354 .1	CB/OR $=$	1.716985	$\mathrm{Cl}=$	-0.	$C R=-0$.
8.5079	CRIFI SPACE										
32.6879	guadrupale	magnet	$\mathrm{PH}^{\text {H }}=$	-0.782216E-03	THETA=	0.914219	DE/DR $=$	-1.746238	$C L=$	- C .	$C R=-0$.
8.5079	CRIFT SPACE										
18.1568	Quadrupale	hagnet	PH:	0.769112E-03	THETA $=$	0.503541	O3/0R=	1.726985	$\underline{C L}=$		$C R=-0$.

 magnet $P H E=0.76912 E-03 \quad$ THETA $=0.503541 \quad D 3 / D R=1.725985 \quad K 2=-0$. $C R=-0$.

TPE TCTAL LENGTH IS 636.0173 inChEs.

$K=3$ BEAN MALF WLDTHS AT $Z=294.8584$ YNGHES $=3.681 C O T$ INCHES IN X PLANE ANO 3.262906 INCHES IN Y PLANE

$K=4$ BEAN HALF WIOTHS AT $Z=308.2022$ INCHES $=3.13528$ TNCHES IN X PLANE AND $3.6 S 4253$ INGHES IN Y PLANE
$K=4$ BEAM HALF WYOTHS AT $2=314073$ YB YNGHES $=3.079620$ GNCHES TA X PLANE AND 3.984053 INCHES TN Y PLANE
$K=4$ BEAM HALF WIOTHS AT $Z=321.2774$ TNCHES $=3.076123$ TNCHES IN X PLANE AND $3.0810 G 3$ TMCHES IN Y PIANE

$K=5$ SEAM HALF WIDEHS AT $Z=336.0543$ TNCHES $=3.450473$ INCHES EN X PLANE AND 3.496862 INEHES INY PLANE
$K=5$ SEAM HALF WYOTHS AT $Z=337.7557$ INCHES $=3.518607$ INCHES IN X PLANE AND 3.42290 TNCHES IN Y PLAME

$K=5$ BEAM HALF WIOTHS AT $E=341.1589$ INCHES $=3.654898$ ENGHES TN X PLANE ANO 3.242856 INEHES IN Y PLANE.
(IPP) LOAC SYSTEM WITH NC FRINGING FIELD TERMS FROM SAVE TAPE, DOUBLE FOCUS 03/25/03, $200.08 \quad 115.37$ TO GO1 PAGE 26

$K=6$ BEAM HMLFWIDTHS AT $Z=346.4918$ INCHES $=3.849418$ INCHES IN X PLANE ANO 2.993258 INCHES IN YPLANE.
$\begin{aligned} & K=6 \\ & K E A M ~ H A L F ~ W I D T H S ~ A T ~ \\ & K\end{aligned}=350.1231$ INCHES $=3.936801$ INCHES IN X PLANE AND 2.858729 NNCHES IN Y PLANE

$K=6$ BEAM HALF WIOTHS AT $Z=357.3853$ INCHES $=3.991477$ INCHES IN X PLANE AND 2.675739 INCHES IN Y PLANE.
$K=6$ BEAM HALF WLOTHS AT $Z=361.0: 72$ INCHES $=3.958215$ INCHES IN X PLANE ANG 2.625427 INCHES IM Y PLANEO

$K=7$ BEAM HALF WIDTHSAT $Z=525.0172$ INCHES $=1.595373$ INCHES INXPLANE AND $1.044 B 70$ INCHES IN Y PLANE.
$K=7$ BEAM HALF WIDTHS AT $Z=581 . C 172$ INCHES $=0.937331$ INCHES INX PLANE AND 0.702361 INGHES IN Y PLAMF.
$K=7$ BEAM HALF WIDTHS AT $Z=636 . C L 72$ INCHES $=0.750000$ INGHES IN X PLANE ANO D. 750000 INGHES IN Y PLANF

the transfer matrices for the system are---

DACIAL FCCAL LENGTH= C. $17180932 E$ C3 INCHES. VERTICAL FOCAL LENGTH= $0.15353430 E 03$ ENCHKS. THE RACIAL UBECC FCCAL PDINT IS ROCAFED-0.17180929E 03 INCHES AHEAD DFF THE SYSFEM THE VERTICAL OBJFCT FCCAL PCINT IS LOCATED - 0.15353433 E O3 INCHES AHEAN UF FHE SYSTEM
 the vertical image focal point is located -0.1535343aE 03 inches beyond the system.
$x_{x}^{x \times x \times x: x} \underset{x}{x} \quad x_{x}^{x}$
(:0) LCAD SYSTEM WITH NG FRINGING FIELD TERMS FRGM SAVE TAPE, DOUBLE FOCUS 03/25/63 200.08 (15.34 TO GO3 PAGE 27
 TMERANCE COEFFICBENTS FOR MAGNET NC. Z--PHI= 0.000759109 LATERAL UISPLACEMENT, RUTATIUN, DK DIPDLE COMPGNENTO

 (VE) 2 DPHI/PHE-0.364819E 01 COS(2W)-1 $-0.839114 F-02$ (VC) $=$ XI/PHEO $0.792818 E 01-C .5 * 51 \mathrm{M}(2 W)$
 0.182758E-01

 $(X 0)$ "XI/PHI..-0.730675E 01 -0.5*SLN(2W)-0.236298E-01

TMERANGE CDEFFICIENTS FCR NAGNET NO. G--PHI= 0.000769109
? C) TEKNS IN X TERNS IA X X
 (NC) FOPFITPHF..-0.233557E O1 CCS(2W)-1 (P\{\} * XVPHI.. $0.672684 E \mathrm{CL}-0.5 \times 5$ INT2W

 -0.133819E-01 -0.839113E-02 $0.236238 \mathrm{E}-01$ $-0.3648194 \quad 01$ 0.790675 E 01 (1.0) $=$ NUPHY.-0. 102682 E 02 SHIFT IN Y -3.334395F-01

Lateral displacement. RUTATEHN. OR OIPOLE COMPONENT.
(1.0) * NUPHI. O.4ERNS IUE Y SHIFT IN Y OERMS IV V
(XO) X X O P O O. $0.43411 E$ OL SHIFT INY $0.145623 E-01$ $(X 0) * X P / P H I \ldots-0.518944 E 01-0.5=51 N(2 W)-0.182758 E-01$ (YO) WDPHE/PHIO O. $367478 E$ O1 CUS(2W)-1 0.129230E-01 $\left.(X)^{2}\right)=X I / P H E-0.225005 E$ O4 -0.5 \#SIN(2W) -0.792813E O1 (YロO) M PPHI/PHI:O $0.122741 E$ O4 COS(2W?-1 0.432957E 0
[AP) LGAD SYSTEM WITH NC FRINGING FIELD TERMS FROM SAVE TAPE , DQUBEE FOCUS $03 / 25 / 63 \quad 200.08$ [15.32 TO GO1 PAGE 28 the transfer matrices for the system are--

DAOIAL FOCAL LENGTH= C.17180932E 63 INCHES VERTICAL FOCAL LENGTH= 0. $15353430 E 03$ fNCHES. THE RADIAL CBJECT FOCAL POINT IS LOCATED -O. IT180929E 03 INCHES AHEAD OF THE SYSTEM.

$x_{x}^{x} x_{x}^{x} \quad x \times x x_{x}^{x}$
aberraticn coefficients for this quagrupole magnet system-...-
meneralized spherical aberration

TERMS IN X

xoyey: $0443=-0.3046$
reneralized coma
TERMS IN
 YVYO...C432 $=-0.198432 E \quad 04$ $x^{2} 9 y_{0} 00.6441=-0.8886265 \quad 03$

- EAERALIzED ASTIGMATISM
 TERMS IN X

renerarizeo cistoritch

$$
\begin{gathered}
\text { TERMS IN } \times \\
* W \ldots 0.0 .12=-0.152909 E-C Z
\end{gathered}
$$

$$
\begin{aligned}
& q x_{\ldots}^{\ldots} \ldots 12=-0.152909 E-02 \\
& v y_{\circ} \ldots 022=-0.958733 E-02
\end{aligned}
$$

YOYOY TERMS IN Y

$y_{0} y^{2} y^{2} .0444=-0.234240606$

TERMS IN Y
YYey $=0.642=-0.228848 E \quad 04$
$X Y X X_{0}=0431=-0.177325 E$ $Y x \cdot x 0 \ldots .0332=-0.092160 E 03$

TERMS IN X ${ }^{3}$
$x \times x 0 x 0.0 C 333=-0.161324 E \quad 03$ $x: y 0 y \because .0 D C 43=-0.886626 E \quad 03$
ERMS IN x
$x^{29} x^{\circ} \circ 000331=-0.136125 E 01$
$x^{\circ} y^{\circ} \ldots 0 D 432=-0.574123 E 01$
$x y \cdot y^{3} \ldots 0 C 44=-0.247989 E$ O1

eeneralized chrcmatic aberratich
reccad creer terms in eetia mchi
TERMS INX TERMS IN Y

$X 0 * D E L P \therefore C 53=0.342174 E 03 \quad x^{2}=0 E L P \therefore C 54=0.167295 E 04$
TfIRD DREER TERMS IN CELTASQ*CHI

$x \times x 0 \ldots 006311=-0.396694 E-02$ XYY ••..OC42: $=-0.161710 E-01$ yyx.....0c $322=-0.9347668-02$

$$
\begin{aligned}
& \text { TERMS } \\
& y Y Y \ldots Y \\
& y \times X_{0} \ldots 0 . C 222=-0.816254 E-02 \\
& \hline 0.011=-0.885573 E-02
\end{aligned}
$$

XX......OCME Nin XXX......CCLII $=-0.403350 \mathrm{E}-\mathrm{C5}$ $X Y Y \ldots .0 .0 C 221=-0.265138 E-04$
$\begin{aligned} \text { TERMS } \\ \text { YYEY:.OC } 44\end{aligned}=-0.762826 E \quad 03$ $y \times x \cdot x \circ \circ .00433=-0.292160 E \quad 03$

TERMS SA Yo
YYY: $0.00442=-0.744018 E 01$

 $Y Y^{*} \ldots 0.06321=-0.157364 E-01$
$X X Y^{2} \ldots 00412=-0.863960 E-02$
\qquad
$y Y Y_{0} \ldots 0.0 C 222=-0.264502 E-04$ 4xx.....0.0c211 $=-0.2837918-04$

TERMS IN $x:$
$x * O E L P .0 . D C S 1=$
$x .640712 E-02$
$\begin{array}{ll}X O D E L P O D C S 1= & 0.640712 E-02 \\ X O D E L P O D C 53= & 0.24509 C E\end{array}$
KHOELP.OUCS3 $=0.245070 E$ OR
$X * 0 S Q . .005551=0.236067 E-02$ $X \cdot * D S Q .0 C 553=0.3689665-C 0$

TERMS IN Y:
YDELP...DCSZ $=0.179092 E-02$ *DELP...DCS2= 0.1790 2EE-01 TERMS : Y Y
$Y * 550.0 .0 C 552=-0.133147 E-01$ YO~OSQ. .OC554 $=-0.411662 E 01$
eliminated by the correct chorce

TERMS IN $x 0$

$L X \ldots O D F L Z=-0$.
$L X O O D F L 3=0$.

- TERMS IN Y

Ly:...ODFLLZ= 0.

