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Abstract

Spatio-temporal point process models for the spread of avian influenza virus (H5N1)
by
Harry Kim
Doctor of Philosophy in Statistics
University of California, Berkeley
Professor Bin Yu, Co-chair

Professor Cari Kaufman, Co-chair

An outbreak of the devastating avian influenza virus (H5N1) was first observed in China
in 1996. The explosive re-emergence of the virus after 7 years of its debut is estimated
to be responsible for 14 million poultry deaths globally. Our research aims to identify the
key factors (such as promixities to cities and roads and temperature) that are associated
with the spread of H5N1 in Turkey and quantify their relationships to the virus dispersal.
Our statistical model, the EAI (Epidemic Avian Influenza) model, is based on self-exciting
point processes inspired by Hawkes [24] and Ogata [42]. A self-exciting point process can
incorporate spatial and temporal dependencies of H5N1 outbreaks by specifying a branching
structure among the outbreaks. In addition to quantifying the relationship between the virus
spread and the key factors, the estimation result of the EAI model is used to predict future
flu occurences.
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Chapter 1

Introduction

1.1 The emergence of avian influenza virus (H5N1)

According to the World Health Organization, the devastating avian influenza virus (H5N1)
which swept the world was first observed in China in 1996 [46]. After its debut, however,
the outbreaks of influenza caused by the H5N1 virus had not been reported for seven years
until 2003. The re-emergence of the virus raised major concern in Asia due to its lethal and
explosive nature. Within four months after its reintroduction, the virus quickly spread to
nine Asian countries damaging both domestic production and international trade of poultry
products. The avian influenza scare continued on to Europe through Russia in 2004. Several
North African countries also fell victim to the overwhelming epidemic disease shortly after.

The spread of H5N1 peaked in 2006; among the 115 human cases reported in 2006, 79
patients did not survive the deadly flu. This statistic—both number of cases and death—
is about 25% cumulative statistic gathered from 2003 to 2010 [45]. It is estimated that
14 million birds were culled worldwide in effort to contain the virus. Thanks to increased
awareness from the local governments and global organizations, the explosive spread of the
fatal virus was significantly reduced in later years .

Despite the lack of coverage in the media in recent years, perhaps due to the emergence of
infamous swine flu, the threat of H5N1 is still ongoing. There are a few countries, especially
in South and South East Asia, where H5N1 is no longer considered to be an epidemic but
an endemic disease. These countries suffer from recurring outbreaks of H5N1.

1.1.1 Characteristics of the H5N1 virus

In spite of its explosive spread, H5N1 infection is not caused by the usual means of flu
dispersal, transmission through the air, which can be highly contagious. The avian influenza
virus (H5N1) instead spreads strictly by direct contact. Susceptible birds can be infected
when they come in contact with saliva, nasal secretions, and feces of infected birds [9].
Domesticated birds, therefore, have a higher chance of becoming infected and are more
pathogenic due to their proximity to each other. Poultry farms often pack many birds in a
limited space, which heightens the exposure to infected birds and contaminated materials.



For birds, researchers report that H5N1 has a mortality rate that can reach 90-100% within
48 hours [9].

The mortality rate for humans is also quite lethal; of the 507 infected humans from years
2003 to 2010 worldwide, about 60% (302) did not survive [45]. Fortunately, human-to-human
transmission of H5N1 is virtually impossible as HSN1 strains are found to be attached only
to the receptors on cells in the deepest regions of the lungs [56]. Although there are only
two alleged cases of human-to-human transmission, H5N1 is a highly mutable virus |9] and
researchers alert that this virus may trigger a devastating epidemic disease for humans similar
to the Spanish influenza, which is responsible for more deaths than World War I [47].

1.2 Data

The lethal threat of avian influenza can be seen from the global data available on the H5N1
outbreaks. In this section, we describe these data and discuss their shortcomings originating
from the collection method. We chose to focus our analysis on Turkey. In addition to the
technical benefits which will be useful in our statistical analysis, Turkish H5N1 outbreak
data appears to be more reliable than in other countries, although it is self-reported.

1.2.1 Data on the global spread of H5N1

To study the spread of H5SN1, we use the data compiled by Declan Butler, a senior
reporter for Nature magazine, gathered from FAO (Food and Agriculture Organization) and
OIE (The World Organisation for Animal Health) [[| The data features 3206 H5N1 outbreaks
in 54 countries from December 10** 2003 to November 29" 2006. For each outbreak, its
location in latitude and longitude and the date of its occurrence were provided. Additional
information for some outbreaks including the type of species infected, the number of dead,
destoried, culled and vaccined birds were also given. Although it was unavailable at the time
of our research, additional global data on spread of avian influenza is available for years 2006
and onward at the OIE website. The spatial distribution and temporal evolvement of all the
outbreaks from December 10" 2003 to November 29" 2006 are shown in Figures [1.1] and
respectively.

Many of these outbreaks, especially the ones that occurred earlier, were self-reported,
and the data suffer greatly from under-reporting and their details lack uniformity. For the
majority of the cases, the recorded species of infected birds were unavailable and ambiguous
even if they were provided. OIE has indicated that countries such as China and Indonesia
have been consistently under reporting their cases [38]. Figure suggests the possibility
that the Chinese government might have only reported cases that resulted in more than 50
dead birds at each location. In comparison to other countries, where most of the outbreaks
were reported to have less than 50 dead birds, the number of the outbreaks with death count
less than this threshold in China was strikingly lower.

!The original data in KML (Google Earth XML) format was recompiled by Liang Lu, a graduate student
at the Department of Remote Sensing, Chinese Academy of Science, into a excel spread sheet.


http://www.oie.int/downld/AVIAN INFLUENZA/A_AI-Asia.htm

Figure 1.1: Plot of the global locations of H5N1 outbreaks. Outbreak locations with over 50
dead poultry are denoted with red crosses. The blue dots represent the rest of the outbreak
locations.

1.2.2 Study Area: Turkey

While we can merely guess the reliability of the HSN1 outbreak data for each country,
reported outbreaks in Turkey appear credible, judging from the consistency of provided data.
In addition, the Turkish data has other technical advantages that will be explained later in
this section.

For these reasons, we will focus our analysis on Turkey in this thesis. The Turkish spread
of avian influenza, provided in the Declan’s global data, lasted for 182 days from October
1, 2005 to March 31, 2006. During this period, there were total of 221 reported cases of
H5N1 outbreaks. For each case, numbers of dead and destroyed birds and their species were
given. The majority of reported cases (198) involved backyard poultry, but there were a few
cases (9) associated with wild birds—including a case with a migratory bird, a mallard duck.
Figures and illustrate the spatial and temporal distributions of the outbreaks that
occurred in Turkey during this period.

There are several notable advantages of concentrating our analysis on Turkey: 1) Turkey
has one of the highest poultry productions among the European and Western Asian coun-
tries [65]. 2) The domestic demand and production of poultry do not fluctuate according to
religious holidays in November and December, as 99% of its population are Muslims [41].
Further, its main market for export of poultry products is the Middle EastE| [40]. Thus
seasonality, which will be noted in Chapter 3, is not a result of changes in poultry produc-
tion level. 3) Numerous data on its infrastructures—locations of railroad and highways for

2Recently Vietnam became a big importer of Turkish poultry products but the international trade was
initiated after the study period



example—are readily available. 4) Turkey is relatively invariant under different geographical
projections due to its proximity to equator. Its rectangular shape is attractive for our sta-
tistical approach. 5) This statistical approach also benefits from Turkey’s traffic networks,
which are not as dense as those of other European countries. Further details of its technical
advantage will be discussed in Chapters [2 and [4]

Aside from the reported cases of HSN1, we require a few additional data sets for our study.
In the chapters to follow, proximity from an outbreak location to the nearest highways, rail-
roads, and major cities, and temperature time series will be instrumental in construction of
our EAT (Epidemic Avian Influenza) model presented in Chapter 4 The locations of high-
ways and railroads in Turkey were obtained from ESRI (Environmental Systems Research
Institute) and are shown in Figure with green and blue lines respectively. Likewise, lo-
cations of 96 cities in Turkey were obtained from the same source and are represented as red
crosses in Figure [1.2] Information on air temperature was retrieved from NCEP (National
Centers for Environmental Prediction) and is available for latitude and longitude coordinates
ranging from —180° and 180° by increment of 2.5° per day.

Samsun

Figure 1.2: Plot of Turkey with outbreak locations marked black. The red crosses correspond
to locations of cities in Turkey. The green and blue lines represent major highways and
railways respectively.

1.3 Current hypothesis on spread of H5N1

Based on the globally observed outbreaks of avian influenza, many prior research have
focused on determining the key factors that influence the H5N1 dispersal as a part of disease
surveillance. Understanding the major contributors to the disease spread is a crucial first
step towards the prevention of the deadly influenza.

In this section, we present three notable possibilities contributing to the spread of the
H5N1 virus. They are movements of poultry and related products by humans, migratory
birds that are capable of being healthy carriers of HSN1, and ecological factors . Because we



want to develop a general framework for modeling H5N1 spread, it is important to understand
the factors associated with the dynamics of the disease in a global scale, although our late
analysis will focus only on Turkey.

1.3.1 Movements of poultry and poultry products

Domestically, the spread of H5N1 is linked to movements of poultry, poultry manure,
poultry by-products and accidental transfer of infected material from poultry farms, such as
water, straw or soil on vehicles, clothes, and shoes [26].

International trade—both legal and illegal—may also have contributed to dispersal. In
2007, legally imported live poultry from Hungary, which was suffering from H5N1 spread at
the time, was suspected to be a cause of avian influenza outbreaks in United Kingdom [33].
A year later, 17 H5N1 positive cases were reported in legally imported poultry seized at two
Vietnamese ports of entry [39].

In 2004 and 2005, multiple illegal smuggling of exotic birds from Asia infected with H5N1
were intercepted in Europe [26]. This time frame coincides with the explosive dispersal
of H5N1 outbreaks in Europe, although incidents of smuggling may have been completely
irrelevant to the outbreaks.

Some researchers note that a possible avenue of disease spread from Asia to Europe in
2005 is the Trans-Siberian railway, a major trading route between the two continents [20]. As
shown in Figure the locations of H5N1 outbreaks were found to be scattered along the
Trans-Siberian railway, suggesting an association between the HSN1 outbreaks and poultry
trade.

--- Trans Siberian Railway

“ A ——

Figure 1.3: The Trans-Siberian railway is represented with a dotted line. Locations of
outbreaks in Russia marked in blue.



1.3.2 The role of migratory birds

In addition to humans serving as a vector of the epidemic by transporting poultry and
related goods, researchers suspect migratory birds to be another major contributor to the
spread of HSN1. However, whether the migratory birds play a role in the virus dispersal
is still heavily debated. While we cannot completely rule out the effect of migratory birds,
many recent publications have been denouncing such a hypothesis for lack of evidence |20,
29,17,(181|62].

In the earlier cases, most of the wild birds found dead were in close proximity with the
farms swept by H5N1 and were thought to have obtained the disease from birds at the
farms. It was not until April 30th, 2005, when hundreds of bar headed geese were found
to be infected and dead with H5N1 at Qinghai lake in China, that researchers started to
seriously consider the possibility of wild birds as carriers of H5N1 [20]. Later that year,
in November and December, 840 wild birds (mainly swans) were reported dead in two of
the ten major regions affected by H5N1 in Russia. There were also swans reported dead in
Romania (137 in number) and Croatia in October due to H5N1. The spread of the virus
continued towards western Europe, and the great majority of reported cases from February
of 2006 included dead wild birds. Although most of them were resident waterbird species,
some were migratory, including Common Pochard and Tufted Duck.

In 2004, it was shown that domestic Mallard ducks could be healthy carriers of the
virus. Researchers believed that the genus Anas (the family of bird specie that Mallard duck
belongs to) is highly likely a carrier. The few numbers of deaths reported for this bird specie
seemed to support this claim. However when the researchers surveyed tens of thousands of
Anus ducks in Europe, Asia, Australia and Africa for verification, only 33 were found to be
carrying H5N1 [17].

While the few healthy carriers of the virus may be able to infect other birds locally,
researchers have found no evidence that migratory birds are responsible for long distance
transmission of H5N1 [204|17,/18]. Migratory birds are often capable of traveling several
hundred kilometers in a single day. If they are the main agents of the virus dispersal, the
locations of outbreaks should occur in jumps of several hundred kilometers, corresponding
to their migratory sites. Instead, the observed global spread of avian influenza developed
progressively without displaying long distance jumps.

Researchers who claim that migratory birds are not a main agent of H5N1 dispersal
emphasize the role of humans in virus transmission through transportation of poultry and
poultry products [20,/17].

1.3.3 Ecological factors

Besides humans and migratory birds, ecological factors can also impact the dynamics of
H5N1 dispersal. Similar to any other viruses, the survival of avian influenza viruses depends
on ecological factors. It is a well known fact that temperature is inversely related to the
survival of all types of avian influenza viruses. Moreover, influenza viruses can prolong their
life significantly in water. Laboratory experiments confirm these facts. Webster et al. [63]
found that a subtype of H3N6 was able to survive up to 32 days at 4°C, while it only managed



4 days at 32°C in river water. Stallknecht et al. [58] produced similar results with another
type of avian influenza, HGN2.

In more recent experiments, Brown et al. [6,7] compare the effect of various ecological
factors to the survival of H5N1 virus. They found that lower salinity, acidity, and temperature
of the water containing H5N1 virus yield higher survival rates of H5N1.

While these favorable ecological factors may extend the presence of HSN1 virus, whether
they directly contribute to the virus spread still remains uncertain. Infected birds can
transmit the virus to nearby birds by contaminating a water source with increased persistence
in cold weather. Wintering sites of migratory birds, Qinghai Lake for example, often provide
these suitable environmental conditions as migratory birds flock together at wetlands for
easy access to water and food. In reality, however, there is no adequate way to measure
the relationship between the increased persistence of the virus and its lethality other than
comparing the numbers of outbreak cases according to the temperature. The exploratory
data analysis featured in Chapter 2| will examine this relationship and show that there is
an association between the number of outbreaks and temperature, especially for our study
area, Turkey.

1.4 Overview of the thesis

The goals of this thesis are threefold: first, through exploratory data analysis, to inves-
tigate the mechanisms of H5N1 spread and determine the key factors that contribute to its
explosiveness; second, to develop a statistical model based on point processes to assess the
past progression of the disease in Turkey; third, to build an algorithm using our statistical
model to predict the future disease spread conditioned on past observations of Turkish H5N1
outbreaks.

This thesis addresses these goals within the following structure. Chapter [ visually ex-
plores temporal and spatial patterns of H5N1 spread in Turkey and compares it to the global
trend. Through exploratory data analysis, we aim to determine the contributing factors to
the virus dispersal. Among the contributing factors to HSN1 outbreaks we considered, tem-
perature and proximity to traffic networks and cities were found to be associated with the
virus dispersal. Prior to constructing our statistical model using these factors as predictors,
Chapter |3| discusses past statistical approaches used to model the spread of avian influenza,
and they are based on spatial logistic regression and spatial autoregression. Their results
and drawbacks are noted in the same chapter. These modeling approaches omit the analysis
of temporal trend and do not incorporate spatio-temporal dependencies of HAN1 outbreaks
appropriately. To address these shortcomings, we consider a different modeling approach
in Chapter . The first part of Chapter [4] reviews self-exciting point process [24], which
will serve as a starting point for our statistical approach. Further, an expansion of the self-
exciting process, ETAS (Epidemic Type Aftershock Sequence) model [42], is discussed along
with benefits of this modeling approach to our data. Drawing inspiration from the ETAS
model, we propose our statistical model, the EAI (Epidemic Avian Influenza) model, along
with three estimation methods: backfitting, Poorman’s EM (Expectation - Maximization)
and EM. We provide results from fitting the model using each method to the Turkish data.



Five variations of EAI models are considered and the best model is determined based on
AIC (Akaike Information Criterion). Chapter 5| presents a validation for the best EAI model
through a residual analysis using Stoyan-Grabanik weights [59]. In addition, the validation
results for the second best EAI model will be compared against those of the best to examine
the improvement in model fit. Chapter [6] presents simulation studies of the EAI model, and
examines whether the three estimation methods are able to obtain accurate estimates when
the truth is known. Performance of the three estimation methods is compared in terms of
sensitivity to the starting values and accuracy of the estimates with and without an edge
correction. Moreover, prediction results based on Monte Carlo simulation is provided for
Turkey during a 60-day period before the last day of observed H5N1 outbreak. Finally,
Chapter [7] summarizes our findings and discusses areas that can be improved in the future.
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Chapter 2

Exploratory Data Analysis

In the first chapter of this thesis, we introduced and discussed three potential contributors
to H5N1 spread. While the role of humans in transferring the disease is widely accepted,
whether the migratory birds, which are capable of being carriers of H5N1, impact the virus
dispersal is heavily debated. In addition, ecological factors are scientifically proven to affect
the survival of the virus, but a clear linkage between these factors and the spread of avian
influenza has not been determined.

