Skip to main content
eScholarship
Open Access Publications from the University of California

An endplate-based joint coordinate system for measuring kinematics in normal and abnormally-shaped lumbar vertebrae

  • Author(s): Berry, DB
  • Rodríguez-Soto, AE
  • Tokunaga, JR
  • Gombatto, SP
  • Ward, SR
  • et al.
Abstract

© 2015 Human Kinetics, Inc. Vertebral level-dependent, angular, and linear translations of the spine have been measured in 2D and 3D using several imaging methods to quantify postural changes due to loading conditions and tasks. Here, we propose and validate a semiautomated method for measuring lumbar intervertebral angles and translations from upright MRI images using an endplate-based, joint coordinate system (JCS). This method was validated using 3D printed structures, representing intervertebral discs (IVD) at predetermined angles and heights, which were positioned between adjacent cadaveric vertebrae as a gold standard. Excellent agreement between our measurements and the gold standard was found for intervertebral angles in all anatomical planes (ICC >.997) and intervertebral distance measurements (ICC >.949). The proposed endplate-based JCS was compared with the vertebral body-based JCS proposed by the International Society of Biomechanics (ISB) using the 3D printed structures placed between 3 adjacent vertebrae from a cadaver with scoliosis. The endplate-based method was found to have better agreement with angles in the sagittal plane (ICC = 0.985) compared with the vertebral body-based method (ICC =.280). Thus, this method is accurate for measuring 3D intervertebral angles in the healthy and diseased lumbar spine.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View