SP: LGAD SYSTEM WITH NE FRINGING FIELO TERMS FROM SAVE TAPE; DOUBLE FOCUS 03/25/63 200.08 RI5.32 TO GO1 PAGE 29

TOE FCLLOMING COEFFICIEATS ARE NGRMALILED TO THE UNET HYPERSPGERE
AGERRATION COEFFICIENTS FOR THIS QUADRUPDLE MAGNET SYSTEM----
renerallig spherical aberraticn
TERKS IN'X TERMS IN Y

X:Y:Y:.0.C443=-0.376807E-CO
$Y^{\circ} X^{\circ} X^{\circ}-0.0433=-0.579372 E 00$
reneralizeo coma
TERNS IN K
$x^{*} \times$ O...C $331=-0.742257 E-01$
Y*Y:...C432 $=-0.197921 E-00$
$x^{2} 5 \mathrm{y}$....C441 $=-0.575132 E-01$
meneralized astigmatys TERMS [N X
$x^{2} x^{\circ} \ldots 0.0611=-0.117792 E-01$
$x^{2} y^{2} \ldots 0.0 c 421=-0.304138 E-01$
$4 \times 8 \therefore 0.0622=-0.261387 E-01$
reneralizeo cistortion
TERMS IN X
x x.o...c112-0.645033E-03
feneralized chromatic aberratic
eECRE CRDER TERMS IN CELTA *CHI

YCELPOOUC5:= $0.459543 E-03 \quad Y \approx D E 1 P$.o.0.C52 $=0.102153 E-02$
$X \because C E L P: C 53=0.308077 E-C 2 \quad X \because \times D E L P: C 54=0.383961 E-02$
THRE ORCER TERMS IN EELTASQ*CHI

$$
\begin{aligned}
& \text { ROER TERMS TN EELTASQWCHI TERMS IN Y } \\
& \text { TERMS EN X }
\end{aligned}
$$

*CSG...CS51 = 0.172953E-C7 Y*0SQ...C552=-0.192367E-06
$x^{\circ} 2056.06553=0.1049228-07 \quad Y * D S Q .0 C 554=-0.710001 E-06$

TERMS IN X
$x^{8} x^{8} x^{\circ} 0.0 C 333=-0.471746 E-03$ $X^{5} Y_{0} Y_{0} .0 .06443=-0.102659 E-02$

TERMS IN X:
$x x^{0 .} \times$ ODC $331=-0.208772 E-03$ $x^{2} y^{2} \cdots .00432=-0.572645 E-03$ XYOYO...DC441 $=-0.160864 E-03$

TERMS IN X $x \times x_{0} \ldots$ DC $311=-0.320699 E-04$ RYYDC421 $=-0.345945 E-04$ $Y Y X^{\prime} \ldots 0.0 C 322=-0.751703 E-04$
repms in x.
$x \times \ldots .0 . D C 11=-0.170374 E-05$ xYY。....OCL22 $=-0.111355 E-04$

TERMS IN YO
YOPYO.OC444=-0.6135R4E-03 $y^{9} x^{\circ} x^{\circ} \cdot .00433=-0.188685 E-02$

TERMS IN YO
YYoY: ...0C442 $=-0.482626 E-03$ $X Y Y^{\circ} \cdots D C 431=-0.572576 E-03$ $4 x^{2} x^{\circ} \circ .0 \mathrm{DC} 332=-0.433204 E-03$

TERMS IN YO
YYYO...OCL $42=-0.126918 E-03$ $Y X X . \ldots$ ODC $321=-0.150711 E-03$ $X X Y: \ldots 006411=-0.451959 E-04$

TERMS $\because V V^{2}$
$Y Y Y \ldots . .0 .0 C 222=-0.111587 E-04$ Yxx......OC211=-0.120720E-04

RINGING FIELD ABERRATIONS

LY FERMS IN
LX.o.ogrlli $=-0$.
1.Y.....DERAS IN V:

$\begin{array}{ll}\text { LLY....FLL2 } & =0 \\ \text { LYY. }\end{array}$
LLX:...odFLI $3=0$.
LYY:...OFLL4= 0 .
(MP) LCAC SYSTEM WITH NC FRINGING FLELD TERMS FROM SAVE TAPE, DOUBLE FOCUS 03/25/63 200.08 (15.30 TO GO1 PAGE 30 DISTORTION ANE COMA SPHERICAL ABERRATION AND ASTIGMATISM PARTIAL SUMS FRR XRMS, YRMS

\times	Y	\times	Y
0.06003851	0.00020629	0.00169135	0.00298836
C.00000000	0.00006014	0.00032845	0.00044373
C.00002296	0.00009181	0.00000057	0.00000637
0.00060007	0.00000005	0.00059160	0.00139873
C.CCCO1378	0.00009647	0.00000285	0.00000082
C.cccosi6:	0.00006517	0.00000192	0.00000455
C. 74999994	0.75000018	0.00000038	0.00000042
0.00436530	0.00488490	0.01430000	0.00930000
0.75000032	0.75000060	0.02866530	0.01418490

CRI PLOT NO. 24
CRT PLOT NO. 25
CRT PLIT NR. 26
$-214-$
(AP) NOW EXAMENE A POINT STURCE (SET MAXIMUM X AND Y TO ZERO).
$03 / 25163$ 200.08 (12.60 TO GOP PAGE 36

	Lower bound	lpper beuno	incoement	T MEAN	varue	STAND. DEV	SCAEE FACTOR			
x^{*}	0 .	-1.00000000	0.75000000	0.		10.00000000	0.			
$\chi^{\prime \prime}$	c.	-1.00000000	0.75000000	0 0.		10.00000000	0.			
$x^{\circ} \mathrm{O}$	-0.0.0430000	0.01400000	0.00285993	O.		10.00000000	0.01430000			
Y*C	-0.00929999	C.00900000	0.00185989			10.00000000	0.00929999			
09/9	-0.00025000	0.00020000	0.00025000	0.		10.00000000	0.000	25000		
GTVEN plCt scales.m.			$x, y=4$	4.00000000			$x^{2}, y^{0}=$	0.05000000	Yomax $=$	0.00931267
M*2?	nith cisp. A	FRINGE)..	XMAX $=$	0.00301115	YMAX =	0.00389004	x MAAX $=$	0.01430876		
	aberration o	lacements.	XAMAX $=$	0.53890777	YAMAX $=$	0.76780483				
Rov.	berration di	ACEMENTS.	XRMS $=$	0.04971971	YRMS $=$	0.06761657	RRMS $=$	0.08392885		
M8.21	HALF WIOTHS	third order	SCALEX=	0.54191893	SCALEY=	0.77169487	SCALER=	0.70000003		

the follching coefficients are normalized to fhe unit hypersphere
AbERRATICN COEFFICEENTS FOR THES QLADRUPOEE MAGNET SYSTEM----

TENERALIZED SPHERICAL ABERRATICN

$$
\text { TERMS IN } \times
$$

$\times^{49840} 0333=$ YRY TERMS IN Y
$x \cdot y \cdot y: \therefore C 443=-0.376807 E-00$
TENERALIzED CCMA
TERMS IN x
$x \times x=00631=-0$.

xvovo.occicl=-0.
meneralized astigmatish TERMS IN

peneralizeo distortion TERHS IN x
$x^{*} x_{0} \ldots .0 c 111=-0$ 。
$x^{*} y_{0}+0.0 .0221=-0$.
MENERALIZEO CHROMATIC ABERRATICN
ceccno croer terms in aberraticn
CECCND CROER TERMS IN EELTA *CHI TERMS EN $X \quad$ TERMS IN Y
XREELP: OFS $=0$.

HHRE OROER TERMS IN CELTASQ*CHI
TOEC TERMS TNX TERMS EN Y
$4 \operatorname{COSQ} 0 \cdot 0 \cdot \operatorname{C552}=-0$
YRODSQ:.C554 $=-0.110001 E-06$

TERMS IN x. $x^{\circ} \times 8 \times 0.0 C 333=-0.471746 E-03$ $x: x \cdot x: 0 D C 333=-0.471746 E-03$
$x \cdot y \cdot y: 00643=-0.109659 E-02$

FRTAGENG FIEES ABERRATIONS
TriAg secche groer aberrations due to the fringing fielo are eliminated by the correct chorce of the efrective lemitho THIRE ORCER TERMS IN LAMEOA MAMBUANCH
LPXooooftila $=0$.
TERMS IN Y
LYY. . . FLLZ
O.

**** THE SYSTEM NOW UNDER CONSTOERATION CONSETS OF THE FOLLOWING ELEMENTS...

$K=4$ BEAM HALF MIOTHS AY $Z=99.8300$ ZNCHES = 1.790410 INCHES IN X PLANE AND 3.723760 INGHES TN Y PLANE.

CRT PLOT MO. 40

the transfer matrices for the system are----
$\underset{x}{x x^{x}}$
$x^{2 x}$
RADIAL
$.36863064 E \quad 03-0$.
C.11791332E Cl -0.
$\begin{array}{cc}x x_{x} & x_{x x}^{x x^{2}} \\ x x & 0.12410207 E \\ x x^{2} & 01\end{array}$
$x x \times x \quad 0.38417056 F-03$

VERTIGAL
$0.26660734 E 03-0$.
$0.80520513500-0$.
(ZP) REAC NEW BEAM SYSTEM, PRODUGING LINE IMAGE FROM PARALLEL BEAM--DOUBLET 03/25/63 200.08 (10.68 TO GO) PAGE 59

THLERANCE COFFFICIENTS FOR MAGNET NC. I--PHI= 0.000486657 LATERAL DISPLACEMENT. ROTATIOAR OR DIPGLE COMPONENTO
 (${ }^{2} C$) *LPHITPHI..-0.308910E 01 CCS(2W)-1 $-0.100873 E-01$ (vE) * XIJPHIO. $0.651 C 16 E$ Cl * ${ }^{*}$ C)*DPHI/PHI..-0. $0.280325 E$ C2 CCS(2wi-1 (VQCI = XI/PHIO $0.575637 E 02$-C.5\%SIN(2W) $0.139398 E-00$ $-0.212708 \varepsilon-01$
 (YOO) NDPHI/PHIO O. $213181 E 02 \cos (2 W 1-1 \quad 0.581470 E-01$

THLERANCE COEFFICIENTS FOR NAGNET NC. 3--PHI=-0.000411674 LATERAL OISPLACEMENTQ ROTATICN, OR DIPOLE COMPGAENT. (T.O) = NU/PHI.。 $0.217143 E 01$ SHIFT INX $X \quad 0.764645 E-02$ IN 3 (O1 F NERMS IN Y TERMS IN Y (POC) « MU/PHE. $0.217143 E$ O1 SHIFY INX $0.764645 E-02$
 (VOO) =OPHE/PHIOO $0.745 S C 4 E$ O2 CES(2W)-1 $0.263401 E-00$ \&VOD) * XIPPHIO-O. $153585 E$ C3 $-0.5 * S I N(2 W)-0.563326 \mathrm{E} 00$

GZP: READ NEK BEAM SYSEEM, PRODUCYM LINE TMAGE FROM PARALLEL GEAM--DOUOLET $03 / 25 / 63 \quad 200.08110 .66$ TO GOA PAGE 60 The transfer matrices for the system are---

$x_{x}^{x x}$	$0.89406967 \mathrm{F-c7}$
* x	
x^{89}	-0.271274?0E-02
or X	
*	0.