Through exploratory data analysis (EDA), this chapter investigates the contributors to
avian flu mentioned above, using the H5N1 data featured in Section[1.2] EDA is an important
part of a statistical analysis, as asserted by the great statistician, John Tukey, since it
provides candidates for formal statistical modeling. We want to identify the key factors that
are highly likely to be associated with the dynamics of the disease spread. Identified factors
will be included as predictors in our point process model, the EAI (Epidemic Avian Influenza)
model, proposed in Chapter 4] Using the EAI model, we aim to quantify the relationship
between the potential contributing factors and H5N1 outbreaks, as the quantified relationship
will provide better understanding of the dynamics of the virus spread. Because our goal is
to establish a general framework for modeling spread of avian influenza, when appropriate,
we will examine the differences between patterns of global and Turkish H5N1 outbreaks for
each factor, despite the fact that we later restrict our study area to Turkey.

The EDA presented in this chapter is organized into two parts: temporal and spatial
analyses on the patterns of H5N1 outbreaks. First, we focus on the temporal aspect of the
virus dispersal and investigate the viable causes of observed seasonality shown in Figure [2.1]
Among many possibilities, we inspect how the outbreak occurrences vary according to an
ecological factor, temperature, and migration patterns of wild birds in order to verify the
corresponding hypotheses mentioned in Chapter I} The relationship between temperature
and number of H5N1 outbreaks in Turkey is explored in Figure 2.2l Moreover, we analyze
migratory patterns for two bird species, whose breeding and wintering sites closely match
the locations of Russian and European outbreaks, as shown in Figure [2.4]

Following the temporal analysis, we turn our attention to exploring the spatial distri-
bution of H5N1 outbreaks. Similar to seasonality observed from the temporal distribution,
the most noticeable spatial feature of the HSN1 outbreaks is their proximity to railroads
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and major highways. This spatial feature supports the hypothesis that the transportation
of poultry and poultry products is influential to the vector of the virus. Proximity of H5N1
outbreaks to the nearest traffic networks is analyzed for European countries with emphasis
on our study area, Turkey, in Figure In addition to the clustering along the traffic
networks, the locations of the outbreaks are found to crowd near cities. To understand this
phenomenon, we use Figure to examine populations of the cities, which may be one of
the key factors responsible for the observed clustering, as poultry farms favor close proximity
to populated cities for easy access to markets. Lastly, we review the poultry density map,
created by Wint and Robinson [65] and reproduced in Figure , to determine whether our
analysis can benefit from incorporating their covariates to the EAI model. A few notable
covariates considered in the production of the density map are proximity to traffic networks
and cities, human population, vegetation index, and elevation.

2.1 Temporal Analysis on the observed seasonality

The most notable temporal feature of global spread of H5N1 is its seasonal variation.
Figure displays the number of globally reported H5N1 cases per day from December
10th, 2003 to November 29th, 200611_1 From the plot, we can observe three waves of outbreaks
peaking in the colder seasons, fall and winter. While it is apparent that there is an association
between H5N1 outbreaks and seasonality, determination of the causes may be difficult. One
possibility is that the temperature in cold seasons prolongs the life of the avian influenza
virus. Another possibility is related to the poultry production cycle. Globally, the production
of poultry increases just prior to winter, to accommodate high demand in poultry products
for religious holidays. Higher poultry production leads to larger total susceptible population,
thereby increasing the chance of virus Spreadﬂ. In addition, some migratory birds can become
hosts of the H5N1 virus and potentially infect other susceptible birds at their wintering sites,
contributing to higher number of outbreaks in the colder months. We will further investigate
these issues in the following sections.

2.1.1 The effect of temperature

As noted in Chapter [I} temperature has a crucial influence on the survival of avian
influenza virus. Laboratory results conclude colder temperature aids the persistence of H5N1
virus when it is present in water [6}7]. Although a correct analysis would include proximity
to water sources or locations of wetlands in addition to temperature, determining the type
of water sources that realistically contribute to the virus spread is arduous. Therefore, we
will restrict our analysis to temperature. We will further focus on our study area, Turkey,
as applying the same analysis to the global data is not only difficult but harder to interpret.

IThere are a few extreme numbers of outbreaks in 2004 and one in 2005, which strongly suggests delayed
reporting. Most of these highly concentrated number of outbreaks were reported from South Asian countries.
A smoothed frequency plot using LOWESS was created to make a fairer comparison among the three waves.

20ur choice for the Turkish data prevents this possibility, and it will be excluded from further
investigation.



12

<— Wave +—> < Wave2 ——> Wave 3—

. E L| ...-”.h..‘ il

2004 2005 2006
Year

90
|

Count

30

||I|. L.IEL l N S A m;m.h.u oo

Figure 2.1: The global frequency of H5N1 outbreaks measured per day from December
10th, 2003 to November 29th, 2006. The different shades represent the change in seasons
sequentially with the lightest corresponding to spring and the darkest to winter. The dotted
lines mark the beginning of the years. The red curve on the bottom is smoothed frequency
plot generated using LOWESS (Locally Weighted Scatterplot Smoothing).

We wish to confirm that the laboratory experiment results agree with the patterns of past
outbreaks.

Figure displays the frequency of outbreaks in Turkey from late 2005 to early 2006
with the corresponding temperature trend. The trend shown in the graph is an average
of air temperatures from four locations in Turkey, taken from weather data, provided by
NCEP (National Centers for Environmental Prediction). Although the temperatures differ
according to location, the patterns of their changes are almost identical. Therefore, the
average temperature should not be interpreted as an average over the entire country, but
relative changes are interpretable.

The plot suggests that there is an association between temperature and number of out-
breaks. In November and December, times when the temperature drops below 0°C roughly
correspond to the times of outbreak incidences. We observe many more outbreaks when the
temperature falls even further in January and February, with the number of cases peaking
in early January and slowly declining until the end of March. The outbreak count appears
be inversely related to temperature, as fewer outbreaks occur after the temperature returns
to above 0°C in late February. Although these relationships over a single year are not con-
clusive, they are suggestive that colder weather can facilitate the spread of HAN1 outside of
laboratory conditions.

Examining Figure the scatter plot of number of reported H5N1 cases against the
corresponding average temperature, we note the association noted in the previous paragraph
does not display a linear relationship. The scatter plot indicates that the highest numbers
of cases were reported on the days with temperatures around 0°C and the numbers decline
as the temperature increases. The numbers of cases also decrease for extremely cold days,
but in general, they are greater than those of the days with temperatures over 10°C. There
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Figure 2.2: Plot of reported H5N1 cases per day in Turkey from October 1, 2005 to March
31, 2006. Average temperature taken from 4 locations in Turkey was also plotted in red.
The dotted line marks 0°C, and different shades are used to denote the change in months.
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Figure 2.3: Scatter plot of number of reported H5N1 cases in Turkey per day from October
1, 2005 to March 31, 2006 against the corresponding average temperature. The red curve is
generated using LOWESS (Locally Weighted Scatterplot Smoothing).

are much more days with temperatures above 0°C that did not have any reported cases
compared to those with temperatures below the freezing point.

Furthermore, an interesting pattern can be noted in Figure 2.2 though it may be coinci-
dental; the harsh temperature drops in late December, January, and February all precede the
large number of outbreaks, and these temporal clusters occur as the temperature bounces



14

back. We have not found a reasonable explanation for this behavior, and it may deserve
further research.

Lastly, we note, despite the association between the temperature and the number of
outbreaks described above, the initial outbreak occurs when the average temperature is
quite high (15°C). This outbreak is clearly an outlier, but it should be accounted for our
analysis. Although its time of occurrence is unusual, it may provide important information
about how an H5N1 outbreak triggers others. No H5N1 outbreaks were reported until 51
days after the first outbreak, presumably due to unfavorable ecological factors such as high
temperature. If in fact temperature is a determining factor in variation of the virus spread,
the initial outbreak will be useful in constructing a branching structure of the disease for
our statistical model proposed in Chapter

2.1.2 Migratory patterns of wild birds

In addition to ecological factors, another suspected cause of HbN1 dispersal is the contri-
bution from migratory birds, which are potential carriers of the avian influenza. To justify
such a claim, we hope to unveil temporal features that suggest a relationship between past
progression of outbreaks and wild bird migrations. We first investigate the global migratory
patterns, then discuss the implication of the results for our study region.

Gilbert et al. [21] identify 38 species of migratory birds as possible hosts of H5N1. Using
the GROMS (Global Register of Migratory Species) database, we were able to retrieve the
locations of the breeding, staging, and wintering sites of 29 identified species. Among the
29 species, we found migratory patterns of two species particularly interesting. Figure [2.4
shows the breeding, staging, and wintering sites for Slender-billed Curlew and White-headed
Duck with H5N1 outbreak locations. The frequency plots are also provided according to the
different migratory sites.

As illustrated in Figure , the breeding/wintering areas for both species match the
locations of outbreaks in Russia, and their wintering/resident areas cover a large number
of outbreak locations in Europe. In Section [I.3.1] it was mentioned that the virus spread
continued on to Europe from Asia through Russia. The Trans-Siberian railway was spec-
ulated to be responsible for the transfer of the deadly virus, possibly offering a mode of
transportation for infected poultry and poultry products [20]. Therefore, the discovery of
migratory areas that coincide with the Russian and the East European H5N1 outbreaks can
provide evidence for the role of wild birds in spreading H5N1.

However, it is difficult to verify that the two bird species contributed in introducing
H5N1 virus to Europe. For the Slender-billed curlew, outbreaks in wintering areas in Russia
appear to occur after the European outbreaks, which is the opposite of what we expected.
On the other hand, the migratory pattern and temporal occurrences of HSN1 outbreaks are
matched better with White headed ducks, as the outbreaks in their breeding area preceded
those in their resident area, which covers Turkey and Eastern Europe.

Although the White headed ducks appear to be associated with European H5N1 spread,
their contribution is likely to be small. The Bird Life International Organization lists both
wild bird species as endangered, estimating less than 50 Slender-billed Curlew and 13,000
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Figure 2.4: Plot of breeding, staging, and wintering sites for Slender-billed Curlew and
White-headed Duck respectively. Locations of HSN1 outbreaks are marked with red crosses
if they fall in the migratory sites and with grey dots otherwise. The frequency plots for both
species are also shown according their migratory sites with matching colors. The different
shades correspond to change in season with darkest shade representing winter. The dotted
line indicates change in years.
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White-headed Ducks remaining worldwide [27, 28][31 Further, there have been no reported
sightings of Slender-billed Curlew since 1999.

Other than the two species, we were unable to observe other migratory patterns closely
matching the locations of outbreaks. While we cannot rule out the effect of migratory birds,
our explanatory data analysis did not find a convincing association between the migratory
sites of wild birds and H5N1 spread.

The same statement can be made about our study area, Turkey. Only one of the 221
reported Turkish H5N1 cases is known to have involved a migratory bird, a mallard duck.
From Section we know that mallard ducks are capable of being healthy carriers of
H5N1. Therefore, one reported case pertaining mallard duck is not entirely unexpected.
However, compared to other factors that are highly relevant to dispersal of Turkish H5N1
outbreaks, it is nearly impossible to gain concrete evidence that migratory birds impact the
dynamics of the epidemic. In the text to follow, because of this uncertainty, the role of
migratory birds will be excluded.

2.2 Spatial Analysis on the outbreak locations

Our analysis of the temporal distribution of HSN1 outbreaks revealed that temperature
is highly associated with the dynamics of the virus spread. On the contrary, we decided
to eliminate the impact of migratory birds from the future consideration due to lack of
convincing evidence.

Continuing our investigation of factors in virus dispersal, we examine spatial features of
H5N1 outbreaks. Despite the obvious economic and environmental differences among the
countries that have suffered from the deadly virus, the outbreaks in these countries share a
few of spatial patterns; the outbreaks tend to aggregate near major traffic networks, highways
and railroads, and cities. The same pattern can be observed from the Turkish H5N1 data,
as illustrated in Figure [I.2] These two features are now graphically explored in depth, and
viable explanations for these behaviors are discussed in Sections [2.2.1] and [2.2.2]

In addition to analyses of proximity to traffic networks and cities, we review a global
poultry density map prepared for FAO (Food and Agriculture Organization of the United
Nations) by Wint and Robinson [65]. The map displays the estimated number of poultry
at each given location, indicating susceptible population of poultry to avian influenza. We
will investigate whether our analysis can benefit from incorporating the covariates used to
generate their estimates. A few notable covariates are proximity to traffic networks and
cities, human population, vegetation index, and elevation.

2.2.1 Proximity to traffic networks

The most universal spatial feature of HSN1 outbreaks is its proximity to traffic networks.
Although our analysis is limited to the countries with available traffic network data, regard-

3In comparison, the population of Mallard ducks, which are capable of being carriers of H5N1, are
estimated to be 8.5 Million.
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less of the countries involved, the outbreaks consistently cluster along railroads and highways.
While a global examination is complicated, we provide a comparison among the European
countries to study the aggregationﬁ. Using the European railroads and major highways data
provided by ESRI (Environmental Systems Research Institute), the minimum distances from
outbreaks to nearest traffic networks were measured and plotted in Figure 2.5

The collection of box plots in Figure confirms that the outbreak locations are close
to traffic networks across all European countries. The calculated distances are a lot shorter
in developed, mostly Western European, countries probably because of their denser traffic
networks and fewer number of outbreaks. In comparison, Greece, Turkey, Ukraine, and
Romania had relatively large spread of distance distribution with the maximum distance
reaching as far as 68 km. The traffic infrastructure in these countries, which are not as well
developed as the rest of the European countries, may be responsible for the observed spatial
pattern. Moreover, lack of government response and required infrastructure to quarantine the
disease could also have boosted the number of outbreaks, thereby contributing to the larger
variation; the number of outbreaks from three countries, Turkey, Ukraine, and Romania, in
fact, make up 52% of all European incidences.

Turning attention from all European countries to our study region, Turkey, we exam-
ine the distribution of distances from outbreaks to nearest traffic network in Turkey. The
histogram in Figure illustrates that locations of Turkish outbreaks are indeed closer to
traffic networks than what we would expect if the locations were uniformly scattered. The
distribution is heavily shifted to the left relative to the red density curve, produced by simu-
lating locations in Turkey via poisson process with a homogenous ratd? The distribution of
the distances are significantly higher than the simulated outcome within 10 km but falling
below for longer distances.

A plausible explanation for this clustering is that the poultry farms tend to be located
near traffic networks and cities to gain easy access to markets [65]. Unlike other livestock
farming, poultry farming is less dependent on land resources for its feed, and the locations
of poultry farms are determined accordingly. Moreover, transfer of infected poultry and
associated products are likely to be linked with the major highways and railways as the
traffic networks provide the mode of transportation.

2.2.2 Proximity to major cities and their populations

The second most prominent spatial pattern of the H5N1 outbreaks, following the prox-
imity to traffic networks, is the vicinity to cities. Globally, H5N1 outbreaks are frequently
found to be clustered around major cities. Our study area, Turkey, is no exception. Referring

4Reliable data on locations of traffic networks for other parts of the world are not readily available.

5The traffic network data obtained from ESRI is in shapefile format, comprised of groups of line segments
forming curves, which represent major highways and railways. To calculate the minimum distances from
observed outbreaks to the nearest traffic network, 20 equal spaced points were created between the two edges
of each line segment. The geodesic distances from an outbreak location to all points created between the
line segments are calculated, and the smallest value is returned as the minimum distance.

6The homogenous rate for the Poisson process is estimated using the ratio between number of outbreaks
in Turkey, 221, and the its area, 783,562 km?
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Figure 2.5: The first plot is a collection of boxplots of minimum distances from outbreaks
to nearest traffic networks calculated for each European country. The distribution of overall
distances is included next to the red dotted line. The second plot is the histogram of
minimum distances in Turkey. The red density curve is a result from uniformly simulating
the same number of locations in Turkey and measuring the distances to the nearest traffic
networks. The unit for distance is kilometer.

back to Figure [1.2] we notice outbreaks in Turkey crowd especially around the three coastal
cities, Samsun, Rize, and Istanbul, and an inland city named Elazig. Curiously, this rather
extreme aggregate behavior is merely observed for these few cities and does not apply to
other Turkish cities included in our analysis. Therefore, this section will not only investigate
the clustering corresponding to proximity to cities but examine whether populations of the
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cities are responsible for attracting the outbreaks.

We first analyze the distribution of distances from outbreak locations to the nearest
cities in Turkey. The histogram in Figure illustrates that the distribution appears to
be constantly decreasing according to the length of distances—with an exception of a little
hump at 40 km. Other than the hump, the distribution closely follows the red density curve
generated from measuring distances between the outbreaks and the uniformly simulated
locations featured in the previous section.