RAOTAL

$\begin{array}{ll}x x & x x \\ x x & x x^{2}\end{array}$
$0.12419207 E 01$
yertacal
$x x_{x}$
$x x_{x}$ $x_{x \times x}^{x x^{x}}$ $x x_{x}^{x x^{x}}$ $0.38427056 E-08$
$0.26650934 E 03$
0.
0.
x
$x x$

$x \times 0$.
0.
1.0
$\begin{array}{rr}x x^{x} & x x \\ x x\end{array}$
0 .
2. 0
${ }_{x x}^{x x}$

aberrayion coefficients fur this quarupole magnet system----

- ERERALIEED SPHERICAL ABERRATICN

TENERALIzEO CCMA

v*ey:...c432=-0.129554E d
$x^{w 9 y s} \because 0.044=-0.258725 E$ C2
meneralezeo astmoratisw
TESMS EN x
$X^{*} x^{2}-000311=-0.274779 E-01$ Y4x
cenerarizeo distortron

$$
\text { ERMS MN } x
$$

$x^{*} \mathrm{~K} \cdot 0.00 \mathrm{CLIZ}=-0.630010 E-03$
XVYowae. $2222=-0.265486 E-02$

 $x \times x^{\circ} \cdot 06433=-0.579394 E 02$TERMS yN X $x: y \circ y=0.06443=-0.155692 E-00$

$$
\begin{aligned}
& \text { yry:o.0.c44z= }-0.277513 E \text { oz } \\
& \text { y } x^{2} 0 \times 0.0431=-0.227382 E 01 \\
& x \cdot x \cdot=0 . c 332=-0.370250502
\end{aligned}
$$

TERMS IN X x
$x x^{2}: x \cdot \operatorname{O.0C331}=-0.8532655-02$ Yx:y:...0C432 $=-0.341237 E-02$ $x y: y=\ldots .0 c 441=-0.826924 \varepsilon-02$

TERMS IN YO
YeY:Y8.0.0644 $4=-0.2103445-00$ $\because 2 Y O X: 06433=-0.293400-00$
YERMS IN Y

YYy? $00006442=-0.632225 E-02$ $X Y 2 x^{\circ}-0.0 C 431=-0.5716065-02$ $y x^{\circ} x^{2}=\ldots 0632=-0.6766124-02$
"EnERAELzEO GHROMATIC aberramyCa
CECCND CROER TERMS IN CETTA WCH

- TERMS in x M CETA wCh TERMS MY …
 $x y y=0.06421=-0.345559 E-03$
$y y z ? 0032=-0.194205 E-03$
YYY $\ldots 0.0422=-0.587517 E-01$ $Y X X_{0}=000.6321=-0.711278 E-01$ $X X Y=000 . C 41=-0.288359 E-02$

XXX.O.ODCLL $=-0.202259 E-05$

TERMS In yo
YYY: - ODC422 $=-0.206890 \varepsilon-03$ $\begin{aligned} & x \times y: 0.0632=-0.234105 E-03 \\ & x^{2}\end{aligned}$
\qquad YYY.o.0.0C222 $=-0.310156 E-05$ $y \times x \ldots 0000621=-0,5842738-05$
 x^{*} \#OELP..CS3 $=-0.465579502 \quad x 0 * 0 E L P .554=0.553972502$ firrc oreer terms ba beltasawhit

TERMS IM Y
X*OEEP...0C5: $=0.4058135-02$ x HaELP . DC5 $=-0.2711 .82 E-00$

14050 TERMS $4 N \times 0$ Yobetuoobc52 $=0.136649 E-02$ YMDELP..OC54= 0.202503E-00
$x=050=0.06551=-0.132948 E-02$
X 5 CSQ $\ldots . C 551=-0.374063 E-00 \quad \forall * 250 . .0552=-0.383427 E-00$
$Y 00.050=6554=-0.225942802$

EERES INy $Y \because 050.006552=-0.137113 E-02$
$Y=\pi 050.00554=-0.764547 E-02$

Tringtag fiflo hoerrations
he seccne grder aberrations due to the fringing field are elfminated by the correct chorce of the effective lengtho
कHIRE OREER TERMS IN LAMBDA*R AMEDA CH
$17 \times \circ \ldots \mathrm{FLEL=}=0$.
LY. . . Fliz $=-0$.
LY2.0.FLL $4=-0$.
LX.O...DERELS IN
TERMS IN YO
4x0.o. FLL $3=-0^{\circ}$.
L x^{3}....OFL $3=0$
LLY:...odrlzz $=-0$.

	? cher bound	UPPER EDUND	INCREMENT MEAN		value	staño. dev	Scale	ACTOR		
x	-3.00000000	2.89995998	0.500000	0 O.		10.00000000	3.000	00000		
Ym	-3.00000000	2.89999938	0.500000	0 0.		10.00000000	3.000	c0000		
$x^{\circ} \mathrm{C}$	0.	-1.00000000	1.0000000	0 0.		10.00000000	0.			
$\gamma *$	0 O	-1.00000000	1.000000	0 0.		10.00000000	0.			
D0/p	0.	-1.00000000	1.000000	0 0.		10.00000000	0.			
GYVEN PLOT SCALES...			$X_{0,} Y=4.00000000$				$\begin{aligned} & X_{0} \circ Y^{0}= \\ & X_{0}= \end{aligned}$	0.05999999	$Y^{\text {GMAX }}=$	0.0000000:
Maxim	Ith 0ISP. A	FRINGEI.	XMAK $=$	0.00000027	YMAX $=$	3.72576228		0.00813822		
MERIMLM ABERRATION O		ACEMENTSO.	XAMAS $=$	0.08923147	YAMAX $=$	0.07235986				-
R:Mos	ERRATION DI	ACEMENTS...	XRMS $=$	0.00754969	YRMS $=$	0.00694045	RRMS $=$SCALER=	$\begin{array}{r} 0.01025513 \\ 4.00000000 \end{array}$		
M* MIMM HALF WIOTHS		FHIRD ORDER	SCBEEX $=$	0.08923174	SCALEY=	3.79812214				

tem folloning coefficients are nermalizeo to the unit hypersphere
ASERRATICN GOEFFICIENTS FDR THIS QUADRUPOLE MAGNET SYSTEM---

feneralized spherical aber TERMS IN X	TICN TERMSIN		TERMS	IN X°	TERMS INYO
$x \times 8 \times 0.08333=0$.			$x \cdot x \cdot x \cdot . .0 c 333=$	0.	yoyoyo. DC444= -0.
$x^{0} y^{2} y^{\circ} \cdot 0.0443=-0$.	$y^{0} x^{3} x^{0} .0 .6433=-0$.		$x^{88} y^{8} y^{\circ} \cdot .0644 .3=$	-0.	$y^{2} x^{8} x^{0}-0.0633=-0$.
peneralized coma					
TERNS IN X	TERMS IN	Y	TERMS	IN Xo	TERMS IN YO
x40x: ..C331 $=-0$ 。	$Y^{3} y_{0} \ldots .0 .442=-0$.		XX0 $x^{3} \ldots$ ODC $331=$	-0.	YY0Y0...0c442 $=-0$.
	$x y^{\circ} x^{\circ} \ldots .0431=-0$.		YXPY:...0C432 $=$	-0.	$x y^{2} x^{2} \ldots 000431=-0$.
KV0Y: .0.6441 $=-0$.	$Y X^{\circ} X^{\circ} \ldots 0.6332=-0$.		XY8Y\%...DC441 $=$	-0.	$Y X^{\circ} X^{\circ} \ldots$ OCC $332=-0$.
reneralized astigmatism					
TERMS IN \times	TERMS IN	Y	TERMS	IN x^{0}	TERMS IN Yo
	YYY':0.0.c422=-0.		XXX $x^{8} \times .006312=$	-0.	YYY0...DC422 $=-0$.
	$Y X^{\prime} \ldots 0 . C 321=-0$.		XYY'。0.00c422 $=$	-0.	VXX\%...0.0C32l= -0.
	$X X^{2} \ldots 0.6411=-0$.		$Y Y X^{\prime} \ldots \ldots 0.0632=$	-0.	$X X Y: \ldots 0.00411=-0$.
reneralazed erstortion					
TEPMS IN x	terms In	Y	Terms	IN X°	TERMS INY*
x^{*} X.o...c111 $=-0.1701032-02$	Yyy.....c22z=-0.2	$48558 E-01$	XxX......DC111=	-0.564999E-04	VYY.....DC222 $=-0.937422 \mathrm{E}-04$
KV\%o.o.oc221 $=-0.722212 E-01$	$Y x_{x} \ldots \ldots . C 211=-0.47$	75041E-03	XYY.....0c22:=	-0.242660E-03	YXX.....0C212 $=-0.157754 E-03$
reneralizeo chromatic aberraticn					
VECCAD CREER TERMS IN CELTA FCH: TERMS IN Y TERMS IN XO TERMS IN Y					
XVEELP...C51 = ${ }^{\text {O }}$	$Y * L E L P . . C S 2=0$.		$X * O E L P . .00651=$	0.	Y YDELP.O.OC52=0.
x° *CELP..053 $=-0$.	$x \rightarrow$ DEEP.OC54 $=0$.		X^{4} =DELP.-DC53=	-0.	$Y: * D E L P .00654=0$.
ThIRC OREER TERMS TN CELTASCWCHI					
TERMS IN X	TERMS IN	Y	terms	IN XO	TERMS IN Yo
X 2 CS6.0.c551 $=-0$.	$Y * 050.05552=-0$.		X*OSQ...0C551 $=$	-0.	$Y * D S Q . .0 C 552=-0$.
x^{2} \#856..C553 $=-0$.	$Y: \angle D S Q . . C 554=-0$.		$x: 050.006553=$	-0.	Y VOSQ. V VC554 $=-0$.

rRINGING FIELD ABERRATIONS
the secone oroer agerrations due to the fringing fielo are eliminateo by the curregt chorce of the effective rengtho
*hire order terms in lamboanlambdanchi
$\angle X$ O....FLLL $=0$.
LY....FLLz=-0.
TERMS IN X
LXO...OFLLE
TERMS IN Y
18 $x^{2} \ldots \ldots F 113=-0$.

$14 \times 0.00 \mathrm{OFLL}=0^{\circ}$
LY. $\because O D E L L Z=-0$.
C. The Cathode Lay Tube Display Output

Each phot produced by the computer is dated, containing the same dato and time as the opresponding output page Th addithon, the phots aro numbarod (between bhe date and tho time) with tho coxpesponding number appearing on tho output mago that oontains the rosult of the combutathonso bit the plots havo axbitraxy sodjes which axe printod on the plotso Grid tines mopesent increments at ont fifth, terth, Gr twentioth of that sche dxetance.

Plot hl ghows the gradiont mumetron construeted by
 scalam potontial into to and θ as adaulatad by subroutine
 of 0.06^{*}, Dhe verticat scalos of the first poux Dhots are chosen $50 \hat{\theta}_{\beta}=1$.

 beam system The heavy vortical whes sepapato the constituent
 in this example Alt the plots mantioned in thig paxagraph are prodreed by the sall ente sysTeMe

Plots 424 through ma are all produced by subroutine Shate and domonstrate the hature and marnitu: of the abexations. With the excoption of plot if25, they all xesex to the group of orbits rum by SCAF; the bounds on the initial coordinates and slopes are given immedatoly following the non-mormalized aboration cooficionts on the printod output. plots $/ 724$ through \#far show the imaging of mine separate source points with a range
 of an axial point source with the same range of angles and monenta as in the previous plots. Rlot 136 shows the image of the point source with the monontum spread oliminated. Plot Pfe denonstrates the envelope eraced out by trajoctorios in the x-z plane that issue from a point source.

Plots iths and H8 show the bean onvelope for the second system immedatoly before and aftor, cospectively, adjustment of the system parameters by sumpoutine DRSGM. Plot frle shows the beam envelope near the line image in the plane orthogonal to that image。

MU-30720

MU. 30722

MU. 30723

MU-30724

MU. 30725

MU. 30720

MU. 30727

MU. 30728

MU. 30729

MU. 30731

MU. 30732

MU. 30733

MU. 30734

MU-30735

MU. 30736

MU. 30737

Mu. 30738

MU. 30739

MU. 30740

MU. 307 A1

MU.307A2

MU. 30743

MU. 307 A

Phe desirability of oventually adapting the Bevatron to eject the proton beam was recognized in tho eaxinest stagos of the machine s dosign.

The oxporimontal axoa around the existing woakofocusing symehrotrons is guito limitod gho large incoeaso in available exporimontal anoa is pernaps the most impontant advantage of an external bean over an internal beam.

Positive socondarios are necesbarily difeicult to extadet trom the machino whon oxiginating taom intemal taxgets. An obvious advantage of an extexnah beam is the ability to obsexve secondarios of posithve charge. With an external beam the fiold swomornding the taxget may be arbitwaxily choseno For example, it bocomes possible to revocse tais fiold, making no other changes, and thus to treat negative partiches in the same mannox as positive particlos.

Being free of the Bevatron, taxpets in an external beam are obsexyable fxom noarly any dixection。
datoriads max me awham for jatomal targets due to eight or composition, are available for nae with an esternal beans liquid hydagen is an impontant example.

Whth an extexaah beam much groatex control may be excreised over the optical properties of the beam as its strikes a target.

Phe total flux impligidge upon the target may be accurately monitoredi this is dmportan in measuring certain cross sections.

Pinaliy, shoriblived secondarios are more easidy
obsexved becaube of the bettor access to the target.
In 2954 Dyson Wragh proposed an extraction soheme tox the Bevatron which mmpoyed an cnergymaks barget (with xo hip) and a single dethoction magnot. 15 mo onergy of the beam passing through the target is roduced enough so that the beam passes into the deflecthon magnet located onewhale betatrox wavelength beyond the target. The deflection magmet, wooated 20 ino ingide tho tanget redius, strongly geflectes the beam ontward, cancing it to leave the machine one quadrant beyond the magnot.

A similax onewmaget extraction schome was independently proposed by o piccioni fox the Cosmotron la thes scheme difers Trom that proposed by Wright in that a thin myp ing athached to the exexgy-loss target. This lip serves to geduee the amplitude of betatron oscillathons in the cireulatheg beam befome the beam strikes the target; this use of the thin lip was finst proposed by homahidan. I' dhas oxtraction scheme, employing a single pulsed magnet in a fixed locathong has been sucecsefuhy opexating at the Cosmotron ror sevoral years.

Experiments unden the direction of W. Chupp ano G_{0} Lambertson at the Bevatron with the one-magnet system demonstxated that such a syetem was unguttable for the Bevatron. Due to the disponsion within the Rovatron, the extracted boam had a radial Whath of a foot or moref however this boam must pass through an outt window of 3.5 in. width. Unitke the Cosmotmon the Bevatron magnet sumpounds the vacuma chamber soveroly mestricting the ogress of the external bean.

The enoxgy spxead in the beam, the Landat erfect, bis
primariny a rosuit of olectron Coulomb scittoring in the encegymlosis
 distribution in unorgy wi w a long tail toward laxge enorgy losses. The Gaussian poetion of the distribution ropresonts the statistical distribution of many smand losses in energy a rondommentk process. Gho tail of the Wistribution is due to oceasional very large lossos in anexgy be eberebtionon with utetrons: such large losses cannot bo statistically troated in the mandom-walk manor. The maximum loss is theoretically boundod at about 100 Moy by redativistic considexations. A good treatment of the loss mechanism may be round in Expeximental Mucloar Physics. 19 The mechamism of the scattering and energy losses an the lip and target have been analy\%ed by Mr. N. J. Nitchely (umpublished) at tho Rutherford High Bnexgy Laboratory, usting a nomeocharlo metnod An additionad efrect which contributes to che onergy spread has not been investigated. a porthon of tho beam may be seatterod, by a statgle passage through the 1 ip, so that the amplitude of radial betatron oscillation is incrobsed; this porthon of tho beam may strike the target on the noxt revolution, heaving the target with greater enoxpy than the romadnder of the bean which has passod through the lip many times. Tho encrgy sproad is significant because synchrom tron magnets are powerful momentum analyzers.

The problem of lareo dispersive spreads at the exit window was solved for the ximrod proton synchrotron at the Rutherford Laboratory by placiag a quadrupole magnet half-way between the target and the doflection magnet. 20 The cuadrupole magnet is adjusted to provide energy recombination at the exit window rhis
solution, although possible for the Nimmod accologator whinh has wigh straightmections, in not possible for the bevatron which has only four straight-sections.

Tho problem of ojecting a highoquality proton boan From the Bovation was solved by insorting a second dofloction marinet. The onerioy loss sustamed at the target causcs the boam to onter a small bending mangot onombaf betatron wavelongth boyome the target; this magact, plunged close to the circulating bwan, doflects the reduced onergy beam aurther invard into a second and hargen magnet which is also plunged. Whe second mamet. located one quadrant downstroam from the first magnet, sharply doflects che boan outward cousin; it to omorese one quadrant downstroam adjacent to cach bonding magnet is a small curronto sheot quadmpole magnet. Tho Pirst quadmupole magnot is adjusted to provide onorgy rocombination and a vortical focus at tho oxit Whatow whereas the second quadrupolo magnet is adjustod to provido a codaud focus now the oxit whomow did theso magnets mist bo plunged anc putsod so that thoy will not intexfere with the magnotio fieda at injection.

Xt is tho purpose of this papex to describe tho detailed optical studes whion resulted in the dosign of an extomal beam that is optimized with respect to hincar propertioss dispersive propextios, and aberation properties and when meets engineoring fecuirementis of troublemeree oporation (pulsed: plunged magnets in hioh vacuma) at minimum cost. Le was determined oandy in the studies that abormations can seriously degrade the inality of the beam. A typicat example of the magnitude of the aborrations,
calculated by the author, as roprocuced in TR. B .3 . Design studies for the Commotron and Nimod acecherators wore limited to the use of Linciar theory f inchuding firmt ordor dispersion in the caso of Dho Nismode tho importance of mandaining a smanl beam width in the highly nondincar frimeing fields was recognized. One of the primary ains of the study reported nexe was minimizing the efrects of aberrations: for this acason, detailed orbit studies of represertative groups of trajectorios wore conducted with the aid of ligital computers Several innovations due to the author are described; these innovations transiented a very large portion of the worls load to the computers, thereby expediting the onbit study.

In Chaptor IX, we doscribo the extraction process in terms of linear theory. ho digital computer prograns developed for the study are described in Chapter III. We noxt turn our attention to the desigh of the extemal beam, describing the design objectives and considerations, the paramoters which wore to be specified, and the method of solution of the problem. The results of the study are described in TV.D. The behavior of the beam is demonstriated pictorially with the aid of prints of cathode ray tube (CRX) displays generated by the computex. The agreement with experimonts is presented at the conclusion of the paper.

The project required the collaberation of many people. Dro Willian Wenzel and Or. Glem Lambertson were responsible for the construction of the external beam; their intimate knowledre of the Revatron was invaluable in the design of the beam. Dre Leyd Smith, Dr. Alper Garron and Dr. indrow Sesslor cone ibuted much to planaing the beano Orbit studics were carridd out primarily by
the author with the aid of Dr. Sesslex. Dro Garcen, and Mr. Herman Owens. Poweriul digital cmphwo codes used in the study were a result of efforts by the author, Dr. Wo A. Welton, Dre Gerald Gardnex, and Dr. Gaxren. Mechanical engineering ofioxts wexe under the direction of Mr. Jack Cunn, while Nix. Li C. Martwig was in charge of the electrient engineering worko Experimontal measurements wore conducted by Mx. K. C. Crebbin under the direction of Dre E. Jo Mofgren and Mro W. D. Hartsougho

ITo Mrmo ix of ExPRACMOON

 protons From the man carculating beam and tacn deflecting then $\therefore 0$ that they pass out of tho hacinino. The separation is achioved
 the reduced onerey beam herving the target oscillates radially about the reduced enorgy oquilibrun orbit which lies inside the taxget radius. The separation bewoenthereduced energy beam and tho main circulating boam is ereatest at a location one-half
 senaration is proportional to the momentum loss at the taret. At the point of maximam sopanation, a bending magnet is inserted Wo dexlect the reduced energy beam; this bending magnet must not interfore with the circulating beam nor with the magnetic field at injoction。 hdditional magnets may be roquired to dinect and Pocus the extracted boam. This techmique of extraction was proposed by B. Wright for the hevatron and independently by O. Piccioni for the Cosmotron. 16

A singie magnet, placed at the point of maximum inward excursion of the roduced energy beam and adjusted to deflect the beam outward, may sufilice to extract the boan in some accelerators.

1. The Cosmotron External Beam

A successfol external bean has been obtained from the Cosmotron by use of a gingle pulsed denlection magnet at a fixed location along ine internat wall of the machine. 16 at the desixed
ciremhating energy the bean is diroctod into an onergym loss target, that causes the beam to be displacod into the pulsod magnet at the point of maximum inward oxcursion. This magnet deflects the beam about 3° toward an exit whow locatod on the external wall of the machino at a pamping manifold 75° downstream from une magnoto steod shims aro placed in the frimging fieli regions to provide the desixed opical propertios in this region wind would otherwise produce divergence in tho radial dixectiono the beam is about six inchos wide as it loaves the machine.

Mhis arrangemont is nossible the the Cosmotron becauso the pulsed magnet does not intorfore in an intolerable way with the magnotic fiode at injection, although it does result in the loss of about ono-malf of the maximum circulatiag beam. furthormore. the Cosmotion magnet, a "Ci type magnet open to the outside, permits great latitude in tho placement oi stefl shims in this outer edgo region。
2. Onembanet System implied to the Tevatron

Duxing tho construction of the Devatron, a study was made of the future external boam in order that necessary changes in machine design could be made during comstructione 15

This study envisionod a singlemagnet extraction schomo which required a 29 mev enorgy-loss taxget and a magnet locatod three ruadrants beyond the barget and 20 in inside the target radius. A deflection of 2.3° would be reguired to extract the beam one quadrant downstroan from this magnet. B. Wright, the author of this study; estimated that 2% of the beam would leave the energym
loss target withan an angular range of $\pm 0.01^{\circ}$ with respect to the unscattered trajectory, ano would fall on an ollipse six square inchos in arear located outside the machinc; those estimatos assume a bunw whogetic podint-soureo at the target.

3. Deficioncsos in the onc-anonot bystem

Bxperimonts were conducted with the onemmagnet system dosceibed above over the pertod $1950-1059$. The boamwidth at the oxit window was several tinus the width or the aporture o The width Was reducod by moving the energy hoss target closex to the denlocting maget so that madial focus occured nom the exit window ro componsate for reducing the target-to-magnot distance, the momentum Loss sustatned at the target was incroased; this provided the
 than the exit apenture Sample mamoncal calculations indicated that the bean at the exit window should be on the order of one foot in broadth when disporsive efiects were taken into considerationo

Who Bovatron, unlike the Cosmotron, has an H type magnet that complotoly suraonads the vacum tank, restricting the maximum possible boan width at the oxit window to foum inches.

Since the ontive arexture of the Bovatron is needed at injection, a fixed magnet chnnot be used, tho magnet must be plunged into positisn at eacin cyclo of accelenation, and therefore it should be as light as possible.

Shims in the frinring ifeld region, which are needed to mevent intolomable radial depocusing of the beam, camot be used in the bevatron owing to its mamet yoke geomotry.
irinally, the emerging beam must pass through an entire
quadrant before leaving the magnet, thus traversing the defocusing fringing fiold for a much longer distance than in tho Cosmotrons this requixes a small exit angle Pxperience at the Cosmotron hes shown that laxger exit angles result in smallor beams.
4. Advantages of the Tuo-magnot System

The addition of a second magnet permits a more satisfactory minimization of the dispersive effects. With two magnots, the bending angle at the first magnet is reduced, so that a lighter magnet can be used. Becauso a smaller magnet may be brought closer to the circulating beam, the requixed cnergy loss at the taxget is reduced. The enorgy spread due to the landau effect is smaller for the roducod energy loss. 19

The addition of a second magnet introduces othex degrees of freedom in the chotce of focusing parameters. The extra parameters may be chosen to optimize the achromatic properties of the beam system.

B. Two-riaget schromatic Extraction

In the remainder of this papex we cestrict our attention to the two-magnet system anopted for the Bevatron.