Judging by the dense outbreak clusters observed near cities, the lack of discrepancy be-
tween the actual and simulated distance distribution may seem unusual. Despite the heavy
clustering in vicinity to urban areas, the skewness of the distribution shown in Figure [2.6
did not differ substantially from the simulated outcome, in comparison to that of proximity
to traffic networks demonstrated in Figure The deficit of skewness is not entirely unex-
pected because the dense cluster of outbreaks are mainly formed near the few coastal cities.
The hump noted around 40 km is the result of sparse aggregation of inland outbreaks near
Elazig. The outbreaks are loosely scattered around the inland cities relative to the heavy
clusters found near the coastal cities, Istanbul, Samson, and Rize. Although the reason for
this difference is unknown, it is possible that there are more poultry farms located near the
coastal cities for easy access to ports. As mentioned in Chapter [[.2] Turkey is one of the
major exporters of poultry and poultry products in the world.

While mapping the locations of poultry farms is a challenging task, population of an
urban area can be a useful indicator for density of poultry farms. In developing countries,
human population is a significant determinant of locations of animal farms [65], especially
in Asia [19]. Because poultry farming is less dependent on the land resources for feeding,
poultry farms favor proximity to cities even more to gain easy access to markets.

If the population is a differentiating factor for density of poultry farms, higher number of
H5N1 outbreaks are expected occur close to heavily inhabited areas. The scatterplot in Fig-
ure explores the relationship between the number of outbreaks that occurred in proximity
to a city and its population. Only the 15 cities with the largest numbers of corresponding
outbreaks are shown. Although the scatterplot indicates a clear outlier, Istanbul (the largest
Turkish city), with a population of 8 million, the populations of other cities appear to remain
under 1 million as the number of their corresponding outbreaks vary. Therefore, the scatter-
plot does not show convincing evidence that human population influences the aggregation
of H5N1 outbreaks near urban areas, at least in Turkey(|

The exploratory analysis in this section revealed that majority of the cities did not
experience the heavy clusters of outbreaks formed near a few cities. While H5N1 outbreaks
densely aggregated around the coastal cities, clusters close to the inland cities were relatively
looser. We examined whether human population is the differentiating factor but found no
convincing evidence. Although we were not able to determine why clusters of outbreaks form
around certain cities, we believe that proximity to city influences the spread of bird flu, and
it will be included in our modeling consideration presented in Chapter [4]

"This conjecture may be more applicable in developing countries in Asia
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Figure 2.6: The plot on the left is a histogram of minimum distances from outbreaks to near-
est cities. The red density curve is a result from measuring distances to uniformly scattered
locations generated via simulation. The same simulated locations were used in Figure [2.5]
For each outbreak location, its nearest city is determined, and the cumulative counts of the
outbreaks were assigned to their closest city. The plot on the right is a scatterplot between
the number of outbreaks corresponding to nearest city and their populations. Only the 15
cities with largest number of neighboring outbreaks are shown.

2.2.3 Poultry density at outbreak locations

In the previous section, we considered population of the urban areas as a possible indicator
for density of poultry farms. Assuming that higher density of poultry farms equates to a
larger susceptible poultry population exposed to avian influenza, we expected to observe
more HS5N1 outbreaks in heavily inhabited areas. Our analysis, however, suggested that
population is not likely a factor that impacts the aggregate behavior of the virus spread.

Knowledge of poultry density distribution would aid our understanding of H5N1 dispersal.
With such knowledge, we would be able to verify, for example, whether the three Turkish
coastal cities that severely suffered from avian influenza had more poultry farms around them
than the inland cities. Although estimation of global poultry population is a challenging
task, Wint and Robinson [65] provide a global poultry density map, constructed using linear
regression model. Among the many covariates considered in their analysis, some of them are
proximity to roads and cities, vegetation index, human population, and elevation. .

Figure a reproduction of Wint and Robinson’s poultry density map, suggests that
the outbreak locations—shown as blue dots—coincide with the areas high poultry density.
The histogram in Figure 2.7, which compares the poultry density at outbreak locations
with the overall distribution of poultry density drawn in red, confirms our observation. The
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distribution of overall poultry density is highly skewed to the right with most of the poultry
density less than 400, while the mode for poultry density at outbreak locations occurs around
400. Higher poultry density is observed at the outbreak locations relative to the rest of the
world.

While this outcome is promising, we will adapt some of the explanatory variables Wint
and Robinson considered, instead of incorporating the poultry density map into our analysis
directly. Even though the density map may be a good predictor for locations of poultry
farms susceptible to HSN1, we note that the spatial factors we have already addressed in this
chapter are included in their analysis. Other than proximity to traffic networks, and cities,
we will exclude the remaining explanatory variables such as vegetation index and elevation
from our consideration. Vegetation index is not likely to be a strong indicator of farm
locations susceptible to H5N1 because poultry farming depends less on land resources [65].
Moreover, variation in elevation is likely to be explained by the locations of cities and traffic
networks as these locations tend to avoid high altitude. In addition, the map from Wint and
Robinson [65] is an estimate of poultry density subject to uncertainty; we prefer to condition
on variables known with near certainty such as cities and traffic networks.

2.3 Summary

Among the contributing factors to H5N1 outbreaks we investigated through exploratory
data analysis, the most notable ones were temperature and proximity to traffic networks and
cities. These factors correspond to the possible causes of H5N1 mentioned in the introduction.
The temperature is scientifically shown to extend H5N1 persistence when the virus is present
in water. Proximity to traffic networks is closely linked with transportation of infected
poultry and poultry goods. Although the aggregation of outbreaks is only observed for only
a few cities in Turkey, we will also include proximity to cities in our modeling consideration,
since the same pattern is noted globally. The three variables, temperature, proximity to
traffic networks and cities, will be incorporated to our EAI model as covariates in Chapter [4]
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Figure 2.7: The plot on the top is the poultry density map with outbreak locations rep-
resented in blue. A unit grid width is approximately 111km, and the values denote the
number of domestic poultry in each unit grid. It is plotted with logarithmic scale. The plot
on the bottom is a histogram of poultry density at the outbreak locations. The red curve is
a density curve of overall poultry density.
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Chapter 3

Previous Work

Prior to constructing our EAI statistical model with the factors mentioned above in
Chapter [4] this chapter discusses past statistical approaches to modeling the global spread
of H5N1 and their limitations. There have been numerous attempts to statistically model
the spread of HSN1, but many were based on extreme assumptions and incorrectly applied
statistical analysis. Among the past studies, Gilbert et al. [22] and Fang et al. [16] em-
ploy perhaps the most well thought-out statistical models: spatial logistical regression and
SAR (Spatial Autoregression) respectively. The two models are similar; essentially SAR is
an advanced spatial logistical regression that incorporates spatial dependencies among the
nearby regions. Although these models feature different predictors and study areas, both
models aim to produce a predictive risk map for the virus dispersal in an effort to prevent
the explosive HON1 spread.

3.1 Spatial logistic regression

Gilbert et al. [22] study the H5N1 outbreak patterns that occurred from 2004 to 2006 in
China. Their analysis using spatial logistic regression strictly considers spatial patterns of
Chinese avian influenza, involving 128 outbreaks and 640 randomly sampled locations from
uninfected areas[!] Even though Gilbert et al. do not explicitly specify their statistical model,
it can be defined with ¢ (1 <14 < 768), an index for all locations of reported outbreaks and
random samples, the associated covariates for location i, X;, and the corresponding binary
response variable, Y;, indicating whether location i suffered H5N1 infection:

X; is a vector consisting of values of covariates at either outbreak or randomly selected
location indexed i. The covariates include minimum distance to nearest highway, annual
precipitation, and interaction between minimal distance to the nearest lake and wetland. Y;

IThe randomly sampled locations are meant to prevent bias introduced to model performance metrics
due to sparsity of binary response variable, Y;, at each location i.
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takes two values, 1 and 0; Y; is 1 if ¢ indicates an outbreak of H5N1 and 0 if ¢ represents
a randomly selected location. ([ is the vector of parameters they wish to estimate. The
hypothesis tests that § = 0 suggests the parameters corresponding to the covariates are
statistically significant. In addition to the hypothesis test results, Gilbert et al. [22] assess
the model fit using the Hosmer - Lemeshow goodness of fit test [25].

This modeling approach produces a predictive risk map of H5N1 spread, which displays
the estimated probability of outbreak incidence. Although no uncertainty measure is given,
the resulting map is easy to interpret, and it illustrates the locations of probable future
outbreaks according to their model.

While the estimation and prediction results are easy to understand and may be useful,
the assumptions of the model are unrealistic. The most critical assumption of this model
is that Y;’s, the occurrence of an outbreak, are independent. This assumption ignores the
fact that the time and the location of HSN1 outbreaks are likely to be dependent due their
highly contagious nature. With this formulation, an outbreak has nothing to do with the
chance of observing another outbreak in close proximity both spatially and temporally. In
other words, the clusters of outbreaks noted in Chapter [2| occurred independently, according
to this model. This is an unrealistic assumption, but prediction results might still be useful.

In addition to the independence assumption, their analysis omits a temporal trend.
Gilbert et. al do note the seasonality in Chinese H5N1 outbreaks, but they do not include
temporal pattern in their spatial logistic regression model.

3.2 SAR (Spatial Autoregression)

Fang et al. |16] extends Gilbert et al.’s statistical approach by specifying a dependence
structure among the outbreaks. They examine H5N1 outbreaks in Southeast Asian countries,
Vietnam and Thailand, from years 2004 to 2005, incorporating a SAR (Spatial Autoregres-
sion) model |2 into the linear predictors within the logistic model:

2. wijY
logitP(Y;|X;) = X; = 3.2
P = X+ P (52)
jiinj
The spatial logistic regression model in equation (3.1) now becomes spatial autologistic
regression (SAR) model due to the newly introduced second term. In this model, 7 is an
index for subdistricts in Vietnam and Thailand with HSN1 outbreaks and an equal number of
randomly sampled subdistricts that did not suffer from H5N1? An equal number of random
samples, in comparison to the number of substricts that suffered H5N1 infection, was chosen
to produce receiver operating characteristic (ROC) [49] via bootstrapping, which was used to
evaluate the predictive power of their model. X; again is a vector representing the covariates
for subdistrict 7. The covariates included in the SAR model are human population size,

2The numbers of subdistricts included in their analysis for Thailand and Vietnam are not specified in
their paper.
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altitude, and numbers of estimated chicken, duck, and mean rice cropping intensity. The
binary response variable, Y;, is 1 for subdistrict ¢ with reported outbreaks, and 0 for randomly
sampled subdistricts.

2o wiYj
jiineg

>0 wij
where j : ¢ ~ j indicates indices (;f s]ubdistricts defined as neighbors of subdistrict ¢. The
weight, w;; is inversely proportional to the distance from subdistrict ¢ to j. The parameter
~ for the weighted average captures the strength of dependencies between the neighboring
subdistricts.

Additionally, Fang et al. [16] separate their data into three temporal “waves” and their
SAR model is fit to each of them. The outcomes from estimating 3 and ~ are compared
among the three waves.

Similar to the spatial logistic regression model, the SAR model produces an easily com-
prehensible predictive risk map of H5N1 spread. This result improves upon the spatial
logistic regression by considering the spatial dependencies of the neighboring subdistricts,
but there is still more room for improvement.

Spatially, considering the data at a subdistrict level limits the flexibility of the model.
Depending on the sizes of the subdistricts, their model may fail to recognize the clusters of
outbreaks. Outbreaks occurring within the same subdistrict are grouped together and will
only count as 1 in the response variable, Y;. This formulation neglects the spatial clustering
and is unable to describe the most prominent feature of HSN1 outbreaks, clustering along
the traffic networks and around cities.

Temporally, their construction does not account for the outbreaks occurring at different
times but at the same location. Furthermore, the apparent temporal trend is excluded
from their analysis. While Fang et al. acknowledge the need for temporal analysis, they
handle the temporal trend by simply separating the outbreaks into three groups of “waves.”
This approach merely models spatial patterns of HSN1 spread for each wave and fails to
incorporate the seasonality and the temporal dependencies discussed earlier in Chapter [2]

Apart from the criticisms stated above, the SAR model assumes that the strength of the
spatial dependencies is uniform. In other words, the impact of an outbreak in a subdistrict
to its neighbors will be exactly the same as that of an outbreak in another subdistrict. It
is hard to believe that the spatial dependency is uniform across the different locations of
the outbreaks, even after adjusting for the covariates. There are many factors that could
potentially alter the dependencies such as market access, transportation, etc.

The newly introduced term, , denotes a weighted average of neighboring Y;’s
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Chapter 4

Model specification and estimation

Previously, we have reviewed two past statistical research on H5N1 employing a spa-
tial logistic regression model and its variation, the spatial autologistic regression (SAR)
model [22,|16]. Our main criticisms on the two modeling approaches were twofold. First,
both approaches neglected analysis on the temporal spread of avian influenza, and only con-
sidered the spatial features of the virus dispersal. Fang et al. [16] splits its time window
and applies SAR to three waves of H5N1 outbreaks, but such an analysis is hardly sufficient
for seasonality and temporal dependencies of HSN1 outbreaks noted in Chapter [2. Second,
although Fang et al. introduces an autoregressive term in their model to deal with spatial
dependencies among the observed H5N1 outbreaks, both modeling approaches are in need
of better dependence structures. The outbreaks in Fang et al. are grouped by their corre-
sponding subdistricts and this arrangement may not be able to represent the clustering in
vicinity to cities noted in Chapter [2, defeating the purpose of proposing an autoregressive
term.

In this chapter, we provide a statistical framework that will cope with the drawbacks
mentioned above. We consider a point process model capable of incorporating the observed
temporal pattern and specifying the spatial and temporal dependencies of HSN1 outbreaks
with a branching structure. We determine that Ogata’s ETAS model [42], an extension
of Hawke’s self-exciting point process [24], is a suitable candidate. The ETAS model was
designed to model the branching structure of earthquakes. An earthquake with a large mag-
nitude triggering aftershocks is analogous to a contagious H5N1 outbreak with favorable
conditions causing infection at other locations. Therefore, adapting a point process frame-
work similar to the ETAS model can be beneficial to our analysis. We will further discuss
the details of both self-exciting point process and the ETAS models in Section Other
prior research modeling disease spread pattern using point processes will also be mentioned
in Section 4.1.2]

Drawing inspiration from Ogata’s ETAS model, we formulate and introduce our EAI
(Epidemic Avian Influenza) model in Section {4.2] to study the mechanism of Turkish H5N1
spread. The EAI model aims to quantify the relationship between H5N1 outbreaks and the
potential contributing factors discussed earlier in Chapter 2] Furthermore, the fitted EAI
model can be used to produce prediction results via Monte Carlo simulation, which will be
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helpful in establishing an effective virus quarantine. The prediction results will be presented
in Section [6.3l

Following the model specification, the likelihood of the EAI model is presented along
with the computational challenges that arise from maximizing the likelihood for estimating
the parameters of the EAI model. We consider three estimation methods to answer these
challenges: backfitting, “poorman’s EM” (Expectation - Maximization), and EM methods.
While the backfitting method yields the fastest computational speed, the EM method is
known to produce the most accurate parameter estimates [60]. Poorman’s EM is an hybrid
method of the two, intended to take advantage of the computational speed and the accuracy,
but the performance was lower than what we expected, as shown in Chapter [6] The moti-
vation and algorithm for each estimation method will be provided in detail in Section [4.4]

The results—parameter estimates, their SEs (Standard Error), and the corresponding
maximized likelihoods—obtained using the backfitting method are compared for five com-
peting variations of the EAI modell] The best fitting model is determined based on their
AICs (Akaike Information Criterion), a measure of model performance which penalizes the
maximized likelihood by the number of parameters. For the best model, surface plots of the
likelihood with respect to the parameters around the estimates are inspected to verify that
the estimated parameters, indeed, occur at the maximum.

Lastly, we assess the differences among the results of all three methods in terms of how
and where their estimates converge. It will be shown later in Chapter [6] that this observed
behavior is congruent with the simulation results.

4.1 Modeling ideas based on point process

Although both statistical approaches used in Gilbert et al. [22] and Fang et al. [16] pro-
duced useful prediction results, their models were not flexible enough incorporate a temporal
component and spatio-temporal dependencies of H5N1 outbreaks. A more natural way to
approach the outbreaks, instead of grouping them together according to their corresponding
subdistricts as shown in Fang et al., is to treat each of them as an individual event. In
this formulation, each outbreak event is allowed to influence others—and cumulatively, the
spread of the disease—with its attributes. Temperature and proximity to traffic networks
are among the few contributing factors that can potentially impact the virus dispersal, as
discussed in Chapter

Point process modeling is a popular framework for analyzing patterns of events in statis-
tics. The heart of a point process model is its intensity, which governs the expected arrival
rate of the events. We take this approach to avian influenza data, including both spatial and
temporal factors influencing disease spread as components of intensity in order to explain
the mechanism of virus dispersal.

In Section , we review a self-exciting point process model [24], which is designed
specifically to formulate a branching structure according to the properties of an event. By

'Regardless of the method employed, the results from all methods are nearly identical, and they do not
influence the process of model selection.
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construction, each event in the self-exciting point process is allowed to trigger (or self-excite)
additional events in the process. The number of events triggered by each event is varied by
its properties and is usually set to decay according to time of its occurrence.