1. Method of Rxtraction

The first magnet in this system: located at the point of miximum invard excurston of the beam after leaving the energye loss target, deflects the beam fuxther inward into a second bending magnet, located one quadruant beyond the first magnet, deflects the beam strongly outward so that it passes out of the machine one quadrant beyond the second magnet. The placement of these components
is shown in Fig. 0.
a. The Encrey-Locs Tarpot

As stated nove, the man function of the energy-loss
target is to cause the boan to oscillate inward The maximum inward deflection is given by

$$
\begin{equation*}
\Delta_{m_{m a x}}=-\frac{2 n}{1 \operatorname{mn}} \frac{\Delta n}{D} \tag{1}
\end{equation*}
$$

where p and x are the momentum and radius, respectively, of the beam, n is the field oxponont, and Δp is the momontum loss in the target. A thin "lip", whoso Cunction is to damp the amplitude of radial betatron oscillations, projects from the exteriox edge of the target. As the magnotic field is increased after the cessation of acceleration, the circulating beam moves slowly inward toward the target. A proton first passes theough the lip during a maximum inward swing; passing through the lip reduces the amplitude of the radial oscillations. Tho damping of the radial oscilhations insures that the protons pass through the entire target once and then enten the gap of the first magnet. Gince there is somo scattoring by the lip, the amplitude of betatron oscillations camot be reduced indefinitely tho residual betatron ampitude and enerisy sproad result in a finite width of the beam leaving the target.

The beam leaving the target possesses a range of angles duc to muluiple Coulomb scattering within the target Madition there is an appreciable sproad in momentum because of the Landau effect. 18 Ghe Landau offect is characterized by a large "tail" in the enexey distribution, in the direction of large losses. The

4U. 30.008

Figo 9. Schematic diagram ot the beammextraction system of the Bevatron.
width of the encrgy distribution increases with increasing energyloss in tho target.
D. The lirst merat. The function of th fixst bending mognot, M, is to deflect the reduced enorgy bea... arehor invard into the second bending mapnot, The radial location of p depends upon the thickness of the enorgy-hoss target. adjacent to this magnet is a current-sheot quadrupole focusing mapot, Q_{2}, that may be adjusted primaxily to emance the encrgy recombination of the boam. both of thess magaets must be plunged and pulsed so they will not intertere with the beam during aceelerationo
c. The Second wognet, The second bending magnet, M, provides the required outward deflection to eject tho beam. Its radial location is governed by tho strength of M, Thore is also a quadrupole magnet, Q_{2}. adjacent to this magnet that may be adjusted primarily to minimize the radial spread at the exit window. Both m_{2} and Q_{2} must also be paunged and pabsed if tho maximum beam curront is to be achieved. Tho beammust pass out of the machine through a thin aluminum window located in the west stradght section.
d. Extermal vamacts. Additional bending nagnets and quadrupole magnets are located outside the vacuum chambery these magnets are not consideres in this paper.
2. Pictorial Phase Space Description of Drtraction

The optical constuenations in extracting the beam
are most easily explaned by mefoxing to motion in radial phase
 of trajectorios comprisind the reduced eneris bean.

mu .30410

Fig. 10. Configuration pattorn motion in radial phase space.

Morex is the displacement of a tradoctory from the equilibrum
 bolow that, with this choiee of cooxdiadees, roprosontativo points motate about the origiat or this figure as the comxesponding trajectories move through the Bevatrone The origin of this figure is tho condiguration point rowresenting the reduced onergy equilibrum orbit. dhe action of a bending magnet is reprosented by a displacement along the per/b axis. A quadrupole rocusing magnet shears a given consiguration in the Ra/p directions the displacemont in $R x^{\%}$ is proportional to tho aisplacemont in x from the magnet centex. It an be shown from the radial betatron equation that mothon thmomb tho Bevatron corresponds to a rotation of the configuration point about the origin in this figure. Within a synchootron tho appoximato lineaxiacd equations of motion for displacements from the equilibrum oxbtts are

$$
\begin{align*}
& \frac{d^{2}}{d s^{2}}+\frac{b^{2}}{b^{2}} x=\frac{d}{x} \frac{\Delta n}{p} \tag{2}\\
\text { and } \quad & \frac{d^{2} x}{d a^{2}}+\frac{b^{2}}{R^{2}} z=0 \tag{3}
\end{align*}
$$

where fond bre the radial and axial betatron frequencies, respoctively, and s is tho path lexgth moasuxed along the cquilibrum orbit. The solution to the radial equation is $x(s)=x(0) \cos \left(V_{0} s / R\right)+\left(R x^{\prime}(0) / \nu_{p}\right) \sin \left(V_{p} s / R\right)+\frac{\Delta p}{p} \frac{R}{V_{p}^{2}}\left(1-\cos \left(p_{p} s / R\right) \quad\right.$.
whence

$$
\begin{align*}
R x^{3}(s) / \nu_{p}= & m(Q) \sin \left(V_{v} s / a\right)+\left(R x^{3}(0) / \nu_{p}\right) \cos \left(\nu_{b} s / R\right) \tag{4}\\
& +\frac{\Delta D}{P} \frac{R}{V_{0}^{2}} \sin \left(\nu_{p} s / R\right)
\end{align*}
$$

Thus as the particle moves a distance s in the synchrotron, the
xepresentative point rotates through an angle $\theta=-y_{p} s / R$ in $x, R x^{2} / y_{s}$ space.

The roctanguax pathora at (1) in rig. 10 reprosents the radial phase space distribution of the bean upon leaving the energy-loss tarist. Botwocn (1) and (2) tho pattorns rotate 180° as the trajoctoxios move about $1 / 2$ botatron wavelength from the taxget to H_{1}. The thrce paterns at (2) xeprescht groups of trajectories of three distinct onorgies comesponding to the Landau spread in enorgy. The contral matern is the mean energy pattern; The trajectories of lover energy are displaced further from the origin。

2he deshection at M_{1} and rocusing at Q_{1} take the patrems at. (2) into those at (3). Radial displacoments are negligible within the magets. Since the target is imaged at Q_{1}. rocusing horo does not, 员reatly aricect the trajoctories for a single onorgy. Whe tocusing strength of Q_{1} is choson mainly to provide onergy rocombination at the exit winciow. Who detiection at M_{1} increases the amplitude of radial betatron oscillations.

Ono quarter betatron wavelongth beyond M_{2}, the beam is at anciman inward swing and at an antimocus. Pocusing here strongly afcects the radial imaging properties at the exit window while having a losser effece on energy recombination Pattern (4) is tho beam distribution at the ontrance to M_{2}. A strong outward derlection by M_{2} and focusing by Q_{2} tako the patterns at (1) into those at (5). The doflection at Mas produced suficient displacemont at h_{2} so that M_{2}, which must be large to provide the required defloction, does not disturb the circulating
beam.
Whe boan omerges ixom the Bevatron one quadrant beyond M, at the exit window whore the distribution is shown by pattern (6). Betwoon (5) and (6) the boam passos through the strongly radially dofocusing finging field of tho Bovatrong Ideally, the optical propertios of the beam system should provide a radiad focus at the exit wincow with full enorgy recombination.

In the preceding discussion the vertical properties of the beam have been neglocted. Whe vertical betatron frequency is greatex than the radial betatron frequency; thus the vertical image, corresponding to onemali vertical betatron poriod, will occur before H_{3} in reached. Although Q_{1} has litthe influence on the radial focal properties of tho boan, it will influence the vertical rocal propertios. Q mast be adjustod to achiove a compomiso between the desimed achomatio jroperties of the beam and the desired inage in the vertical plane at the window. Q_{2} aficots tho focal properties in tho voxtical plane, but its strength must be chosen to minimize the radial beam widh at tho window.

Tho object of thia study was to develop and apply methods for choosing the locations and strengths of the constituent magnets and the location and thedeness of the energymoss target to minimize the sizo and divergence of the boan at the exit window. and to provide optimal energy recombination at that point. There are many other considerations, manly those of cost and engineering feasibility, which restrict the choice of parameters.
3. The Inado n aner of the hinoor theory

The linear theory falls to adequately describo the beam
geometry due to tho relatively haxge shzo of the aberxationso Even in tho "good" field roghon betwoex the energy-hoss target and the fixst magnot, whex the bon in within three inches of the center of the vacumb tank, harge nondinoar orbocts are obsorved. This is oasily domonstrated by inctusion of the socond ordor terms in tho qquation for cadial motion whthin a mopot quadranti
$\left.\frac{d^{2}-3}{d b^{2}}+3=\frac{1}{2}\left(\frac{d x}{d}\right)^{2} 6+x^{2} b^{2}+(2-4)\right)^{5}$.
 xadius of the oquilibrum ondt and $B_{2}(5) / B_{0}=1-n n^{2}+\beta^{2}+\cdots$ o Mere P_{0} and B_{O} rotex to the equilibram orbit for $\delta=0$.

We can estimate tho magnitude and chamactex of the monlineax effects botweon the tanget and My by aproximatisg the Gighthand side on the above equation with the dincan solution ior motion in the Bevatron anc then integrate the resulting equation over one-hali botatron period The linear solution is

$$
\begin{equation*}
I=\pi \cos \phi+\left.\frac{d}{d y}\right|_{0} \sin \phi \tag{6}
\end{equation*}
$$

where bis given by

$$
\cos (n, / 2)=\cos (n \sqrt{1-n} / 2)-(2 / 2 R) \sqrt{I-n} \sin (\pi \sqrt{1-n} / 2)
$$

 at the target) : wo find

$$
\begin{align*}
& +\delta^{2}\left[\frac{2}{3}+\frac{6}{3} x+\pi\left(i-\frac{a}{2}\right)\right]+\cdots . \tag{8}
\end{align*}
$$

Numoxical valuos of those parameters for typleal Bovatron opexating condthons axe: $\hat{B}=0.68, n=0.56, \beta=-11.0$, $k=25 \% 1 S_{0}\left|\leqslant 0.000183,\left|\frac{d s}{d p}\right|_{0} \leqslant 0.000176\right.$, and 1 d $1 \leqslant 0.00051$. We find that tho centers of the high and low energy partorns are displaced by 0.7 in. from the contex of the moan energy pattexn at M. In addithon, the pattexns at M, aro threo parallol xectangles by the linons thooxy but the socond ordex terms domonstrate that the ends of the pattemas (corxesponding to
 x direction by 0.07 in rolative to thoir centers These displacements are 30% of the widhe of the rectangles in tho x dimection. Murthermore, the pattems fox the two extmemes of anorgy ame tilted whem respect to each othen and with mespect bo the pattern for the centrat enorgy at M, the gpread of the
 greater than the spread of the trajoctories tox which $x_{0}{ }^{\circ}=-1.2$ mre Qract mumerical caloulations have verified those ostimates to within 10%. Sven it the remainder of tho boam system (from ${ }^{(1)}$ to the exit window) wexe froe from abexations: those already present in the "good" ficld region would double the beam width at the exit window.

As the beam must traverse a large sogment of nonlinear fringing field betwecn M_{2} and the window, nonlincar effects can certainly be expected to become mach woxse. Linoax theoxy can ondy provide crude asthmates of the bear behavior Iatelifgent choices of adustable pamamotoxs camot be made without dotailed study of the exact trajectoxics within the Bevatron field.

In the next chapter wo discuss the calculational toods
that were devolopod to conduct those detailed studios and the results aro describod in the xemaindex of this paper.

XIT. NURERXCAL CALCULATTON PROGRASG

Orbit dosign standes have required the writing of several Tbl 704 and 700 digitad computer codes. Tho main code used in this work is tho Beratron Orbit Code (BOC), which calculates aotailod trajoctorios in the Devatxon. dwo codes, BRECX and DMDT, were writwon to provide the field data required by BOC. A soparate XBF 700 cathode xay tube (CRT) plotting code plots phaso space patterns ham data calculatod by boce A sexies
 rapid parameter surveys using an extentod linear trajectory theory.

A. The Bevatron Orbit Code

1. The Basie Code

The original Bevatron Orbit Code is a modification of the Oak Ridge Genoral Orbit Code No. 1482 B 21 this modification was camoded out by Dr. T. A. Bolton during eaxly 1960. The basic code calculates trajectories in the Bevatron by integration of the following differential equations with θ as the independent variable:
$\frac{d r}{d \theta}=x p_{r}\left(p^{2}-p_{x}^{2}\right)^{-1 / 2}, \frac{d r}{d \theta}=\left(p^{2}-p_{x}^{2}\right)-x B_{0} \frac{d \theta}{d \theta}=1$.
$\frac{d P}{d Q}=x p_{z^{2}}\left(p^{2}-p_{x}^{2}\right)^{-1 / 2}, \operatorname{axd} \frac{d p z}{d \theta}=z x^{\partial B}-p_{x}\left(p^{2}-p_{x}^{2}\right)^{-1 / 2 \partial B} \frac{\partial \theta}{\partial \theta}$

The Rungembttamethod is cmployed using doublemprecision arithmetic. An interval oi $0,5^{\circ}$ in θ constitutes asingle Ruge-nutta step. Four point intempolation formulas in x are used to obtain the required field values fron storod field data.

Due to the symmetry of the Bevatron, it was necessary to

Btoxe bee liond data for onty ono-naif of a guadranto To obtain the todixod accuracy, a erid of 3 in. by $0.2{ }^{\circ}$ was chosen, roquiring the storage of 7421 values of $B(x, \theta)$ and 742 values of $d x(x, \theta) / d x$. The finold data and the codo aro all rond from a single input tape The original code intobratoe one orbit at a time. printing oft-line the trajoctory coordinates where desired. Upon completing one orbit, the code roads the initial coordinates of the subsequent orbit.

If at any timo tho code nust be interoupted, it writes a "get-off" tape that, when read by the computex during a subsecuent run, continues tho calculation in progrese when intox. rapted. The ondy loss in comptor the is that required to write and read this kape.

2. The Modifiod Code

Tho Dovatron Oxht Code was extensively modtied by the authorg its capability wan bxodened to hande most of the external beam calculationss. The modifications made by the author are described in this section.

The output of the code was extended to include on-line printed sumamios of each trajectory, printing of the trajectories in terms of "Mevatron coordinates" (rectaxgular coordinates in the straight soctions and polax coordinates, based on the vacum tank conterline, in the quadrants), and calculation and primbing of displacemonts and shopes reiative to one of several stored equilibrum orbits.

Inciusion of bending mognets, quadrupole marnets, and sextupole magnets in the paths of the trajectories was the object
of anothor modicication. Ghese magnots may be inserted only at the staxt of an orbit; the romander of tho oxbit proceeds under the action of the Bevatron fiold adong.

The code will now calculate conitbrum orbits fox ary momontum and will store sovoral oquilibm orbits for reference. The momentum corresponding to an oqutiborum orbit at a particulax radius may also be calcukated.

An important modifleation, greathy fachlitoting use of the code, was the addition of tho "paramoter tapo." The coordmates of groaps of onbiss aro stoxed at a selectod aminuth: these cooxdinates may be xefoxonced as thetral coordiantes for any subsequent oxbits. Tho selocted coordinates of over 300 groups of mine oxbits aach may bo stored. at tho conclustom of each run, all the stored coordinates and the group of equilibrum oxbits curcently in use are written on the "paraneter tape." paior to executing calculations in a subseguent rux, this parmeter tape is read, reloading the rosults of evory proviously caloulated oxbit. With this foature a roprosentative groun of orbits can be calculated between the enomgrioss target and M, on one day. This samo group of orbits can then be rum botweon H_{1} and h_{2} a number of times on a subsequent day the efect of vaxying the strenget of Q_{2} can then be observed. Th the ortighat version of the code, a complete study of a given taxget location rogured at least three separate computex runs; between those runs many hours of work with hand calculaters and hey punch machincs were required to calchate the stremgths of the bendin, and focasing magnets and to insert their effects. With the adlod foatures doscribed in this section,
proparation tine was reduced by 05%.
BOC will calculato and manipulate transfor matrices relative to selected trajectorios in the bovatron; these matricos are used by the linear codes to be described later.

The code calculates the mapping of the radial phase space at one location along the bom to the radial phase space at another Location. These haps are prodrced by bachward calculation of groups of orbits whose phase space coordinates are taken from an array ($x_{i}, p_{x_{j}}$) : backward orbits are simulatod by invoking the azimathal reflection symotry of the marnetic fiold about the midpoint of oach quadrant. Such maps axo very holptul in under. standing aberrations.

For tho paxposes of the oxternal boum study, the curve in phase space at one azimuth which maps into a single radius at anothex azimuth is accurately given by:

$$
\begin{equation*}
p_{x}(x)=A+B \cdot x+C \cdot x^{2}+D \cdot p . \tag{10}
\end{equation*}
$$

The code calculates the cocificients A, B, C, and D in this expression from data deriven from the mappings. With this expression calculated between M_{1} and M_{2}, and separately between M_{2} axd the exit window, the strength of both of the bending magnets can be automatically presecribed by the code. Tho strength of a quadrupole magnet at one azimuth, that mininizes the rms displacemont of a ropresentativo group of trajectories about the beam optic axis at a second azimuth, may bo decermined using the above expression. This foature of the code optimizes the strength of Q_{2}. Nonlineax focusing may be introduced by means of a sextupole magnet; the strength of the sextupole may be optimized in the same
sonse (minimiking the rms (isylacomedtes)。

A mumber of oror detection routines increase the
roliability of the cocie. Al inuct tujes aro writton in wo indentical paxus Tape modiag is checked for accuracy by two methods. In the evont of an oxion, the roading of the ifirst part of the tape is repeatedy if the wixgt part camor be read correctly.
 road it several times. Broms in running the code result in termination of the orbit in which tion error was detected provided recovery is not possible; the location of the error, the coordinates of the orbit, and the console status is printed The code then proceeds to initiate calculations on the subsecuent orbit.

The modiriod verston of DOC requires a "large" mbM 704. with 32,768 word storage capackty and five or more tape units. The code is entixely SAR coded, making conversion to other computers somewhat tedious. $x t$ should be possible to operate the code on a double core \quad m 7000 with a simulate routine although this has mot boen attempted. Upon making minor changes in certain constants, the code can be adapted to any symelrotrox.

BOC xequixes approximately one minute on the 1 BM 704 to integrate the radial equations through one revolution. If the vertical equations are aiso integratod, the required time is doubled. An adiational 0.25 minute is required for each orbit if the maximun outrut is desired.
3. Plae P3ot Code

In order to cleaxiy demonstrate the beam behavion. it was desimed to plot the radial and vertical phase space pattens
traced by the beam at tho target, bofoxe M, after Q, werore ang aftex M_{2} and at the oxit window whese plots consist of the configuration points for repmosentative groups of 27 oxbiks eacho taken from DOC adeulations.

The TBA 704 competer at the University of Califomia did not include a cathode ray tube display Thus a second code was written that meads the parameter tape produeed by BOC and then plots the desired infoxnation on the CRT attached to the hawrence Radiation Laboratory IBM 700 computor: a camera records the plotted data on film。

Three chotces of plot scale axe avatlable to the code and the scale chosen is the largest that will accomodate all the dosixed conifgunation points. Gach plot roquires about eight seconds of TBM 709 time the plot code will xun on the IBM 7090, requixing two seconds per plot.

With the aid of these plots, we can readily determine the beam bohavior as a function of each paramoter varied. Several plots, chosen from among more than 300 plots, are reproduced in the noxt sectiono
4. The Ficld Codes

Dr. Co Genald Gembaen wrote the two Pornh IBM 704 codes that prepare the fielu data for boCe 22 BeFCXT accepts as input the expmementally mansumed values of the magretic field at the mothan pharo of the Bevatron this data consists of radiah and azimuthal profiles within the quadrants and a rectangulax arxay of 1350 values in the tangent tanks. All data vere taken from "smoothod curves." BRFCYp aroduces by interpolation an equivalent
set of ficld values on a polan grid about the geometric contor of the Bevatron. DBor reads the riold tapo produced by Bepcyp and produces a tape containing the admuthal derivatives correspondinü to the fields produced by wercy. Tho wo tapes aro written in the format acceptable by the Oakridge General Orbit Code, thas: mentroned proviously: BOC reads tapes in the same fomat.

A separate loading moutine written by Dr. Meltor and modified by the author reads the two field tapes and the binary deck for BOC, producing a selfoloading binaxy tape containing BoC and the fiold values.

Tn the xegron where the field is noarly linens the accuracy of the tield measuremonts is approximately 0. 5% This accuracy deteriopates tomard the edges of the vacumm tank. Measurements in the fringing find regions of the straght sections are within 3% of the coxrect values.

D. The Linear Codes

Exact numerical calculathon ot the beam behavior using

BOC ís too expensive in toms of computer time to allow complete investigation of the possible choices of external beam parametexs. but a simplewinded linear theony that does not take into aceommt the azimuthal and radial veriations of the field exponent n is inadequate for this purpose.

A suitable compromise in cost and acouracy is to uso the liment anproxtmation for deviations from an exact reporence orbit ("optic axis")。 The linoar approximation allows expressing the deviations fron the optio axis in torms of $3 x$ transfer matrices.
 computer that camculatestransier motriees for arbitraxy choices of the stemeths of Q_{1} and Q_{2} and arbitrary
 mathicos between a "standard target hocackon" (conter of the south tangent trak) and M, botweon M_{2}, and M_{2} and betwoen Ma and the cxit whadow these matrices are calculated by Boc The thin lens focustig matrices at Q_{1} and 0_{2} and the transfor matrix between the arbitrary taxget location and the standard target locathon are calculatod by the inhear codes. These codes exocute mapha surveyp of the lineax beam behavior as the target locathon and the strengthe of Q_{y} and Q_{2} are varied:

1. Dexivation of the Analytio Tramsfex Matrix to the

Standard Target Location

The Rollowing dexivation of the radxal transfes matrix betweon an arbitrary target location and the standaro target Joeation is due to Dr. Gamren.
kn approximate malytic transfex matrix that neglects the arimuthal dopendence of the amplitude of radiad betatxon osciliations due to the presence of the stratint sections, is derivod from the ibnontizod equatrons given in IT. B. 2 . anis
 $\Delta p / \mathrm{p}$ a e takon relative to the chosed (equisiberm) orbid for momentum Po The matrox

$$
M=\left|\begin{array}{ccc}
\cos \phi & \sin \theta & \frac{R}{P^{2}}(1 \cdots \cos \theta) \tag{1}\\
\cos \theta & \cos \theta & \frac{1}{p^{3} \sin \theta} \theta \\
0 & 0 & 1
\end{array}\right|
$$

Whore $\phi=V_{6} s / R$ and s is the path length over which the transfer matrix acts.