Subsequently, a spatio-temporal extension of Hawke’s point process, the ETAS (Epi-
demic Type Aftershock Sequence) model, is discussed in depth, and we will use the ETAS
model as a basis for our EAI (Epidemic Avian Influenza) model proposed in Section .
The ETAS model was proposed to model the mechanism of earthquake and associated af-
tershocks according to their magnitude. In the model, the branching structure earthquakes
are determined by location and time of their occurrences, along with their magnitude. The
flexibility of the ETAS model in specifying the triggering mechanism is attractive for our
statistical analysis, and it is a framework we can build our EAI model upon to analyze the
spread of highly pathogenic H5N1 virus.

As we note in Section [4.1.2] point process models similar to the ETAS model have been
used successfully to model disease spread patterns. While most of them focus on quantifying
spatio-temporal associations between disease occurrence and the contributing factors 30,10,
14152/ 134], some aim to develop a tool for detecting abnormal epidemic dispersal [15] and to
detect the source of the endemic disease [32]. The details of these modeling approaches will
be provided in the same section.

4.1.1 Self Exciting Point Process

The self-exciting point process was introduced by Hawke [24] to structure temporal de-
pendencies among events. Veen and Schoenberg [60] give a formal and concise definition of
Hawke’s self-exciting point process; suppose a simple temporal point process is represented
by a random count measure, N, on [0, 0] adapted to filteration, H;, and define the con-
ditional intensity, A(¢|H;), as the unique, nondecreasing, H-predictable process such that
N([0,%)) — [ A(t|H;)dt is an H-martingale. Then H must contain the history of the process
up to time t, represented as H, = {t; : t; < t} with t; corresponding to the time that event
i occurs. As shown in Daley and Vere-Jones [11], it is sufficient to model this point pro-
cess with A(t|H;), because the finite-dimensional distributions of such a point process are
uniquely determined by its conditional intensity. Hawke’s self-exciting point process features
an inhomogenous point process with an intensity conditioned on the past history which takes
the form:

sy = EEIE ) 57 g0 1), (1)

it <t

The conditional intensity of the self-exciting point process, A(t), is the expected value
of the number of points—or events—in an infinitesimal time window, N (dt), given the past
history, H; divided by the length of dt. The latter expression, u(t)+_,., , g(t—t;), provides
details of the conditional intensity; u(t) corresponds to the background intensity at time ¢,
and the cumulative sum Zi:ti -+ 9(t —t;) represents the contribution of past events occurring
prior to time t—denoted i : t; < t. Naturally if g(t — ¢;) takes a decaying functional form,
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only the recent past events will contribute to the intensity at current time ¢ and the strength
of their contribution will die out over time.

By construction, the self-exciting point process has a branching structure. An event will
trigger other events and the new generation of events will continue to produce their offspring
events according to the conditional intensity stated above. Hawkes’ [24] self exciting point
process has been successfully applied to wide range of topics from modeling earthquakes to
studying theft patterns [42,35,48].

ETAS (Epidemic Type Aftershock) model

Arguably, the most influential application of Hawkes’ self-exciting point process is the
Ogata’s Epidemic Type Aftershock Sequence (ETAS) model. Ogata [42] takes the branching
structure of self-exciting point process a step further by adding a spatial component to
Equation (4.I). With his ETAS model, Ogata seeks to unveil how earthquakes trigger
their aftershocks and to quantify the spatial and temporal dependencies. Since its first
introduction [42], Ogata has improved the ETAS model over the years; Ogata [43] compares
different types of functional forms for composing a triggering structure, and Zhuang et al. |67]
develop advanced methods for fitting and validating a semi-parametric version of ETAS
model. Stochastic reconstruction of earthquakes using the fitted ETAS model is featured in
Zhaung et al. [66]F} The conditional intensity of Ogata’s ETAS model is defined as:

E[N(dtdxdydM)|H,]
dt dx dy dM
= wl@,y) + Z k(Mi)g(t — ) f (@ — @5,y — yi| M;) (4.3)

ity <t

>‘<t7 z,Y, M|Ht)

(4.2)

where

x, y, and t represent the x and y coordinates, and time respectively. Addition-
ally M denotes the magnitude of an earthquake occurring at (x,y,t). Therefore,
(x;, ys, ti, M;) denote the spatial location, time, and magnitude of an earthquake
event i (1 < i < n) with n corresponding to the total number of earthquakes

considered in Ogata’s study. As defined in Section 4.1.1} N(dt dx dy dM) repre-
sents the random number of events in an infinitesimal space, dt dx dy dM.

Hy = {(x;,yi,t;, M;);t; < t} is the observational history of the location, time,
and magnitude of earthquakes up to time t.

u(x,y) represents the spatial variation of earthquakes that are not triggered by
other earthquakes.

k(M) is the expected number of events triggered from an event of magnitude

2Identifiability issues of Ogata’s ETAS model have not been addressed in his research.
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M-that is an aftershock—given by k(M) = Aexpla(M — M,)]. A and « are
constants. M, is a threshold for magnitude. Any magnitude M less than M.,
therefore, would have very little effect in producing aftershocks.

g(t) is the p.d.f of the occurrence times of the triggered events, taking the form
g(t) = =11+ 1). This is a p.d.f version of Omori law which describes the decay
of after shock frequencies with time.

f(z,y|M) is the p.d.f of the locations of the triggered events, which is formu-
2 2
lated as f(l',y, M) = mexp <_2D5¢(+Mc)>

J(M) is probability density for magnitude for all events independent from other

components (x, y, and t) and is derived from Gutenberg-Richer law: J(M) =
Be BM=Me),

The intensity of the ETAS model consists of two parts: the intensity describing the
background events, u(x,y), and that of the triggered events corresponding to the latter
summand. The branching structure of this model allows the background events to trigger
generations of offspring according to the decaying spatial and temporal dependencies.

In comparison to the spatial logistic regression and SAR models, this framework pro-
vides a greater flexibility in terms of specifying the dependencies of the outbreaks. However,
flexibility of the model does not equate to a better model, if the functional forms of depen-
dencies among the events are unknown. One of the major challenges in using this model is
that it requires a knowledge of how events trigger other events. In Ogata’s case study, the
functional form of magnitude of an earthquakes and temporal triggering were dictated by
the corresponding scientific theories, the Gutenberg-Richer and the Omori laws, respectively.
Therefore, determination of the spatial triggering function was the only challenging task left
for Ogata.

In our case, very little is known about the branching mechanism of H5N1. In Chapter [2]
we have determined few key factors that may affect the virus spread, but the functional form
of triggering has not been specified by scientific research. Specification of the branching
structure of the disease would be a daunting task.

Even with these challenges, we will adapt this framework for our research. We believe that
the self exciting point process model is capable of capturing disease spread in reality better
than the models based on spatial logistic regression. It is logical to think that an outbreak
of highly contagious disease like HSN1 would provoke another outbreak at a nearby location
and in the near future. The strength of its infectivity will vary depending on the factors
described earlier in Chapters[l]and 2] The ETAS model can be used as a basis for specifying
the spatial and temporal relationship among the outbreaks.

Moreover, using a self exciting point process model provides solutions to the shortcomings
of the two modeling approaches. Temporal trend—the seasonality and the variation of disease

_ (g—1)D1 D exla—D(M-Mc)

3They also consider the following function for longer range decay: f(z,y; M) T2y Der(I=TTa
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presence according to temperature—is easily incorporable to this framework. We can model
the seasonality as an overall temporal variation and include temperature as a component in
the triggering intensity. The issue of grouping outbreaks to be only counted once for the
response variable is automatically solved because each outbreak will be treated as an event.

4.1.2 Point process models analyzing disease spread

To our knowledge, there is no past research on the avian influenza epidemic using point
process as its modeling framework. However, there are studies applying point process models
to analyze the dynamics of other types of diseases. Most of these models focus on quantifying
spatio-temporal associations between disease occurrence and the contributing factors.

Lawson and Leimich [30] were one of the first to utilize point process to explain infectious
disease dispersal. With their point process model, they explored the mechanism of measles
spread in Hegelloch, Germany. The intensity of their point process model is conditioned
on the past history of outbreaks, and it describes the spatio-temporal distribution of the
susceptible population in relation to spatial and temporal lag from the infected. Their model
is fitted by maximizing its partial likelihood [10] to bypass the complicated calculation of
the integral required for the full likelihood]

Diggle [14] proposes a model similar to self-exciting point process to analyze the foot and
mouth disease spread in the UK. His point process model features a conditional intensity
of virus transmission from one farm to another given the past history. This conditional
intensity incorporates the number of cows and sheeps at each farm, the distance from one
farm to another, and whether a farm was infected by the deadly disease. Like Lawson and
Leimich, Diggle [14] also advocates the use of partial likelihood to avoid the computationally
expensive likelihood maximization to estimate the parameters of his model. Scheel et al. [52]
applies Diggle’s [14] modeling approach to infectious salmon anemia data gathered from
Atlantic salmon farms.

Meyer et al. [34] provide a point process model resembling the ETAS model. Although
their model is used to study outbreak patterns of invasive meningococcal disease, the purpose
of their work is to design a general framework for modeling a spread of disease. Much like the
ETAS model, the intensity of their model consists of two components to describe endemic
and epidemic dispersal, which correspond to background and triggering intensity in Equation
. Unlike other works cited above, Meyer et al. fit their model by directly maximizing
the likelihood of point process, as a few of parameters in their model become unidentifiable
via profile likelihood maximization under the model specification]|

While the aformentioned researches focused on modeling the dynamics of epidemic spread,
a couple of past statistical approaches based on point process had different goals. Moreover,
these approaches do not rely on self-exciting point process as its framework. Diggle et al. [15]
develop a tool for detecting abnormal disease spread by modeling the outbreaks of disease
with non-stationary a log-Gaussian Cox procesﬂﬂ. This point process model has an inten-

4The computational issue of likelihood maximization will be examined in detail in Chapter 5.
5Closed form solutions were not available and were computed via numerical maximization.
6 An intensity of a Cox point process contains stochastic component.



33

sity consisting of two deterministic components, describing spatial and temporal patterns
of outbreaks spread, and an additional unobserved stochastic component to represent the
departures from the normal pattern. To detect abnormality, the authors calculate the prob-
ability that a realization of the stochastic component exceeds a certain threshold with the
fitted model.

Martinez-Beneito et al. [32] investigate Legionnaire’s disease in Alcoi, Scotland to find the
source of the respiratory endemic. They are interested in whether ecological factors influence
the dynamics of the disease dispersal. Using Ripley’s K-function [51], Martinez-Beneito et
al. construct a statistical hypothesis test comparing the distribution of cases and controls
with random labeling. Based on the estimated intensities for cases and controls via kernel
density estimation, the probability of observing a case at a given location is computed and
plotted to indicate the variation in outbreak risk.

4.2 Proposed model: EAI (Epidemic Avian Influenza)
model

Adapting the framework of the ETAS model discussed in the previous section, we propose
our EAI model to analyze the dynamics of avian influenza (H5N1). The intensity of our self-
exciting point process conditioned on the past history is a function of space—longitude ()
and latitude (y)—and time (¢)}

E[N(dt dz dy)|H,]
dt dx dy

= Ag(z,y,t) + Z a f(r — i,y —yi) g(t — ti) hivarr (2, y) K(T'(L)) (4.5)

ity <t

Mz, y, t|Hy) =

(4.4)

J/
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Ar(z,y,t) (4.6)

where 7 is an index for each of the 221 H5N1 outbreaks occurred in Turkey during 182 days
between October 1, 2005 to March 31, 2006. Consequently, (z;, y;, t;) represents the location
and time of an outbreak ¢, and Hy = {x;,y;, t;;t; < t} corresponds to the past history of out-
breaks up to time, t. The conditional intensity in is composed of two parts, A\g(z,y,1)
and Ar(x,y,t) whose subscripts B and T' stand for background and triggering respectively.
The definitions of the components in are provided below:

AB(X,y,t) = ae PRaw@V)e=kT (1) represents the background intensity and has two
components—each of them corresponding to spatial and temporal patterns of
outbreaks respectively. It is designed to describe the recurring outbreaks dis-
playing seasonality and clustering near infrastructures such as major cities. The

"Note that only the general framework is provided here. For the list of models we considered, refer to

Section m
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spatial aggregation is captured in Ag(x,y,t) with Rey (2, y), which measures the
closest distance from an outbreak location (x,y) to a major city. Moreover, the
noted seasonality is expressed as a function of temperature 7'(¢) at time, t. a is
a scaling parameter.

At (X,y,t) denotes the intensity corresponding to triggered events from the back-
ground or other triggered events. It consists of several components:

« is a scaling parameter for the triggering process analogous to a in Ag(x,y,t).
To avoid possible identifiability issues, we chose to have one scaling parameter
for all functional forms in the triggering process.

flx—zi,y—y;) = e PVE2)*Hu=10)* degeribes the decay in intensity of triggered
outbreaks according the spatial lag—a distance between locations of an outbreak
and a past outbreak.

g(t) = e is a temporal version of f(x — z;,y — y;), depending on the temporal
lag between the occurrence times of an outbreak and a past outbreak.

hivatt (2, y) = g Proaalinat(#:9) corresponds to inverse relation between the minimum
distance to traffic networks (major highways and railroads) and the chance of ob-
serving an outbreak. Ri.g(z,y) denotes the distance from (z,y) to the nearest
traffic networks.

k(T (t;)) = e *(T®)) is the triggering strength of past event varied by temperature
at its occurrence.

The two parts of the intensity, Ag(z,y,t) and Ar(z, y,t), can be thought of as endemic and
epidemic spread of disease, respectively. While Ag(z,y,t) describes the recurring outbreaks
depending on the temperature and proximity to cities, Ar(x,y,t) corresponds to outbreaks
that were triggered by other outbreaks, with their numbers varied by location and time of
their parents, proximity to traffic networks, and temperature.

By construction, this model assumes the following: first, the times and the locations
of the recurring outbreaks depend on the seasonality and proximity to the nearest city.
Second, the duration of the presence of the H5N1 virus—which boosts infectivity—differs by
the temperature. Third, the chance of observing an outbreak after an outbreak is inversely
related to the both temporal and spatial lag. Forth, an outbreak is likely to be triggered
near the traffic networks.

The presented model is the most complex EAI model and corresponds to Model (5) in
Section [4.5.1] The estimation results for Model (5) and four simpler versions of EAI models
featuring different combinations of components will be examined in the same section.

For the sake of simplicity, we chose all functional forms for components in intensity
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to be exponential. We are much more interested in estimating the rate of decay than finding
the perfect functional form for the components in the triggering process.

4.3 Maximum Likelihood Estimation (MLE)

To estimate the parameters of the EAI model, we employ a classical method in statistics,
maximum likelihood estimation (MLE)f] Previously, Rathbun [50] has shown that the stan-
dard large sample theory of MLE holds under regulatory conditions for self-exciting point
processes. A similar result for general point processes was provided in Schoenberg [55] with
simpler assumptionsﬂ. The log likelihood function of our point process can be written as [11]:

n T
logL(0) = Zlog)\g(xi,yi,MHti) —/ //qu(x,y,t|Ht)dxdydt, (4.7)
i=1 0

where 6 denotes the set of parameters, (a,bety, k, @, 3, Broad, 7, &), in our model, and
i(1 <i<n)isan index for each event (outbreak) occurring in region S and time interval
[0, T]. For our study, S represents Turkey, and 7" corresponds to 182 days it has suffered from
H5N1 dispersal. The number of total HSN1 outbreaks, denoted n, in this time interval is
221. As before, the set, (z;,y;,1;), indicates the occurrence time and geodesic coordinates—
in terms of longitude (x) and latitude (y)—of an outbreak event i. Hy, = {x;,y;,t;;t; < t;}
denotes the past history of events that occurred before event i. \g(x;, i, t;| Hy,) is the intensity
function defined in Equation (4.5)).

Since the closed form solutions for maximum likelihood are not available, the likeli-
hood must be numerically maximized. The calculation of the first term in Equa-
tion , the sum of the log intensity evaluated at each event, is quite simple. The calcula-
tion of the integral part, however, is complicated and computationally expensive. Diggle [14]
advocates using partial likelihood instead of the full likelihood , which bypasses the
calculation of the integral term. Cox [10] shows that estimates obtained by maximizing the
partial likelihood inherit the general asymptotic properties of maximum likelihood estima-
tors with a possible loss of efficiency. He also notes that the parameters in the original
model may become unidentifiable in the partial likelihood. To avoid potential identifiability
issues, we will use the full likelihood in our estimation and calculate the integral in Equa-
tion . Moreover, calculating the integral will be advantageous for the construction of
the EM method and simulation of our point process.