We want the transer matrix about the reference orbit
(optic axis) between the target and the standard target hocationo Let X and X be the displacoment and slope of this reforence orbit rolative to the equilibrua orbit for momentum P_{0}. If we wish to gencralize to cases in which x and $x^{\prime \prime}$ are not small quantities. then we must expand the matrix as a function of p :

$$
\begin{equation*}
M(p)=M\left(P_{0}\right)+\left.\frac{\partial x}{\partial p}\right|_{p_{0}}\left(p-p_{0}\right)+\cdots \tag{12}
\end{equation*}
$$

Let x, x^{s}, and $\Delta p / p$ be takon relative to the xeference orbit; then

$$
\left(\begin{array}{c}
x+x \tag{13}\\
\left.\frac{x}{2}+x^{3}\right) \\
\frac{\Delta 0}{p}
\end{array}\right)=\left\{M\left(p_{0}\right)+\left.\frac{\partial M}{\partial p}\right|_{p_{0}} \Delta p /\left(\begin{array}{l}
x+x \\
\frac{\left.x^{2}+x^{*}\right)}{} \\
\frac{\Delta p}{p}
\end{array}\right)\right.
$$

If we now subtract out the xeference orbit and collect the remaining terms, we obtain the transfer matrix relative to the reference prott:

The coeffeicont th is obtained as follows:
$G=U_{S / R} \operatorname{coc}(1 \ldots n)^{1 / 2}$ for some constant $c=c(s)$:
$\frac{\partial \cos \varphi}{\partial p}=-\phi \sin \phi\left\{\frac{1}{2} \frac{c}{\partial}(1-n)^{-1 / 2}\left(-\frac{\partial n}{\partial p}\right)\right\}=-k \frac{R}{\eta k} \phi \sin \phi$,
where $k=\frac{1}{2} \frac{y^{2}}{R} \frac{1}{1-n} \frac{C n}{\partial p} v_{2} \frac{1}{2}\left(1+\frac{d}{4 \pi R}\right)^{2} \frac{1}{R}=\frac{1}{2}\left(1+\frac{4 \pi}{4 \pi R}\right)^{2} \frac{1}{p} \frac{1}{1-n} \frac{\partial n}{\partial R}$. since $\frac{d p}{p}=\frac{d R}{R}(1-n)$.

A moxe accunate mation can be obtained by applying the method of Coumant and Snydor 23 to the goneral linearized equation of motion, tho Mil equation. for a synchrotron with azimuthally Vaxying ficlow The incroase in accuracy amounts to about lo\% and is not important here since this matrix is requixed only for the . relatively short distance between the actuol target location and the standard target location.
2. Asxeement Between the Linear Codes and BOC

The output of the linear codes determines the radial and yextical spreads of the beam at the exit window the divergence at the window, and the dispersion at the window.

Although this approach gives excellent agreement for the dispersive displacement at the window, it cannot be expected to describe the entixe phaso space pattern adequately. Even in cases for which approximation indicates that the pattorns are exactly the same for the three enemgtes considexod, tho accurate orbit calculations show that this is almost never true, because of the laxge second order ofrects described in Chapter MI . Mowever. excellont agreement was found for a fow chotees of parametors, for which the second order esfects are smali.

Wo now tura oux attontion to the solution of the optical dosign proillom of extracting the proton boam. She requiremonts on the beara aro discussed first. We thon consider thre paranetors to be spocitied doscribing the basice effects of their adjustment. Rinally, the method of solution, using the numerical caculational toole proviously described. is discussed. concluding with the resultes of tho dosign study.
A. Tho Desion Objoctives and Restractions

1. Optical Pronortios Rocured at the Rxit Vindow

The recombination in eno.igy should bo as complete as possible in order that the size of subsequent focal spots and the divergence of the beam be minmizod. The criterion is that the offective phaso space cccupiod by the entire beam, including residual dispersive and nomlinear effects, should be minimized. The effective occupiod phase space axea is detemined by the aroa of the smallest simple closed curve, such as an ollipse, that completely encloses the bean. The minimum size of external focal. spots is directiy related to this area. Although nonlincar effects do not increase the actual occupied phase space area, in general they incroase the effective occupied phase space area as defined above. The criterion of effective area is used because linear focusing elements, such as quadrupole magnets, cannot remove aberrations already present in the beam.

The entire beam must pass through the 3.5 in. radial aperture at the exit window. As the beam must travel approximately
yo in to the fixst foch eloments boyond the exit window the divergence of tho beam should be minimizod.
2. Restrictivo Meohnical Considerations

Ia ordor to obtain full beam intensity all of the intexnal mamnots in the optical syetom must be planged and pulseds stoay fields and obstructions are particularly damaging at injection. The magnots M_{1}, Q_{1}, M_{2} and Q_{2} must bo constructed to withstand continual plun i operation in bigh vacuum. these consideratione place a premiun upon minimizing the size and woight of the magnetso In additione xoliability demands consexvative designo

The apertures and fiolds of the magnets are further restricted so that the mazn cireulating beam will not be perturbed by stray adolds hs M_{1} and $Q_{\text {a mast be plunged close to the }}$ circulating boam, the stray ficho must noarly vanfsh beyond the septum. These mestricthons are not as severe for hand Q_{2} since they aro not plunged quite so close to the beam.

Both of the bending magnets are "Citype magnots with magnetic shields placed between their open sides and the circulating boame Phe two quadmpole magnots are panotsky type (curxent sheoct) magnets. All of the magnets are watex-cooleds even with pulsed operation, the maximum fields are limitod by the tokerable temperature rise.

The geometry of the Bevatron (fige 0) xestricts the azimuthal locations of the magnots. The beam must emonge into tho west tangert tank area; thus ha and Q_{2} must be located in the south tangent cank. H_{1} and Q_{1} must share the east tangent tank with the
injoctor and the ripis boan ejector tho enorgy loss target should be in tho neighborkood of tho south tangent tank (within 90°). The re cavity fills the north tangent tank.
3. Reduced axeroy External 3oam

Although the desigh mast be optimized for the fuld energy. 6. $2 \cdot \mathrm{BeV}$, exterani beam, satisfactoxy beans must also be obtainable at lower energies. The shape of the Bevatron field is a Tunction of enoxgy with nonlinearitios fincreasing as zaturation is approached. The inward deflection at hap is appoximately inversely propoxtional to momentum [eq. (1)]. The initiol radial divergence at the targete due to multiple Coulonb scautering within the target, is increased as the momentum is decreaseu.
povision must also be made xor a continuous beam-spill during acceleration; this can be accomplished by programming the radial position of M_{h} and the strencths of all of the magnets so that they "track" the rising Bevatron field.
B. The Sdjubtable Parameters

There are five independent parameters to be specified, assuming itxed azimuthal positions for the magnets. These parametexs are: (a) target azsmuth. (b) target thichness, (c) strength of M, (d) strength of Q_{2}, and (e) strength of Q_{2}. The radial location of M_{2} depends upon the streagth of M_{2}. The radial location of Mi_{3} depends upon the target azinuth and targot thickness. The strength of M_{2} as fixed by the location of the cxit window We now discuss the baste efrects of adjusting these parameters.

1. Target daimuch

Vary arg the azimethal location of the tareot rolative to Mh causes tho phase space pattern at M to rotate The maximum inward deflection is obtained fox an azimuthal separation of one-half betatron period; this separation results in the taxgot bejng inaged at M, Changing the target azimuth decredses the deflection and also increases the width of the beam at M, however, othor properthos of tho beam may be improved by changing the target azimuth.
2. Target Thickness

Increasing the tamet thichness results in a larger deflection at ing moving M further from the chreulating beam relaxes the design requiromonts partioularly those of gap size and stray fiold, on this magnet. However this gath is offset by an increase in the enexgy spead due to the Landau effect.
3. Strengthoth.

Increasing the inward doflection at My results in moving M_{2} further from the circulabing boam; this pelaxes design requirements on M_{2} but at the expense of increasing the size of M_{1}. Nnothor rosult of changing tho radial location of in is to move the beam through a different ficld region in the Bevatrons this noticeably afrects the character of the aberretions. For several choices of the other parameters, it is possible to neaxly eliminate the , vature in whe phase space pattexns at M_{2} by the proper chotec of the strangut of M.
4. Strength ot 0_{1}

Q has little offect on the addinl imaging properties for monoencrpetic bonms, for reasons noted in Chapter IX The strength of this magetet mot be chosen wo optimize botis the energy recombination at the window and the vortical divergence at tho window Acceptable vextical divexgence at the exit window can boy malizod caly if this manot is woakly converging in tho vertical plame (with focal length greater than 500 in.).
5. Strength of Q_{2}

The radial beam width at the exit window is very sensitive to the strength of Q_{2}. Por most choices of the other parameters, Q_{2} must be weakly convergent in the radial plane.

C. fhe riothod of Solution

During the years 1956 to 1.959 several experiments were conducted with single magnet extraction systens. It soon becamo apparent that only a small fraction of the beam could be extracted with this scheno, for the reasons listod in Chapter XI. The mechandom of the enexgy-loss target was explored, resulting in experimental values for the size and divergence of the reduced energy bean leaving the targot. Duxing the next few months the two magnet scheme, suggested by Dr. Lambertson, was more seriously considered.

The original vorsion of the Bevatron orbit Code and the field conversion codes, Derexp and DND, were writton in eaxly 1960. Initial thooretical studies were conducted by Dr. Lloyd Snith, Dr. Andrew Sesslex, and Dr. Aner Garren.
2. Numerical Orbit Sudies

When BoC became available for use, compochonstve studies of the boam waviox wore initiatod by wr. Sesshex. Staxting with an elovon Hoy hoss at tho tareet, Sevoral arimuthal mamet locations. nome tho halm-botatron rowod location were congiderod for each target locations ropmesembintive grouns of oxbits were mun on BOC with a mange on strongths of on prase gpace patterns woro plottod at each magnet. Bxperionce soon indicabod the focusing mequiremonts $2 . Q_{2}{ }^{\circ}$

Whe athon woxkec with Dx. Sosenom during tho socond and third months of the stuby; a sambar mamenton explomathon wos whertakent tow a 3 Mey hoss tanger. do the oxemhar botatron
 radial spaoad of 3.2 in at whe wadow with an dequtivo incroase

 Whane this pextwes the abindy bo detomane soveral panametoxs

 Comained: the chotce of target locathon, radial location ot Na* and Stremgth of C_{2}

2. Ancar baxamotor Sumoy

Whthoth an accontahto sobuthon had boan detormined, the gossibility ot othor tothliy dix́exont solutions existed Phe number of cases whach conda mexphomed by 300 was linttod by cost
considerations: ach orbit intogratod axound tho Bevabrom cost ono doblan in computor time Tho limear codes, doscribed tin XX B. wero writhon to xapialy suxvoy tho possible chotcos of paramem toxs These codos provide a cleaxom pioture of the Runctional dependence of the dispersive and ponk proporties of the beam mpor the parametexs.

The output of tho linoax codes incorporated ides of Dr. Gessler tho primany output consists of dispersive sepacation In theplacement and slope at the window, the monoenorgetio pattexn widths and divergences, and the total pattern withs and divergences. Hundreds of combinations of choices of target location, focusing at Q_{1} and focusing at Q_{2} wone oxaminod. Promising combinations were fuxthex explored with the aid of Boc. Several good solutions wore discovered tor duatitatively diferent choices of the parameters.
3. Reduced Bnergy Suryey

The same type of survey describod above for 6.2 bey protoms was carxtod out for 4.2 Bey protons by tho authox whth Boc and by Dx. Garxen with the linear codes. The same target was used, resultheg the greater divergenco of the beam leaving the target at 4.2 Bov than the divergence at 6.2 BeV The overall incomase Xn efrective phase space is greater at to Boy since the amplitude of betatron oscillations is inversely proportional to momentum ERq. (I)].
4. Variations to the Bosic System.

Durtig the course of the study, De William thenzel
and Dr. Glen Re Lambortson contributed much to the optical designo Their familiaxity with tho Bevatron provided keen ingight into the nature of the solutions obtained and the adjustments which should bo explosed. Thoix aid was invaluable in assessing the engineering Reasubility of proposed designs.

Duxing the couxse of whe study, as the roquixemonts upon each magnot becane cleax. the properties ot that magnet wexe fixed so it could be destgrod and constructed.

Before fixing the requirements upon any magnet. several novel variations of the extraction schome were examined.
a. New Hincow location. mhe possibility of oxtracting the beam about 200 in. upstream exom the west rangent tank exit window was considored. Passing through the mringing field over a shorter distance should reduce the radial divergence due to the fringing fiolde Wmerical calculations showed that the shight improvement would not justify cutting the required channel through the magnet. iron.
b. Target Location. The lincax coles rovoaled very good soluthons fox $5 / 8$ to $3 / 4$ betatron period between the target and M. Studies with BOC roxified the good bohavior at the exit window, although aberrations doubled the actual width predicted by the linear codes. These solutions requice a laxger radial apertuxe at M.
C.Sextupole Masnet. The authon proposed inserting a sextupole magnet adjacent to Q_{2} Calculations xevealed that such a magnet produces maxked impovements for those cases charactorized by large curvature in the phase spaco patemas at M2 for example, the
insertion of a sextupole roduces the ridial spred of one of the systoms mentionod in raxamaph b, move, from 2.6 in. to 1.2 ino o Howevex, several choices of paramgers wore dotombined that yielded good beam bohavox whomt the added complication of a segtupole magraet.
d. Padial Placement of Mo Aftex the aperturo requirononte at M_{2} wexe escablished it was discoverod that h_{2} could be moved closer to the circulating beam. Mnis change was made aftex investigitions with BoG demonstrated that the aberadtions wexe xeduced by decxeasiag the deflection at ${ }^{\text {g }}$ this also reduces the size of by With the now locatron for M_{2}, the behaviox of the beam as a function of the strength of Q_{1} was carofully studiod.

D. Conclustons

With a b Mov loss target, the intial spread ot the beam
 maximum divergence considered in either plane is 1.2 man at 6.2 BeV and 1.7 ma, at 4.2 BeV An enexgy spread of th. 5 MeV is due to the Landau eftect The nollowing results were dertved from these mintal condithons.

1. Punctional Dependonce on the Daraneters
a Strength of Q_{1} - Work with the linear codes demonstrate that the monoenergetic spread at the window is nearly independent of Q for the halemotatron period target iocation this was predicted In Chaptor Ife with Q_{2} converging in the radial plano with a focal longth of 2000 in. s the total radial spread at the window is 3.5 in.
independent of the strength of Q_{1}. Mowever, the vertical divorgence is fexy sensitive to focusing by a,

For evory target hocation, there exists a etrength for Q_{2} Fhat renders the total xadial sproad indepondent of Q_{1}; as tho taxget location moves turthex from the hatfobetatron poriod location. the whal rodial spread at this strength of Q_{2} increasos.
b. Taxget location, The radial beam distribution at My fon several taxget locations is shoma in tigo 11. The two plots at the top of this tigure show the radial distxibution of the beam leaving
 4. 2 BeV on the right,

The second Ine shows the distributions at h, for 6.2 Dev while the thind line shows these distributions for 4.2 Bevo The south tangent tamb locathon corxesponds to the tourth colump from the Iefts the righthand column comesponds to the east tangent pank location.

Each of these figures is centered on the conftguration point for the refecence onbit (optic axis) The horizontal axis is the redial displacement each diviston is one inche Tho Vertical axde is the radial divergences each diviston is one millimadian Twenty-seven orbits aro plotted representing three initial displacoments, three initial ancles and three energies. Mean energy configumation points ame labelled by smath diamonds, those corxesponding to energies 1.5 Mev above and bolow the mean energy are labellod by the lettexs "TM and mi" respecturely. Good solutions woxe obtained for a variety of target
locations. The further the target is from the hal x betatron

Fig. 11. Phase space distributions at M_{1} for different target locations.
position the greater the dopendence of the radial spread at the window upon Q_{1}, provided Q_{2} is not sot to the strongth for which Q has no influence. The target was placed in the south tangent tank due to these considerations and because thero is an available aixmlock at that point (which simplities target adjustment).
c. Strength of Q_{1} Pig. 12 shows the radial dependence won Q_{1} at $6.2 \mathrm{BeV}, \mathrm{M}_{2}$ is positioned 12.2 in. inside the circulating beam. Each column in thie figure corresponds to a particulaw choice of paxameters. The hefthand colum coresponds to strong radial focusing at Q_{1} i the second colum conresponds to no focusing at Q. and columns further to the wight correspond to increased xadial defocusing at Q_{2}. In ach case, Q_{2}, is chosen to optimize the radial beam distribution at the window. The top row shows the distributions aftor $Q_{,}$, the next three rows show the distribum tions before Q_{2}, after M_{2}, and at the extt window, xespectively. The scale divisions for oach of these graphs axe one inch and one m. Mhe bottom line shows the distribution at the exit window with the radial scale expanded fox clarity; each diviston in the radial scale corxesponds to 0.2 in.

Figure 13 shows a similar study at 4.2 BeV. Note the increased separation of the patterns for different energies © The second bending magnet is positioned 5.5 in. inside the cinculating beam for this and subsequent figures.

Pigure 14 shows the vertical phase space distribution at 4.2 BeV ; the fixst colum corresponds to the first column in Fig. 12, the second column with the fourth column, and the last column with the third colum in the preceding figure.

$6881-8 \mathrm{nW}$

$0681-8 \mathrm{nW}$

$$
y_{z}^{5}=-770^{3} \quad \frac{4}{3}-890^{4}
$$

$$
\frac{4}{3}=-86^{3}
$$

MUB-1891

Fig. 14. Vertical phase space patterns at 4.2 BeV .
d. Radiot Position of Mo. Tho socond boxding magrot is 2a.2 ine inside the circulnting boam in Fig. le, Moving this magnet to S. 5 ine instde the circuleting beam xoduces the aberxatione as shown in Fig. 15: the range of focusing at Q_{y} is less in this fig gue than in the precoding tigures. The bop xow shows the xadial distributions berore Q_{2}, the bottom two rows ghow the distributions at the exit window. The best golution is that shown fn the fourth column from the hefti this solution is described ink the next section.
2. The Optimum Solution

The optimum solution, with the target loegted in the center of tho south tangent tanks wequres that c_{a} be radially divergent with a focal length of whoo ine ard that or be radially convergent with tho same focal lengtho

At the exit window the cotal radial spread is 1.7 in.
the total vertheal spread is 0.5 ino and the maximum vortheal dyexgence $i s \pm 4$ me mo effective occupied phase space area is approximately twice the anea ocompied by the bean leaving the taget.

Vestical apertmees of 2 in. at all magets would barely suftice to pass the beam. Radial aportures of 2.8 in and 4 in. axe xequixed at M_{1} and M_{2} xespectively.

With these apertures, the first magnet parn (M, and Q_{1}) Warghe about woo pounds wherem the second magnet pair with its associated mechanism weighs over foux tons. These magnets must be plunged 28 ine in 0.75 second evexy six seconds coming to mest within a few thousandths of an inch of the required position.

	$\begin{aligned} & f_{1}=\infty \\ & f_{2}=128^{n} \end{aligned}$	$\begin{aligned} & \mathrm{f}_{1}=-252^{n \prime} \\ & \mathrm{f}_{2}=115^{\prime \prime} \end{aligned}$	$\begin{aligned} & f_{1}=-151^{11} \\ & f_{2}=122^{10} \end{aligned}$	$\begin{aligned} & \mathfrak{f}_{1}=-126^{\prime \prime} \\ & \mathfrak{f}_{2}=120^{\prime \prime} \end{aligned}$	$\begin{aligned} & \mathrm{f}_{1}=-108^{n} \\ & \mathrm{f}_{2}=115^{n} \end{aligned}$
After M_{2}					
At window					
At window (expanded scale)					

Fig. 15. Beam at 6.2 BeV from M_{2} to window ($\mathrm{M}_{2} 5.5$ in. inside).

3. Comparison with Emporimental Results

Moasuremoxts of tho externat boam commenoed in early $.1963^{\circ}$ at thes tino the bean system was complete through the
 on Big. 9 . Wo disagreemones betweon theoxy and expeximent have been discovered. The magrat oxchtathons detormined in the beam destiga study produce a wot dofined boms agreetag whth theoretical predictons within axpoximontal aconacy. Rqualky wely dofined

- beams bave been obtanned 10 maget exctuttons varying prom those That ane theorettcally opthmed tho magnet exbltatons are not conercally derined. No ostimath bes yet be made as to the portion of the bean successtully ortracted mat portson of the beam thet is extracted has been roensod tam imago 0.5 bu. (radial) by o. 10 Sn. (verthonl) several taet beyond the externaw quadrupone magnets $Q_{3,}$ and $Q_{3 \beta^{\prime}}(6,2 B 0 y)$.

Himure 16 shows the rotative butensty of the extractod bean as a tunction of radian displacement at the extt window The measwements were made using two cmall moroable scintillator
 baget was used with tho rult onexgy boom. The beam whth is slighty harger than hat ealculateds this as due to the larger energy sponad obtanapd from a 14. Mey taxget the calculations
 buthon axe due to the handar tail on the onergy distrabuthon posshbty augnonted by scattoring off sone obstruction vpetream. Figures 17 , 18 , and 19 are radioatographs of the beam at M_{3}, M_{2} and the exit window respectively. Polyethylene

Fig. 16. Mxtexnal bean distribution at exit window.

MUB-1896

Fig. 17. Radioautograph of the beam at M_{1}.
targets are exposed to tho bocm, xomoved from the beam, and placed in contact with xay fim rox sevora minutes. Decause of the naxrow exposure latitude of the fim, these pictures do not accurately motacet hatensity distributions.

Rigure 17 shows a cloan separation between the reduced energy beam at H_{h} and the onexgy loss target which is locabed about two thenes to the right of the edge of this picture. The radial and vextical hoaghts are in excellent agmement with theory.

The beam dimonshons at M_{2} (Tis. 28) axe aiso in excelleat agrecmeat with theory Tho variation in beam height across the magnet aperture domonstates the aftect of the vertical behaviox upon the radial boam pathy thas is an aboration corresm ponding to terms in $x, x^{4} x^{\prime}$ and x^{2} which represent tho second order corrections to the vertical oguation of motion (3).

Phgure 19 shows the bean at the window The beam is asymmetrically dietributed across the gap; this agrees with theory as shown in Fig. 15 .

The extexnal beam whll be available to experimenters in a few months. Whener measurements will be made in the intervenimg period.

MUB-1895

Fig. 18. Radioautograph of the beam at M_{2}

MUB-1897

Fig. 19. Radioautograph of the beam at the exit window.

ACKNOWL BDGMMENTG

 two problems 大rooted fin this thests and wor his patient help

 in the wroting ol the manescring o
 Abomit mergy Commisstomo

RETERENCES

N. K.D. Couramt, Mo So Litingston, and Wh. Shyder, Phys. Rev. 91. 202 (1953) (letter).
 Rev: 88. 1190 (1952)
3. Fo Jenkina and Wh, White, Gundanentals of Optice (Mchenwohill Book Co. Xnc. Now York, 1950). Chap, IX.
A. d. C. Burfoot. Third Order Aberations of PDoubly Symmenticy System, Proc. Phys. Soc. B67. 523 (1954).
5. Eo Reirman. The Maging Properties of Crossed Magnetre Quarmpoles (Thesis-mboned Universtity) Univerghty Microfilms No. 24775,1957 (wnpublished).
6. P. Grifut and M. X Bernaxd, CERN Laboxatory Report (P, S.) MB-6. 1955 (CERN, Geneva) (wnpublished).
7. A. Septier, Rtude des Champs de Furte drunc Lentille quadrupolaire Magnetique, Rend. Acad. Sci. 243. 1026 (1956).
8. P. Grivet and A. Septier, Les Lendilos Quadmpolakres Magretiques, CRRN 58-25. (1958): Nuc1. Tnaty. 6,126 (1960): Nucl. Thetre. 6, 243 (1960).
9. A. Septier, Strong-Focusing lemses, Advances in Electromice and Electron Physics 14. 85 (1961).
10. K. G. Steffen, in Proceedings of the, International Conference on Migh Energy Accelerators, Brookhaven, 1961 (Brookhaven, New York, 1963), p. 437.
 A.W.Vance, Electron Optics nnd the Electron Microscope (d. Whey and Sons, Trics, New York, 1945), Chap. XVI.

 Pevi Sci, watt, 20, 232 (2953)

 3. $24(206 x)$

 (imphatheneme

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