A brief derivation and an outline for the numerical integration are now presented. Nat-
urally, we can split the integral into two parts with each integrand corresponding to
background and triggering intensities respectively:

8Technically, only the backfitting method, one of the three estimation methods proposed in section
does MLE. The other two methods, poorman’s EM and EM methods, target the likelihood but do not
maximize it directly.

9In general, the large sample theory of MLE is assumed for point process models.
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T T
/ //Ag(x,y,t]Ht)da:dydt:/ //)\B(a:,y,t)dwdydt—l—
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The first integral, the integral for the background intensity, is relatively easy to compute{ﬂ.
Therefore, we focus on the derivation of the second integral. The second integral can be
separated further into temporal and spatial components:

/ / / ™ 6 f @ — 2y — 93) 90 — 1) P, y) W) dadydt.— (4.9)

it <t

—a/ Z E(T(t;)) g(t —t;) dt//f — 24,y — ¥i) herat (2, y) dady. (4.10)

it <t

The above integral can be rearranged into:

_aZ/ gt —t;) dt//f — 24, Y — i) herasi (2, y) dady (4.11)

and the derivation will be shown in the appendix.

The analytic computation of the integral is nearly impossible, and consequently, it
is numerically approximated by discretizing S. The time interval [0, T is recorded in days,
therefore discretization is unnecessary. Since the earth is an ellipsoid, creating a spatial grid
for region, S, using the raw longitude and latitude coordinates will not yield a consistent
grid area. Therefore, we consider a projection that preserves area [57]. The resulting grid
from area preserving projection will provide us a grid with equal areas, simplifying our
calculations. We apply Mollweide projection to S and a demonstration of this projection is
shown in Appendix [A.T]

For integration of the spatial component in , the likelihood function is evaluated
at the center of each grid and multiplied with the corresponding grid areaEL We let g
(1 < g < Q) indicate an index for each square in the grid; =, and y, denote the latitude and
longitude at the center of a square QE The integration of temporal component simplifies to
a sum of the likelihood function evaluated at each day because the increment, dt, is one day.
The numerical integration of is

1OUblng notation that will be defined in the following paragraphs, the expression for numerical integration
of fo I Js AB(z,y, t)dzdydt is S Zg | ae~beity (Ta:y9) =k T (1),

"This is equivalent to the mid point rule.

12The grid was constructed by dividing the range of Turkey in latitude to 200 segments. The range of
Turkey in longitude was divided according to the resulting distances of the segments
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G
« ZZI{: g(t —t;) x Zf — Ty Yg — Yi) horatt (T, Y) - Ay (4.12)
g=1

Consequently, the numerical approximation of the log likelihood becomes

n n G

logL(0) =Y _loghg(wi, yi, til Hy,) = > ) Ap(wg, ygrt) - Ay
i=1 t=1 g=1
G

— ZZk g(t —t;) x Zf — Ziy Yg — Yi) hirast (2, ) - Ay (4.13)

This numerical approximation of log likelihood will be implemented in all three parameter
estimation methods presented in the next section.

4.4 Parameter estimation methods for the EAI model

As Veen and Schoenberg [60] note, estimating parameters via MLE for self-exciting point
process can be a daunting task. In practice, its log likelihood function is often flat near
the maximum and multimodal™®] Therefore, arbitrary starting values using conventional
numerical optimization routines may lead to divergence.

To obtain accurate estimates for the parameters of EAI model, we introduce and imple-
ment three different estimation methods: backfitting, “poorman’s EM” (Expectation Maxi-
mization), and EM. The idea behind the backfitting method—maximizing the likelihood in
terms of a set of parameters while holding the others constant—will serve as a backbone for
the other two. Poorman’s EM method was intended to take advantages of the computational
speed and accuracy of backfitting and EM methods respectively[f]. Poorman’s EM is similar
to the EM method in that it involves calculation of the probability of each event belonging to
the background process. However, while the poorman’s EM uses this probability to classify
background events at each iteration, the EM method does not incorporate classification in
its routine. The EM method is a popular method in estimating parameters for models with
an unobserved latent variable. In our case, the unobserved latent variable is the branch-
ing structure of the EAI model, the information on how each event triggers other events.
The likelihood involved in the EM method, called complete data likeilhood, incorporates this
branching structure probabilistically and often is easier to maximize than that of MLE for
parameter estimation [60]. The EM method estimates the parameters iterating between two

13The log likelihood used in Veen and Schoenberg [60] is a full likelihood including the integral shown in
Equation

4Despite our intention, the performance benchmark presented in Chapter @ shows the Poorman’s EM
method does not improve accuracy of the estimates over that of backfitting method and it is also slower in
computational speed.
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steps: the E step where the method computes the probability of an event triggering another
event, and the M step where the probability is integrated as a part of the maximization
procedure.

The details of the three algorithms are provided in the following sections. Further, the
estimates obtained using all three method for the best variation of EAI model, in terms of
AIC (Akaike Information Criterion), is presented in Section A performance benchmark
of the three estimation methods using simulated results will be given in Chapter [6]

For all three methods, a quasi-Newton optimization routine, L-BFGS-B (Limited memory-
BFGS-Bounded) [8] will be employed to ensure all resulting estimates of the parameters are
positivd®] The starting values for all methods were determined by the first step of Algorithm
2 in Section [£.4.2] and they are (a, beiy, k, &, 3, Broad, 7> £) = (1,40, 0.1, 32,40, 70,0.1,0.15).

4.4.1 Backfitting method

The aforementioned optimization issue concerning the flatness of the likelihood can be
aggravated with an increased number of parameters. To cope with such a problem, we
borrow an idea from the maximization procedure introduced by Breiman and Friedman [4],
and popularized as an estimation procedure for GAM (Generalized Additive Model) called
backfitting algorithm [23]. Backfitting algorithm is a rather simple iterative procedure.
A likelihood gets maximized with respect to a set of parameters first holding the others
constant. The algorithm then maximizes the likelihood with respect to the ones held constant
previously while holding the first set of parameters constant. This procedure is repeated until
the value of the likelihood converges.

It is natural to consider the backfitting algorithm to obtain the MLE for our model since
the intensity function is conveniently divided into two parts: background and triggering
processes. With 6, and 6; representing the sets of background and triggered parameters
respectively, we employ the following algorithm to estimate the parameters }

Algorithm 1: Backfitting.

Step 1. Set kK = 1. Choose initial values for both #z and fr. As mentioned in
the previous section, let O = (1,40,0.1) and 6 = (32,40,70,0.1,0.15). Denote
them ég) and éé} ) respectively.

Step 2. Compute the log likelihood numerically using Equation (4.13)) with
the initial values, l(é(l) é(Tl))

Step 3 Obtain estimates for fp via MLE with L-BFGS-B routine holding
O = 9 . Denote these estimates 9 (k+1)

Step 4. Obtain estimates for #; via MLE using L-BFGS-B routine with the

15Tn addition, we rescale the unit of geodesic distance used in our calculation from km to ﬁkm to avoid
estimates of scaling parameters a and « lying near the bound, 0.
I6For example, the parameter sets for model featured in section are 0p = (a,beity, k), Or =

(Oé, ﬁa ﬁroad7 Ys '%)'
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estimated parameters from step 4, (9 (k+1)

(k+1)

, holding them constant. Denote the

updated estimates 9
Step 5. Setk—k—i—l

Step 6. Repeat steps 3, 4, and 5 until the difference between the log likeli-
hood values with estimated parameters from (k — l)th and k' iterations become
smaller than 1073,

The resulting parameter estimates from this algorithm for five EAI models will be pre-
sented in Section along with the corresponding SEs and AICs.

4.4.2 Poorman’s EM method

The poorman’s EM method is intended to be a hybrid of backfitting and EM methods,
taking advantages of the computational speed and accuracy of the two methods respectively.
The estimation results in Veen and Schoenberg [60] show that the EM method yields more
accurate parameter estimates than MLE employing a conventional maximization routine,
Newton—Raphson. They suggest that the improvement in accuracy may be due to the lim-
ited number of observations, as most of the theoretical results relating to maximum likelihood
only hold asymptotically. On the contrary, the number of observations for the EM method
could be enough to produce accurate results because it incorporates the information on the
branching structure at the E-step. However, the E-step is responsible for the slow compu-
tational speed of the EM method. The calculation of probabilities of an event triggering
another event at each iteration requires longer computational time in comparison to the
backfitting method.

The poorman’s EM method aims to simplify this probability calculation to gain computa-
tional efficiency. It utilizes the probability of an event being a background event calculated
from parameters estimated in each iteration. This probability can be obtained from the
following formula using the intensity function of our model:

AB(Ti, Yi, i)
A(@i, yis ti| Hy,)
where u; is an unobserved quantity such that u; = 0 indicates the event ¢ belonging to the
background, and its probability is simply the ratio between its background and the overall
intensities. Each event ¢ will be chosen as a background event if its estimated probability,
P(u; = 0), is greater than 4

Unlike the backfitting algorlthm, the estimation of background parameters, 6z, will in-
volve only the chosen background events. Thus the MLE of 6p is estimated from the likeli-
hood of inhomogeneous point process with only the background intensity, Ag(z,y,t):

10 Zlog)\Be Ty Yir b / //)\Bg x,y, t)dxdydt. (4.15)

;u; =0

P(u; =0) =

(4.14)

1"We thought that experimenting with other choices of threshold may be too data specific. We want to
be build a general framework that can be readily applied to HSN1 occurrences in other nations.
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The estimated values of 67 are then produced via MLE with L-BFGS-B maximization
routine using the likelihood (4.7). The procedure of updating P(u; = 0) and classifying
background events is repeated until the values of the current and the precedent log likelihoods
converge.

The poorman’s EM algorithm is explained in detail below:

Algorithm 2: Poorman’s EM.

Step 1. Choose a subset of events to be initially categorized as background
events. We chose an event to be a background event if more than 3 following
events occurred within 100 kilometers and a week.

Step 2. Set k = 1. Select initial values for both g and 6r. As before, let
65 = (1,40,0.1) and 67 = (32,40,70,0.1,0.15). Denote them 6% and 65" re-
spectively.

Step 3. Maximize the log likelihood with background intensity, Ag(z,y,t),
shown in Equation (4.15) with respect to fp only using selected background
events. Use L-BFGS-B as the maximization routine. Denote the new estimates
for background parameters, ég+l).

Step 4. Maximize the log likelihood with both both background and triggering
intensity with respect to 6; holding the estimates of g = ég+1). Use L-
BFGS-B as the maximization routine. Denote the new estimates for triggering
parameters, 91}’““).

Step 5. With the updated estimates, calculate the P(u; = 0) for each 1 < i < n,
employing Equation Classify as background event if its estimated proba-
bility is greater 1/2.

Step 6. If the difference between the log likelihood values, [ (9g+1), 95@ +1)) and
l(@g), 95@) become smaller than 1073, stop. Otherwise set k¥ = k + 1 and repeat
steps 3, 4, 5, and 6.

The results obtained from applying poorman’s EM method will be compared to those of
other two methods in Section [4.5.3] Further comparison of the performance using simulation
among the three methods will be given in Chapter [6]

4.4.3 Expectation-Maximization (EM) algorithm

The Expectation-Maximization (EM) developed by Dempster et al [12] is one of the
widely used techniques to cope with probabilistic models that depend on latent variables.
The idea is to average over the likelihood with respect to current estimates of the distribution
for the latent variables and iteratively maximize this average to obtain better and updated
estimates for the parameters. The EM algorithm has two steps: the E step to take an
expectation of a complete data log likelihood—a log likelihood for the data assuming the
latent variables are known—and the M step which maximizes the likelihood from E step and
yields updated estimates.
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Veen and Schoenberg [60] apply the EM algorithm to estimate parameters for an ETAS
(Epidemic Type Aftershock Sequence) model congruent with Ogata [43]. Under the model
and also in reality, it is unknown whether an event is a background or a triggered event.
While the determination is impossible, we can indeed calculate the probability of an event
triggering another event and integrate this information into our EM routine.

Consider w;, an unobserved quantity defined in Section [£.4.2] and let u; = j additionally
indicate whether event i was triggered by event j for 1 < i < j < n. As earlier, u; = 0
denotes whether event ¢ belongs to the background. With this formulation, u; will define
the branching structure of our model, indicating whether event ¢ is a background event or
was triggered by another event j. The triggering probability P(u; = j) is

)\T(ti — tj,xi — T, Y — yj)
A(ts, w4, yi| Hy,)

Plu; = j) = (4.16)

This probability is the essential component in the E step of EM algorithm which will be
explained in detail in the following section.
The E (Expectation) step

Assuming the complete branching structure and the u;’s are known for all i’s, we can
construct the complete data log likelihood for our mode]ﬁ:

[(0) = log(ng!) — Ap + mplog(Ap) + Z log(As (i, yis i) — log(Ap)+ (4.17)
t;u;=0
Z log nT — Ar, +np, log AT Z log )\T — Ty, Yi — Yuyr bi — tu)) - lOQ(ATi)a
1;u; 70
(4.18)

where np and ng, denote the number of background events and the number of events
triggered by event ¢ respectively. Ap = [ [ [ p(x,y,t)dzdydt is the expected number of
inhomogeneous background point process. Similarly Az, is the expected number of events
triggered by event i obtained from evaluating the integral of Az, (-) over the given space and
time:

Ag, = / / /S o f (= 31,y — ) 9(t — 1) et (5, ) K(T(1) drdydt (4.19)

The sums .., _olog(Ap(zi, yi, t:)) —log(Ap) and .., Lo log(Ar, (i, yi, t:)) —log(Az,) are
conditional log hkehhood of spatial and temporal distribution of events given the number of
background and triggered events respectively.

18The complete data likelihood for an inhomogeneous point process is P(z1,...,2n, N(B) = n) =
P(N(B) = n)P(z1, ..., x| N(B) = n) = A=A [, Aeabits)

n!
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Taking the expectation over the unobserved quantity, u;, we have the following expected
complete data likelihood:

E[l.(0)] = log(np!) — Ap + nglog(Ap)+ (4.20)
Z P(u; = 0) [log(\p (i, yi, t:)) — log(Ap)] + (4.21)
Zlog nr!) — Ar, + nplog(Ar,)+ (4.22)

Z Z P(u; = j) [log(Ar(xj — x4,y — yis t; — ;) — log(Aq)] . (4.23)

i>2 j=1

At the beginning of each iteration, the values of triggering probabilities given in
are updated with the estimates obtained from the previous iteration. With the updated
triggering probabilities, we can estimate the expected number of background events, ng, and
expected number of events triggered directly from event 4, ny,. At k'} iteration, estimates
of np and ng, are

i =Y Plu; =) (4.24)

Jj>i

=Y Plu=0)=n-Y af. (4.25)

Incorporating ﬁ% ) and ﬁg), the expected complete data likelihood at k' iteration be-

comes:

Ej0[1.(0)] = log(a¥) — Ag + 2% log(Ap)+ (4.26)
ZP ®) (u; = 0)log(Ag (s, yi, 1)) | — 2\ log(Ap)+ (4.27)
Z log(ny' ) — Aq, + nT)log(AT )+ (4.28)

[ZZP = j)log(Ar,(z; — x5, y; — yir tj — tz))] - Zﬁ%)log(ATi). (4.29)

122 j=1

Canceling ﬁg)log(AB) and ), ﬁ%)log(ATi) and noting log(ﬁg)!) and log(ﬁ%)!) are con-

stants in the M-step, essentially maximization of Ejq,[l.(0)] further simplifies to:
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ZP ) (u; = 0)log(Ag (s, yi, t;)) — Ap+ (4.30)

ZZP JNog(Ar, () — 4, y; — ity — 1)) — Ar. (4.31)

1>2 j=1

As expected, the resulting likelihood function resembles the original conditional likeli-
hood we wish to maximize. The only difference is that the estimated background and
triggering probabilities for each event are multiplied to the intensity evaluated at the cor-
responding event. The sum of intensities in are now weighted with the associated
background and triggering probabilities.

The M (Maximization) step

At the M-step, the likelihood computed in the previous section will be maximized using
the backfitting procedure described in Section with the same starting values. We
first maximize the likelihood with respect to the background parameters first holding the
triggering parameters constant. Then the triggering parameters are estimated in the same
fashion. This iterative procedure will continue until the difference between the values of the
likelihood becomes smaller than 1073.

Combining the E and the M steps, the algorithm for the EM method is outlined below:

Algorithm 3: Expectation - Maximization.

Step 1. Set k£ = 1. Choose initial values for both 6, and 6;. As before, let
05 = (1,40,0.1) and 67 = (32,40,70,0.1,0.15). Denote them 6% and 6 re-
spectively.

Step 2. E-step Compute the background and triggering probabilities, P*) (u; =
0) and P®)(u; = j) for all events.

Step 3. M-step Obtain 1) by maximizing the likelihood (4.31) with L-BFGS-
B holding 67 = 65

Step 4. Obtain estimates for ég“ ) by maximizing the likelihood with L-
BFGS-B holding 6 = 6%

Step 5. Set k=Fk+1

Step 6. Repeat steps 2, 3, 4, and 5 until the difference between the log likeli-
hood values with estimated parameters from (k—1)" and k*" iterations becomes
smaller than 1073,

The computed EM estimates for the best EAI model are compared with the results from
other estimation methods in Section4.5.3] Using simulation, performance of the EM method
in terms of accuracy and robustness against starting values will be examined in Chapter [0}
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4.5 Result and model comparison

Finally, we present the results from employing the three estimation methods. We first
compare five competing EAI models using the Akaike Information Criterion (AIC) and de-
termine the most suitable model [1]. After the comparison, we assess surface plots of the log
likelihood near the parameter estimates and examine whether the estimation procedure
can potentially suffer from its flatness. Lastly, we compare the estimates and the values of
log likelihoods calculated by the three maximization algorithms for our best model.

4.5.1 Comparison among the five proposed models

The Akaike Information Criterion proposed by Akaike [1] is an estimated measure of
prediction error for an estimated statistical model. The AIC provides a useful guideline in
comparing statistical models, due to its form, which penalizes a likelihood of a model with
the number of estimated parameters. While more complex models surely yield higher values
of maximum likelihood, the AIC compensates the simpler models by penalizing the complex
models with the increased number of parameters. The AIC is defined as:

AIC'™ = 2p — 2logL(6) (4.32)

where p is the number of parameters estimated and m indicates the AIC score for Model
(m), (1 < m < 5). The second term in (4.32)) denotes log likelihood of the fitted model

at Oy1, an estimate of # obtained via MLE under Model (m). The statistical model with
lower AIC is preferred. The AIC is a common in statistical model comparison and it was
previously employed by Ogata [42] to compare his ETAS models.

Table presents the parameter estimates and their AICs for five proposed models ob-
tained using backfitting methodﬂ. The definition for the most complex model, Model (5),
was presented in Section 4.2 The Models (1), (2), (3), and (4) are simpler versions of Model
(5), featuring different combinations of Model (5)’s components corresponding to the pa-
rameters listed in Table As mentioned earlier, all functional forms of components in the

EAI model are exponential.

The first two models, Models (1) and (2), assume that all events, HSN1 outbreaks in
Turkey, were purely background events. In other words, under their configurations, the
outbreaks would not trigger other outbreaks. The difference between the two models is
the spatial component in the background process. While Model (1) relies on the proximity
to traffic network, Model (2) depends on the distance to the nearest cities. These are the
simplest models out of the five as they do not possess the branching structure of the other
three, Models (3), (4), and (5). Model (3) is an extension of Model (2) with basic triggering
structure determined only by the spatial and temporal lags from an outbreak to a past
outbreak. Both Models (4) and (5) have an additional component, proximity to traffic

19The estimates produced by the EM methods were almost identical to those of backfitting method.
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Background Triggering

Models  Scale Spatial Temporal Scale Spatial lag  Temporal lag Temperature ‘ AIC

1 =333 buow=523 k=0113 - - - - | 103

2 a=4T74 by =247 k=0113 - - - - | 102

3 =474 buy =247 k=0113 a~0 B =49 4 =61 - | 108

4 =121 buy =192 k=00873 @&=712 AB =424 5 =0.159 - -346
Broad = 65.3

5 =121 buy =192 k=00872 &=719 ﬁ =42.3 4 =0.159 ka0 -344
Broad = 65.3

Table 4.1: Comparison of models in terms of their estimated parameters and AICs

networks, embedded in the triggering process. However, in Model (5), the strength of an
outbreak triggering another outbreak is varied by the temperature@.

Surprisingly, Model (2) had a slightly better AIC score than Model (1), albeit the spatial
distribution of outbreaks were found to be much closer to the traffic networks than to the
cities in Chapter . Although the better fit might be under noise level, Model (2) could have
benefitted from the tight clusters of outbreaks found near the cities—especially Samsun and
Rize. Model (3), an extension of Model (2) with basic triggering process, performs worse than
both Model (1) and (2) in terms of their AICs. The scale parameter for triggering process,
«, is estimated to be 0 and, therefore, produces the same maximum log likelihood for Model
(3) in comparison to Model (2). The AIC of model 3 is penalized by the three additional
parameters estimated. This shows that simply including a triggering process dictated by the
spatial and temporal lags does not improve the fit of the model.

The AIC score substantially improves with Model (4) as it introduces proximity to the
traffic networks to the triggering process. This result suggests that the locations of triggered
outbreaks are jointly determined by the proximity to other outbreaks and to the nearest
traffic network. Model (5) incorporates the temperature as one of the components that
affects the strength of triggering ability of an outbreak. By including the temperature in
the triggering process, we wished to examine whether the relationship between persistence
of H5N1 and temperature, noted in Chapter [1|, has any impact on the branching structure
of the disease. Similar to the scale parameter in Model (3), the additional parameter, &,
in Model (5) was estimated to be approximately 0. Although the value of & may suggest
that the temperature does not alter the triggering ability of an outbreak, it is also possible
that the model is not able to estimate the parameter properly due to its construction. In
chapter [0 we will examine the estimation issue for k& via simulation.

Of the five proposed models, Model (4) was found to be the most suitable with the
smallest AIC. Model (5) produced a similar AIC score, but it is is essentially Model (4) with
estimated parameter for k approximately equal to 0. We will focus on this model throughout

20By including temperature component in the triggering process, we would like to see if the epidemic of
H5N1 is affected by the variation of temperature in addition to the seasonality modeled in the background
process.
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the rest of this thesis.

4.5.2 Surface plots of the likelihood around the estimates

Often models based on self exciting point process will suffer from flat and multimodal
likelihood functions. It has been noted in the past that the scale parameter of the triggering
process, in our case, «, is notoriously difficult to estimate correctly [60,/44]. The likelihood
with respect to this scaling parameter is commonly found to be flat. Therefore, this section
inspects the surface of likelihood function for our best model, Model (4), in order to verify
whether the obtained estimates occur at the maximum. These surface plots will also give us
an idea of which parameters would be hard to estimate via MLE for our EAI model.

Figures and illustrate the surfaces of the log likelihood for Model (4) with
different combinations of parameters around their estimates obtained using the backfitting
algorithm@. All surface plots were produced by varying one or two parameters from their
estimated values while holding the other parameters at their estimates. All deviations from
the estimates were scaled relative to themselves for a purposes of visualization.

The surface plots in Figure for the background parameters generally look promising.
The first plot in the top left corner is the one dimensional surface plot for all three back-
ground parameters, g = (@, beiry, ¢). Among the three parameters, the parameter for the
temperature component in the background process, k, had the flattest surface, followed by
beity- The rest of the surface plots show the behavior of the log likelihood when two param-
eters are jointly varied around the MLEs. With an exception of surface plot generated for
parameters a and b, the other two dimensional surface plots demonstrate that maximums
of parameters are moderately well defined. The surface plot of a and b, suggests obtaining
MLE with a numerical optimization routine may encounter difficulties as the surface of the
log likelihood is flat along parameters a and by .

The flatness of the log likelihood is more severe with the triggering parameters,
Or = (o, B, Broads 7Y), as shown in Figure . The results from one dimensional surface plots
indicate that log likelihood is the flattest with [3,,.,4 and «. Of the six possible arrangements,
five two dimensional surface plots which had the flattest surfaces fill up the rest of figure 4.2}
The two dimensional surface plots concur with our findings from one dimensional plot as
they are usually flat along (,,.¢ and a.

From the plots, we can hypothesize that the estimation of background parameters, 6p,
will generally be easier than that of the triggering parameters, 7. Although these surface
plots can serve as a useful diagnostic tool for assessing the flatness of log likelihood, they
are certainly limited because they are merely one or two dimensional manifolds of the seven
dimensional log likelihood. When all parameters are jointly estimated, flatness of likelihood
may affect the results of MLE differently in higher dimensions. In Chapter [0 it will be
shown using simulated data that the parameters that all estimation methods struggle the
most with are o and 3, the parameters for scaling and spatial lag in the triggering process.

21'We use the estimates from the backfitting method because the estimates generated from other methods
were roughly the same.
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Figure 4.1: Surface plots for background parameters in Model (4). The crosses in the middle
for the 2D surface plots mark the locations of the MLEs. In the 2D surface plots, the lighter
shade corresponds to higher value in log likelihood.
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4.5.3 Comparison of results from the three estimation methods

We now present the results from the three estimation methods—backfitting, Poorman’s
EM, and EM—for our best EAI model in terms of AIC score, Model (4). As mentioned
earlier, the results from the three estimation methods are comparable. Their estimates and
the corresponding likelihood values at each iteration of the algorithm are shown in Figure4.3
with red, green, and blue indicating backfitting, Poorman’s EM, and EM respectively. The
EM algorithm reached convergence the slowest with 29 iterations, whereas backfitting and
Poorman’s EM reached convergence at 4 and 7 iterations respectivelyF_Z]. The parameter
estimates using backfitting and the EM algorithms tend to agree, but the estimates for «
and [ using the EM is slightly below those of backfitting. This result is expected because
the EM estimates should be the same as ML estimates. All parameter estimates from
Poorman’s EM algorithm were smaller than estimates from the other two methods and
produced the smallest value of maximum log likelihood. The under-estimation is possibly
due to misclassification of background events, but the exact reasons are unknown.

The backfitting method reached convergence the fastest and yielded estimates similar to
that of EM method. The hybrid method, Poorman’s EM, had relatively fast convergence,
but its estimates do not agree with the results from the other two. We are uncertain whether
the poorman’s EM methods produces more accurate estimates. Given that the other two
methods provides estimation results disagreeing with those of poorman’s EM, it is unlikely
that poorman’s EM method works better in terms of accuracy. This issue will be investigated
further by simulating the EAI model and re-estimating the parameters in Chapter [6]

22The convergence criterion is the difference between the likelihoods of last and the previous iterations
becoming less than 1073,
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Figure 4.2: Surface plots for triggering parameters in Model (4). The crosses in the middle
for the 2D surface plots mark the locations of the MLEs. In the 2D surface plots, the lighter
shade corresponds to higher value in log likelihood.
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Figure 4.3: A plot of the parameter estimates for all parameters, 0 = (a, beity, ¢, @, 5, Broad, Y)
at each iteration. The red, green, and blue triangles mark the numbers of iterations each
method required to reach convergence. The last plot shows the log likelihood calculated at
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Chapter 5

Model validation through residual
analysis

In the previous chapter, we established our EAI model based on self exciting point process
drawing inspirations from Ogata [42]. We devised three parameter estimation methods to
deal with its flat and potentially multimodal likelihood and fitted five competing EAI models
to determine the best model. Model (4) from Section was shown to provide the best fit
as its AIC was the smallest among the five.

Following the model fitting, this chapter aims to assess the fit of our best EAI model
through residual analysis. The residuals of Model (4) will be compared against those of our
second best model, Model (2), which assumes that HSN1 outbreak patterns are independent
and dictated purely by proximity to the city and temperature. As explained earlier, Model
(5) has the second best AIC score, but this model is essentially the same as Model (4)
with its estimated s approximately equal to 0. Therefore, we consider Model (2), a model
without a branching structure, to be the second best model. This comparison will gauge the
improvement of Model (4) over Model (2) from introducing the branching structure described
by proximity to the nearest traffic networks, in addition to spatial and temporal lags.

The procedure for computing residuals for an inhomogeneous point process is outlined in
the next section, followed by the comparisons of results for Models (2) and (4). The residual
analysis will reveal that while Model (4) improves the fit substantially in terms of longitude
compared to Model (2), the improvement observed for latitude is only marginal. Model
(4) demonstrates better fit temporally especially for periods with temporal clusters, but the
observed difference in comparison to Model (2) is not as remarkable as that of longitude.

5.1 Residual analysis with Stoyan-Grabarnik weights

Baddeley et al. [3] introduce the most comprehensive tool for performing residual analysis
on inhomogeneous spatio-temporal point process. Their method is analogous to previously
proposed methods [42}/1353]54], which transform a point process into a Poisson process with
uniform intensity on a given interval. The deviation of the transformed point process from
a homogenous Poisson process will indicate a possible model misfit.
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The method presented in Baddeley et al. [3] applies Stoyan-Grabarnik weights [59] to the
intensity of a point process. Consider the following zero martingale as a function of time, t,
where N (dxdydt) denotes a count measure for number of events and A(z,y, t) is an intensity
function of inhomogeneous point process { N (z,y,t)},

/OT / /S N(dxdydt) — Nz, y, t)dzdydt. (5.1)
hen
T E (/OT//Sh(x,y,t)[N(dxdydt) - A(:c,y,t)dxdydt]) — 0, (5.2)

where h(z,y,t) is a weight function. With h(z,y,t) = /\(;

o) e have

E o wi | —I8xT|=0 (5.3)

i:(z4,y4,t,)ESXT

where w; denotes the Stoyan-Grabarnik weight, m, and |S x T'| is the volume of the
given space and time. The Equation should intuitively make sense as it is essentially
the same as transforming a point process into a Poisson process with intensity 1. The
other popular variation of Stoyan-Grabarnik weight uses a weight function, h(x,y,t) =

ﬁ, which is analogous to Pearson residuals in linear regression. In our residual analysis,
I7y7

#yt) as our weight function because the calculation of expectation term in
1rydrr

: 1 1
Equation ‘) for h(x,y,t) = wITErTR I s

With data, the intensity of inhomogeneous point process employing the estimated pa-
rameters, 5\(;(33, y,t), is used in place of the true intensity, A(z,y, t) for computing the weight,
w;. Let w; denote the estimated Stoyan-Grabarnik weight for event i. Assuming that the
model is right, we would still expect the difference in Equation to remain 0 even with
the estimated weights, w;’s.

Equation (5.3) can be modified to examine the fit of our EAI model in terms of three
dimensions, longitude, latitude and time. For each dimension, we calculate the difference be-
tween the cumulative sum of the estimated Stoyan-Grabarnik weights and the corresponding
volume:

we will use

dxdydt, can be quite complicated.

si(x) = > b —|z,Y x T (5.4)
i <x
sa(y) = Z w; — | X,y x T (5.5)
2y <y
ss(t) = ) b —|S x| (5.6)
1y <t

In our analysis, the estimated weights, w;, are computed with h(x,y,t) = X(mlyt)’ For
0 1

each s,.(+) for 1 < r < 3, s,.(-) > 0 indicates that the model expects more points than the
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observed for the given dimesion. The results from computing residuals for Model (2) and
(4) will be discussed in the following section.

5.1.1 Results

Plots of s1(x), s2(y), and s3(t) calculated for the two best models, Models (2) and (4),
from Table are shown in Figures and [5.2] The black and blue curves correspond to
the residuals from Model (2) and (4) respectively.

Residual plot for longitude Residual plot for latitude
o [ = R
o ©
T o : T o :
> N > N
5 . S i
1] 1]
¢ § £ §
g g
- | T T P T T T T T
30 35 40 37 38 39 40 41 42
Longitude Latitude

Figure 5.1: Residual plots for longitude, s1(z), and latitude ss(y). Plot of Turkey in Fig-
ure [1.2] is also provided below as a reference. The black dots represent the HSN1 outbreak
locations. The green and blue lines correspond to Turkish railroads and highways respec-
tively. The cities in Turkey are marked with red crosses.

Examining the residual plot for longitude in Figure we observe that Model (4) has
dramatically improved its fit over Model (2). While Model (2) only consists of background
process with proximity to city and temperature as its components, Model (4) extends Model
(2) with additional factors in the triggering process: spatial and temporal lag, and proximity
to traffic networks.



25

The residuals from Model (2) indicate that Model (2) underestimates the longitudinal
variation from 30° to 43°. This underestimation is most severe between 30° and 35°, where
the outbreak locations do not show the tight clustering observed near cities such as Istanbul,
Samsun, and Rize. The residuals from Model (2) approach 0 between 35° and 37° due to the
heavy cluster of outbreaks near the city of Samsun but do not improve for longitude greater
than 37°. Model (2) still expects more points from 37° and onward, as the inland clusters
are looser than what the model dictates.

In comparison, residuals from model (4) demonstrate much better fit, staying along zero
throughout. In addition to proximity to cities incorporated to background process, Model
(4) aims to explain the spatial clusters of outbreaks with proximity to the traffic network
and the distances among outbreaks. Thanks to its spatial branching structure, Model (4)
successfully describes the variation between 30° and 40°, where Model (2) fails to provide an
adequate fit. While the background intensity of Model (4) captures the loose clusters formed
around cities, its triggering intensity explains the linear aggregation observed near Istanbul,
Samsun, and Rize. The spatial triggering structure is able to describe the linear clusters of
outbreaks near the cities much better than Model (2).

Despite its excellent fit for variations in longitude, Model (4) does not improve its fit—at
least substantially—in terms of latitude compared to Model (2). From 40° to 42°, where the
most of the tight clusters of outbreaks are observed, Model (4) only is able to improve the fit
of Model (2) slightly. We suspect that the triggering structure of Model (4) unsuccessfully
accommodates the vertical variation in this region as most of the clusters are formed hori-
zontally along the traffic networks. Moreover, it overestimates the spatial trend between 38°
and 39° in latitude. Under Model (4), we expect to observe more outbreaks aggregating in
this area because there are many outbreaks that could potentially trigger other outbreaks.
Instead, they are loosely scattered, which is the opposite of what Model (4) dictates. As
mentioned in Section [2.2.2] a possible reason for the loose cluster of outbreaks observed near
inland cities may be because poultry farms are more densely populated near the port cities
for ease of trade.

Temporally, both residuals from Models (2) and (4) show that the models are heavily
affected by the outlier, an outbreak that occurred on the first day. Both models expect fewer
outbreaks from day 1 to day 100—perhaps no outbreaks at all. With their configurations,
they are unable to explain the observed temporal variation, until the sudden surge in the
outbreak counts around to day 100. The temporal lag component in the triggering process
enhances the fit of Model (4), where temporal clusters are eminent. From day 100 and
onward, Model (4) provides slightly better fit during the periods with a large number of
outbreaks.

Overall, introducing the branching structure featured in Model (4) successfully improved
the fit of Model (2). Model (4) performs substantially better in fitting longitudinal variation
due to the new spatial component, proximity to traffic networks, added to spatial lag in the
triggering process. As noted in table 4.1 under the configuration of Model (3), spatial lag
in the triggering process alone was not able to capture the linear outbreak clusters formed
along the traffic networks. While Model (4) with its spatial branching structure provides
much better fit in terms of longitude, it only marginally improves fit of latitudinal variation.



26

Residual plot for time

60

30

Residual

T
10

50 100 150

Days

Figure 5.2: Residual plot for time, s3(¢). The frequency of number of outbreaks correspond-
ing to the dates of their occurrences is shown at the bottom as a reference.

This contrasting result is an aftermath of the fact that most of the clusters formed along
the traffic networks were horizontall] Temporally, the residuals of Model (2) and Model (4)
are quite similar, but Model (4) provides a slightly better fit when temporal aggregation is
present, thanks to the temporal component in the triggering process.

The next chapter on simulation of the EAI model will demonstrate how our validated

EATI model can be applied using predicted results, along with performance benchmarks for
different estimation methods.

!The horizontal aggregation may have been purely due to chance. Since our aim is to provide a general

framework for modeling H5N1 spread, tailoring the model to fit only the horizontal variation would be too
data specific.
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Chapter 6

Simulating the EAI model

So far, we have focused on fitting, validating, and examining possible applications of the
EAI model. The results presented in Chapter [5] for validating the model for the Turkish
data were based on the estimates produced via backfitting method featured in Chapter [
Both chapters did not employ the estimates from two other methods, poorman’s EM and
EM. Section [4.5.3] presented results from all postulated methods, but no formal compari-
son among the three methods was provided. As noted previously, the estimates obtained
from poorman’s EM method were consistently different for all seven parameters for Model
(4). The comparison of computational speed indicated that the backfitting method reached
convergence (within 1073) the fastest, followed by Poorman’s EM and EM in that order.

This chapter aims to gain deeper insight on the performance of the three methods than
the brief comparison given in Section [4.5.3] Through simulation, we can not only gauge
the performances of the three estimation methods but make a simple prediction of future
outbreaks in Monte Carlo fashion.

The first part of this chapter constructs an algorithm for simulating our EAI model
inspired by Lewis [31] and Zhuang et al. [66]. Further, adopting the simulation strategy
of Zhuang et al. [66] and Vere-Jones [61], we present a modified simulation algorithm with
an edge correction method to mitigate any boundary effects, commonly encountered when
simulating a point process.

Following the simulation algorithm, the performance of the estimation methods will be
measured in two different categories: robustness against starting values and accuracy. These
benchmarks involve simulating the EAI model with a given set of parameters and estimating
them based on the simulated data. The deviations of the estimated parameters from the
truth will gauge the performance of each estimation method. With this comparison, we hope
to understand how effectively each method deals with the flat likelihood of EAI model with
respect to the parameters.

The robustness of our procedures will be inspected first against a wide range of starting
values to verify that all estimates converge to the same values at the end of the iterations.
Then the accuracy of each method will be examined by estimating the parameters from
simulated data both with and without edge correction. These performance benchmarks
identify two parameters that are particularly difficult to estimate and determine the best
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performing estimation methods in terms of accuracy and computational speed.

Further, we can gauge the performance of the EAI model itself in lieu of the estimation
methods. Using simulation results, we can construct hypothesis tests on the parameters
of the EAI model and calculate the corresponding empirical powers to assess whether our
EATI model is able to correctly detect the components of the triggering process when in
fact they are present. We are especially interested in the EAI model’s ability to capture
the presence of temperature variation in the branching structure. The empirical power will
assist in determining if the configuration of the model is responsible for failing to detect the
temperature component included in Model (5) from Table [4.1]

Lastly, we extend the proposed simulation algorithm to predict the occurrences of H5N1
in Turkey with the fitted EAI model. Given the past progression of HAN1 outbreaks, we
can repeatedly simulate the future H5N1 incidences, obtaining a distribution of predicted
outbreaks—their locations and times of occurrences. Prediction of H5N1 outbreaks via
simulation can serve as a useful guide for responding to the explosive spread of H5N1.

6.1 Simulation algorithm for EAI model

Lewis and Shedler [31] outline the most widely accepted method for simulating an inho-
mogeneous point process. Their idea is rather simple; after simulating a homogenous point
process in a desired space, each point will be “thinned out” if the ratio of the intensity at
the given point and the maximum intensity is less than a number generated from a uniform
distribution. For an inhomogeneous point process with rate \(z,y,t), Lewis’ simulation al-
gorithm is provided below:

Algorithm 4 (Lewis): Simulation algorithm for an inhomogeneous point
process with rate, \(x,y,t).

Step 1. Simulate a homogeneous poisson process in a given space with rate,
max A(z,y,t)

Step 2. Take a simulated point, evaluate the intensity at its position using the
inhomogenous rate, compare the ratio with randomly generated number from
uniform distribution on [0,1]. If ratio is less than the randomly generated num-
ber, delete the point.

Step 3. Repeat step 2 to all points simulated from step 1 to obtain inhomoge-
neous point process.

In our case, this algorithm will be only used to generate the background point process
because simulating the triggering process, corresponding to Ar(z,y,t) in Equation (4.7)),
using Lewis’ algorithm might be difficult; depending on the past progression of events, the
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calculation of maximum intensity (4.5) at given time, ¢, can be quite complicated when
triggering intensities of outbreaks, Ar(z,y,t), overlap amongst each other spatially.

Therefore, we adopt a simulation procedure proposed by Zhuang et al. [66], which takes
advantage of the branching structure of our point process. This approach was also noted
in Brix and Kendall [5] and Moller et al [37,[36]. Their simulation algorithm keeps track
of generations of triggered events, denoted G for each generation . The events in the
background process are generated first with algorithm 4 and are labeled as generation 0,
G, The next generations of events will continue to be produced, based on the expected
number of events triggered by each event from the previous generation, until the most recent
generation ceases to contain any events.

Combining the two simulation approaches with slight modifications, the algorithm for
simulating the EAI model is outlined below:

Algorithm 5: Simulation algorithm for the EAI model

Step 1. Simulate background point process with intensity Ag(z,y,t) using Al-
gorithm 4 over S x T'. Call this generation 0 and denote it G©.

Step 2. Set [ =0

Step 3. For each event 4, (x;,;,t;) in GO, simulate the number of its offspring
first using Az, |4.19| as a rate of a homogenous point process. Consequently, draw
spatial and temporal lags from probability density forms of s(z — x;,y — ;) and
g(t —t;). Assign them to the corresponding offspring.

Step 4 For each offspring from step 3, assign an angle drawn from a uniform
distribution on [0, 27]. With the computed spatial lag from the location of its
parent event and the angle, determine the latitude and longitude of the offspring.
Evaluate s(z,y) at the obtained location and redraw the location of the offspring
until s(z,y) > unif[0, 1]} Assign the resulting location in longitude and latitude
to the offspring.

Step 5 Add the temporal lag—computed in step 3—to the occurrence time
of its parent and assign it to the offspring.

Step 6 Denote the offsprings generated from an event i in G, Oz@. For each OZ@,
delete offsprings of O if O that do not belong in SxT'. Set G+ = U, O

Step 7 If GU*Y is not empty, set | = [ + 1 and go to step 3. Otherwise re-
turn the resulting catalog, Ué-:OG(j).

IThis is a rejection sampling.
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We will use Algorithm 5 to simulate the H5N1 outbreaks in Turkey for 182 days with
parameters 6 = (a, beity, k, @, 3, Broad, 7) = (1,20,0.1,50,40,70,0.15). If otherwise, the pa-
rameters will be specified. Algorithm 5 will also serve as a backbone for predicting future
outbreaks of H5N1 in Section [6.3

6.1.1 Edge correction method

Edge effects are a common problem in the point process literature and are even more
severe for an inhomogeneous point process with a branching structure. The study region for
our self-exciting point process, the three dimensional space spanned by Turkey and 182 days,
is finite, and the continuous intensity [£.5, A(x, y, t|H;), will get cut off at the boundary. As a
result, the corresponding intensity of events located near the boundaries, both spatially and
temporally, will be under-estimated. Although our region of interest, Turkey, is quasi-convex
and the edge effect is less severe in comparison to other countries, our analysis may suffer
greatly from the edge effect introduced by the dense cluster of outbreaks observed at the
coastal cities such as Samsun and Rize.

The edge effect will plague both estimation and simulation results. Fitting a self-exciting
point process is highly likely to produce biased estimates: the parameters corresponding to
spatial and temporal variation, (beiwy, 53, Broad; k, Y), are expected to be overestimated, as the
cut-off of intensity function at the boundary is apt to yield faster decaying functional
forms.

Likewise, the simulation will suffer from the bias introduced by the finite space of interest.
With Algorithm 5, the events located within the boundary are unable to produce offspring
outside. In addition, it will simply exclude the events potentially triggered by other events
beyond the boundary even if they lie within the given space.

Zhuang et al. [66] and Vere-Jones [61] addresses this issue by simulating the events in
a bigger space—denoted Sy, X Tpiy —than the study region. This configuration sets up
a buffer zone in Sy, X Ty,, which spatially surrounds and temporally follows the study
space S x T'. Simulating the self-exciting process in Sy, X Tp;, and including it, at least
partially, in the estimation procedure is likely to improve the parameter estimates, as noted
in Vere-Jones [61].

In our case, however, considering occurrences of H5N1 outbreaks outside Turkey is un-
realistic. More than half of the country is surrounded by Black and Mediterrian Sea and
it is physically impossible to observe any outbreaks beyond the country’s border. Although
the southeastern part of Turkey is connected to the Middle East, we cannot assume the
similar disease spread mechanism in this area; the neighboring countries possess different
infrastructures, administration, and ecological features that may result in disparate spread
of the H5N1 virus.

Despite these drawbacks, we will adopt the simulation strategy of Zhuang et al. [66]
and Vere-Jones [61]. Self-exciting point process is notorious for its difficulty in parameter
estimation [60,44], and we wish to measure the improvement in accuracy of the estimated
parameters with the introduction of edge correction method—at least in theory.

Let S, represent a rectangular area spanning from 25° to 46° and from 35° to 43° in



62

longitude and latitude respectively. Temporally, we do not define a bigger time interval but
retain offspring occurring later than 7" and prevent these offspring from triggering a future
generation. The simulation algorithm with edge correction is presented in Algorithm 6:

Algorithm 6: Edge correction (Addendum to Algorithm 5)

Step 1. Simulate the background point process with intensity Ag(x,y,t) us-
ing Algorithm 4 over Sp;, % Ty;,. Call this generation 0 and denote it GO,

Step 2. Set [ = 0 and initialize P©® = G©. PO will represent group of
events generated at [ iteration, which are allowed to produce offsprings in the
next iteration.

Step 3. For each event 4, (z;,;,t;) in PY, simulate the number of its offsprings
first using g, as a rate of a homogenous point process. Consequently, draw
spatial and temporal lags from probability density forms of s(z — z;,y — y;) and
g(t —t;). Assign them to corresponding offsprings.

Step 4 For each offspring from step 3, assign an angle drawn from a uniform
distribution on [0,27]. With the computed spatial lag from the location of its
parent event and the angle, determine the latitude and longitude of the offspring.
Evaluate s(z,y) at the obtained location and redraw the location of the offspring
until s(z,y) > unif[0, 1P} Assign the resulting location in longitude and latitude
to the offspring.

Step 5 Add the temporal lag—computed in step 3—to the occurrence time
of its parent and assign it to the offspring.
Step 6 Denote the offsprings generated from an event i in P®, oY

;. and set

G = U, O". For every offspring in G(+1 | check if the its occurrence time
greater than 7" and only include the offsprings that occurred before T to PU+D.

Step 7 If P*+D is not empty, set [ = [ + 1 and go to step 3. Otherwise re-
turn the resulting catalog, Ué.:OG(j).

In Algorithm 6, the background process, G\, is simulated over Shig X Thig. Spatially, the
future generations will not spawn events far away from S as the intensity of the point pro-
cess decreases exponentially according to the distance from the traffic networks located
near the border. The traffic networks serve as a natural bound preventing the simulated out-
breaks to drift away from S. With our best model, Model (4), such a natural bound does not

2This is a rejection sampling.
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exist temporally because the outbreaks will be generated purely based on the temperature
component in the background process. For periods with favorable temperature, Algorithm
5 will continue to produce outbreaks without a temporal limiting factor in the triggering
process. Therefore, we limit the events generated after T by retaining but preventing them
from triggering any offsprings in the future generations.

In the following section, simulated data produced from Algorithm 5 will be used to assess
performances of the three estimation methods in terms of sensitivity to starting values and
accuracy of the estimates. The accuracy results obtained from Algorithm 5 will be compared
with those of Algorithm 6 to determine whether our edge correction method yields more
accurate estimates.

6.2 Comparison of the three estimation methods

In Chapter ] we proposed backfitting, Poorman’s EM, and EM methods to resolve com-
mon estimation issues arise from maximizing likelihood of self exciting point process. It was
briefly mentioned that the main benefits of backfitting and EM methods are computational
speed and accuracy respectively. Poorman’s EM was designed to take advantages of the
two estimation methods by simplifying complicated probability calculation involved in EM
method for faster convergence.

This section will examine the performances of the three methods through simulation.
First, we explore how each estimation method manages wide range of starting values to reach
convergence by estimating parameters for data generated from Algorithm 5. The result will
indicate which methods fail to produce concurring estimates for the troublesome parameters
of EAT model. Consequently, the accuracy of the estimates produced by the three estimation
methods are compared using simulated data sets with and without edge correction. We
discuss the differences in precision of parameter estimates and the computational speed
among the estimation procedures and inspect the their changes from introducing the edge
correction.

6.2.1 Sensitivity to starting values

Prior to the comparison in accuracy, we examine how the starting values may affect the
convergence of the estimates produced by the three estimation methods. The likelihood of
a self-exciting point process is infamous for being flat and multimodal, which can lead to
wrong parameter estimates [60,44].

We simulated 10 data sets using Algorithm 5 with parameters (a, beity, k, @, 3, Broad, V) =
(1,20,0.1,50,40,70,0.15). For each data set, 100 starting values for the parameters were
drawn randomly from a uniform distribution, whose range is %th of the true value to 5 times
the true value, per parameter. The results from estimating parameters with the 100 starting
values for one of the simulated data are illustrated in Figures 6.2 and [6.3] The three
figures correspond to the results obtained using backfitting, poorman’s EM and EM methods
respectively. The individual plots show the values of estimated parameters at each iteration
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until their convergences. The estimated parameters of the other simulated data agree with
the results provided and therefore are omitted.

Overall, all three methods seem to yield similar parameter estimates and maximum like-
lihoods, excluding the two parameters from the triggering process, o and 3. While all other
estimates were within 0 to 100% in range relative to the true parameter values, the estimates
for the two troubling parameters were severely biased, converging to roughly 3 to 5 times
their true values. The estimated values of the two parameters are generally in the neighbor-
hood of 4 and 3 times their true values respectively, but their distributions vary depending
on the estimation methods.

The backfitting method is able to achieve convergence the fastest with all estimation runs
terminating within 4 iterations, and it produces the most consistent parameter estimates.
On the other hand, poorman’s EM method struggles to produce consistent estimates for «
and [, although it reaches convergence faster, with fewer required iterations less than for
the backfitting method for these two parameters on average. The majority of estimates of
a produced by poorman’s EM do not converge to the same value, with quite a few of them
falling in the range of 4 to 6 times its true value. While the estimated values of [ are more
consistent, the two divergent estimates for @ and 3 lead to conflicting maximum likelihood
values as illustrated in the last plot of figure 6.2

Similarly, the EM algorithm struggles with the estimation of o and 3, especially in the
early stage, producing a wide range of estimates. Despite the highly variable estimated values
observed in the early iterations, the estimates of o and (8 converge to acceptable ranges; the
range of EM estimates of « are similar, in comparison to the poorman’s EM, whereas the
EM estimates of 3 are closer to the truth with less spread?]

In summary, all algorithms produced comparable parameter estimates and maximum
likelihood except for parameters o and 3. The estimates for the two parameters were severely
biased, and Poorman’s EM and EM algorithms yielded disagreeing results with Poorman’s
EM performing worse than EM. In the next section, we will assume different starting values
will yield consistent results and compare their accuracy, although we acknowledge that the
estimated values of o and 3 may be highly variable.

One hundred starting values for the parameters were drawn randomly from a uniform
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distribution, whose range is ¢ " of the true value to 5 times the true value, per parameter.

6.2.2 Accuracy of the estimates for data simulated without edge
correction
To compare the accuracy of the estimates produced by the three methods, we simulated

100 data sets using Algorithm 5 with the same parameter values mentioned earlier in Sec-
tion [6.2.1] For each simulated data set, a set of starting values were drawn randomly from

3We also note that the EM algorithm takes much longer to achieve convergence with median of 11
iterations. The maximum iteration required for convergence was 29. While a fairer comparison can be made
if the progression of estimates from 1 to 29 iterations were shown, the parameter estimates generally agree
within 10 iterations for all parameters except o and
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a uniform distribution, whose range is 1" of the true value to 2 times the true value, per

parameter. These starting values were e2rnployed by all three methods in estimating 6.

Figure [6.4] and Table display the results from estimating parameters with all three
methods. We first refer to plots in Figure to illustrate the general pattern of the per-
formances. The first seven plots correspond to the distributions of obtained estimates for
parameters, 6 = (a, beity, k, @, B, Broad, ), and the last plot displays the distributions of num-
ber of iterations required to reach convergence by the three estimation methods.

Overall the distributions of estimates are similar across all three estimation methods. It
is apparent from the plots in figure that the parameters for the background process, a,
beity, and k are most accurately estimated; these parameter estimates range approximately 70
% below and above their true values regardless of the methods employed. Among the three
parameters, estimates of k& demonstrate the greatest accuracy with the medians of estimates
from all three methods matching the true value of k. In contrast, parameters a and b, are
over and under estimated respectively. This behavior is probably due to the fact that the
values of two parameters are linked, as the functional form of proximity to city, e beitvTeity,
is not standardized; a decrease in b, causes an increase in the background scale parameter
a and vice versa.

There are no clear winners amongst the estimation methods in terms of accuracy for
the background parameters. As shown in Table [6.1] while poorman’s EM yields the most
accurate result for a, EM produces more precise estimates than the other two algorithms for
broaq in terms of bias and RMSE. For k, the Poorman’s EM estimates edges out the other two
in terms of bias, though with a larger RMSE. The estimates of k from the other two methods
have smaller RSME in comparison, but it is slightly more biased than those of Poorman’s
EM. Although no method distinguished itself with its performance, the estimates produced
by all three methods showed relatively good accuracy; all computed biases and RSMEs for
(@, broad, ¢) are less than 13% and 34%.

On the contrary, estimates of parameters in the triggering process, (a, 3, Broad; ), are
found to be heavily biased across all estimation methods. Figure demonstrates that
estimates of o and ( suffer from severe bias with their medians deviating from their true
values by roughly 200%. The range of obtained estimates for « is atrociously large spreading
from 0 to 8 times its true value. This behavior was expected as the scaling parameter of
the triggering process is known to be difficult to estimate for self exciting point process
models [60,44]. The distribution of estimates for 8 does not have the immense spread in
comparison, but none of the estimates agreed with its true value. This bias observed for 3
raises concerns because the estimates were consistently inaccurate for all employed methods.
It is also interesting to note that surface plots of likelihood in Section suggested
a and (,.qq to be potentially troublesome parameters in estimation. In practice, the two
parameters, « and (3, noted for producing divergent estimates in the previous section, were
found to be difficult to estimate.

Although the medians of estimates for (3,,,q and v deviate from their truth, these parame-
ter estimates are only slightly biased relative to a and 5. [(3,.4q and - are both underestimated
perhaps due to the overestimation of a and 5. Among all the triggering parameters, esti-
mates of v were the most accurate with their medians roughly 25% away from the truth,
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and their distribution ranging from 50% below and 5% above. The underestimation of (3,444
was also relatively minor as the distribution of its estimates were centered about 70% below
the expected, spanning from -90% to 10% of the true value.

Examining the accuracy of the estimates according the estimation methods with Ta-
ble 6.1} the EM method produced the best results, especially for the parameters giving the
most trouble, & and 3. The EM estimate for o exhibits about 30% less bias over the es-
timates produced by other two methods along with roughly 40% reduction in RMSE. For
[, the improvement in accuracy is relatively smaller than that of «, but the EM estimates
surpass the performances of the rest nonetheless, reducing 10% both in bias and RMSE.
Unlike v and S, all procedures yield estimates with comparable precision for 3,,.q and 7.

In summary, while no procedure separates itself from the rest for estimation of background
parameters, the EM method clearly outperforms the two, producing much more accurate
estimates for some of the triggering parameters. Although all estimated parameters from
the three methods are heavily biased, the EM method improves the precision of the estimates
for problematic parameters, o and 3 in comparison to the other methods. A possible reason
for the improvement was discussed earlier in Section [4.4.2] With limited observations, the
asymptotic properties of MLE may not hold in comparison to EM, which could produce
more accurate estimates due to the incorporated branching structure.

Despite its better accuracy, the EM method is computationally the most expensive. As
demonstrated in the last plot of Figure [6.4], the maximum number of iterations required for
the backfitting and the poorman’s EM methods were 5 and 7 respectively. The longest run
of estimation procedure using the EM algorithm, however, took 27 iterations. On average,
the EM method took 12 iterations to converge resulting in roughly 4 and 2.5 times longer
computational time than the backfitting and Poorman’s EM method.

6.2.3 Accuracy of the estimates for data simulated with edge cor-
rection

In the previous section, the background parameters, (a, by, c), were shown to be cor-
rectly estimated with good accuracy regardless of the employed methods. All procedures,
however, struggled in estimating the parameters of the triggering process («, 3, Broad; ),
producing heavily biased results. Because the inaccuracy in parameter estimates is only ob-
served for (o, 3, Broad, 7), this bias may have originated from the edge effect. As mentioned
in Section [6.2.3] edge effect, a common problem among point process models, is aggravated
for our EAI model due to its branching structure. This section investigates whether the
edge correction implemented in Algorithm 6 is beneficial to parameter estimation of the EAI
model. We are particularly interested in its effect to estimation of the triggering parameters.
The outcomes from using simulated data with and without edge correction will be compared
according to the three estimation methods, to assess the improvement in bias, if there is any.

To obtain the new parameter estimates, one hundred data sets were generated with the
same parameter values as before employing Algorithm 6, the simulation algorithm for EAI
models with edge correction. The starting values from Section were reused for each
simulated data set. The results from estimating parameters with backfitting, poorman’s
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EM and EM methods are provided in Table [6.1] and they are graphically represented in
Figure [6.5] The layout of the plots in Figure [6.5] is identical to Figure [6.4] except for the
new results shown next to the ones produced without the edge correction.

Figure [6.5] illustrates that the distribution of estimates for 6 obtained using simulated
data with edge correction generally agree across all employed estimation methods. The
reduction in bias that we hoped to achieve for all parameters is found to occur for successful
in most parameters for all methods, although this reduction is modest. While we observe
major improvement in accuracy for some parameters such as beyy, «, 3, and Boeq4, the
parameters, a and -y, are slightly more underestimated compared to the outcomes without
edge correction. The distribution of new estimates for k is similar to the previous result but
with bigger spread. Because the parameters are closely related, sharing the same scaling
parameter, the minor bias introduced to the three parameters are likely to be an outcome
of obtaining notably more precise estimates for the other parameters.

Referring to Table [6.1], we note a substantial improvement in accuracy for a. Depending
on the method employed, the bias is reduced to at least 60% after simulating data using the
edge correction. The corresponding RMSEs also decrease more than 100% for all methods.
Another parameter that benefits from edge correction is § with sizable improvement in bias
at least by 35% for all procedures. The changes in distribution for other parameter estimates
were marginal in comparison.

The performance of the three methods in terms of their precision remains the same even
with the new results. Despite using the simulated data with edge correction, there is still no
clear winner for the background parameters. The estimates obtained using the EM algorithm
produced better estimates for b., and c¢ than those of other methods, but the differences
are negligible.

Similarly, the EM method still produces the most accurate estimates for the triggering
parameters, though in a lesser degree than the prior outcome. Without the edge correction,
the RMSE—measured in percentage deviation from the true value—of EM estimates are
roughly 40% and 15% smaller than the next smallest RMSEs for o and ( respectively.
Applying the edge correction reduces these differences to 11% and 12%, but they are still
major improvement over changes observed in estimates for other parameters.

However, the EM method again takes the longest time to reach convergence. Using the
updated triggering probabilities at every iteration leads to more precise estimates, but it
also requires more computation time than the other two methods.

Overall, using the simulated data with edge correction leads to extended computational
time for all methods perhaps due to the increased number of events in each simulated data
set. Simulating our EAI model in the expanded target space, Sy X Thig, Will certainly yield
more events with the same intensity, thereby increasing the processing time for estimation.
With edge correction, the processing times for obtaining estimates for each data set in-
creases by 90%, 137% and 80% on average for backfitting, poorman’s EM, and EM methods
respectively. Poorman’s EM algorithm may have required much longer time relative to other
methods since its background selection procedure at each step takes longer for larger data
sets. The processing time of the EM method was the least affected and generally required
fewer number of iterations until its convergence, as demonstrated in Figure [6.5] Although
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the exact reasons for this improvement are not known, it is probable that the edge correction
aided in determining estimates for a and 3, the parameters that are responsible for longer
computational time for the EM algorithm. On the contrary, the number of iterations required
for backfitting and poorman’s EM algorithms have increased, illustrated by the fatter tail
in their distributions from Figurd6.5 It is also interesting to note that these shifts in their
distributions do not exceed the maximum number of iterations observed without applying
the edge correction.

Our investigation, so far, has shown that simulating data with edge correction does
improve the accuracy of estimates for some parameters—most notably a and f—for all
methods. Parameters representing the temporal components of the EAI model, £ and =,
did not benefit from the simulated data with edge correction, possibly due to only allowing
events generated in [0, 7] to produce offspring in Algorithm 6. Therefore, a modification of
temporal edge correction may improve the results for these parameters. A viable remedy
would be permitting events falling out of [0, 7] to spawn offspring for another generation or
more.

Upon reviewing the estimation results, the EM method is shown to consistently out-
perform other estimation methods in terms of accuracy, especially for o and 3. However,
it is computationally the most expensive, reaching convergence three times more slowly on
average than the fastest method, backfitting. In practice, the computational time difference
is negligible as we do not aim to provide real time results. Therefore, we recommend the use
of the EM method for parameter estimation of the EAI model.

6.2.4 Power to detect components in triggering process

The past sections have focused on comparing the performances of the three estimation
methods through simulation. Our analysis based on robustness against starting values and
accuracy revealed that the EM method stands out above the rest, producing the most precise
estimates.

In this section, we turn our attention to testing performance of the EAI model itself. We
wish to examine whether our model is capable of detecting the presence of various triggering
components. Using simulation, we can construct a likelihood ratio test by comparing the
maximum likelihoods estimated from the simulated data for two models: one assuming the
null hypothesis, that the data is generated without the influence of the component of interest,
and the other assuming the negation, the alternative hypothesis. By fitting the two models
to the data simulated assuming the alternative hypothesis, we can calculate the empirical
power of a test, the probability that test correctly reject the null hypothesis given that the
alternative is true for a particular parameter setting. In other words, the empirical power of
the test will give an idea of how well our model can correctly detect the presence of added
triggering component.

In Chapter , the outcome of fitting Model (5), which includes the effect of temperature in
the triggering process, indicated no sign of influence in the triggering process corresponding
to the temperature. From the introduction, we know that the colder temperature extends
the life of HAN1 virus in water. Although the parameter for temporal variation, k, was
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Background Triggering
Method Statistic a émad k a B ﬁ;oad o
Backfitting bias 123 -11.2 138 232 183 -62.0 -19.9

RMSE 325 333 234 279 194 66.9 246

without edge Poorman’s EM bias 747 -11.8 0.219 230 181 -62.0 -20.0

correction RMSE 29.3 33.5 24.0 276 191 67.0 24.7
EM bias 11.3 -10.9 154 202 170 -62.5 -20.3

RMSE 316 329 235 239 178 67.3 24.6

Backfitting bias -14.5 -3.14 525 144 141 -59.9 -26.4

RMSE 26.2 21.2 268 165 147 63.0 284

with edge ~ Poorman’s EM bias -17.2 -5.56 -0.233 148 143 -59.8 -26.3
correction RMSE 282 21.8 249 169 149 629 283

EM bias -154 -338 6.01 126 131 -60.1 -26.8
RMSE 26.8 214 252 144 135 63.2 28.7

Table 6.1: Table of biases and root mean squared errors (RMSE) of the estimates obtained
by backfitting, poorman’s EM, and EM algorithm. All statistics are shown in terms of
the percentage deviation from the true values. The results—separated according to the
simulation method—are grouped by the employed algorithms.

estimated to be 0, we suspect that the configuration of the model may not be able to detect
the presence of such an effect even if is present in reality. The computation of the empirical
power mentioned above will provide a statistical measure for assessing the performance of
our model in terms of its ability to detect the presence of triggering component.

The test statistic of a likelihood ratio test for nested models is [64]:

Limpie (05
D = —2In (M> (6.1)

Leompiex (0311.)

where Lgimpie and Leomprer are the likelihood of simple and complex models, and their
corresponding maximum likelihood estimates are denoted éf\/[ ; and éh ;, with 6° C 6°. For
our analysis we have two sets of simple and complex models which will be presented in the
next paragraphs. The first set of simple and complex models are Model (4) and Model (5)
respectively. The second set consists of a simple model, Model (3), and a complex model,
Model (5). The null hypothesis of the statistical test is Hy : ¢ = 0 with ¢ representing the set
of parameters belonging to 6¢ excluding #°. The two models are nested in the sense that the
complex model can be transformed into the simple one by imposing set of linear constraints
on the parameters. The test statistic, D, asymptotically follows y? distribution with degrees
of freedom corresponding to the number of extra parameters, ¢, under the condition that
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the asymptotic properties of MLE holds for both simple and complex models [64].

To construct our test, we simulate 100 data sets with parameters (a, beity, k, @, 3, Broad; Vs k)
= (1,20,0.1, 50,40, 70,0.15,005) assuming the alternative hypothesis, that the effect of tem-
perature is present in the triggering process. In this case, Model (4) is the simple model rep-
resenting the null hypothesis with 6° = (a, beity, k, &, 3, Broad, 7). The more complex model,
Model (5), includes an extra parameter, x, in #¢ compared to #°. The results from fitting
Models (4) and (5) to the 100 simulated data are illustrated in Figure[6.6] The scatterplot in
figure confirms that the complex model indeed yields higher maximum likelihood values
as all results lie either on or over the 45 degree line. Intuitively, the added temporal variation
in triggering process can only improve the model fit if not the same.

The computed test statistics approximately follow x? distribution with one degrees of
freedom, as the number of parameters differ by one between the two models. With the
test statistics, we can calculate the empirical power of our test. At 5% significance level,
marked with a blue triangle on the histogram in Figure [6.6], we are only able reject the null
hypothesis, that there is no temporal effect, 58% of the time, although the data sets were
simulated assuming the negation, the alternative hypothesis. The empirical power of the
test, 58%, does not look promising. Even if temperature impact the triggering process of
the avian influenza virus, our model is able to detect this component only 58% of the time,
under the setting that the true parameters are as above.

Although the exact reason for the low empirical power is unknown, under Model (5),
the temperature components for both background and triggering processes take the same
functional form, and considering the difficulty of estimating «, the scaling parameter for
triggering, the estimation methods may not be able to distinguish the two temperature
components in the background and triggering processes.

Next, we compare this result to another component in the triggering process, proximity
to traffic networks. In Chapter 5, the fit of Model (3), which contains spatial and temporal
lags as parts of the triggering process, was greatly enhanced by introducing proximity to
nearest traffic network to the branching structure. Calculating the empirical power for this
factor will not only measure the ability of our model in determining its presence, but allows
us to interpret the previous result for temperature in comparison.

The new statistical test for proximity to traffic network is constructed in the same manner
as before. The complex model representing the alternative hypothesis is now Model (4).
Based on this model, we simulate 100 data sets with parameters, 8° = (a, bity, k, @, 3, Broad; Y)
= (1,20,0.1,50,40,70,0.15). The simple model is Model (3), which excludes the distance
from the nearest traffic networks as a factor in the branching structure. The set of parameters
for Model (3) is 0° = (a, beity, k, v, B,77). The null hypothesis for this statistical test is,
Hy @ Broaq = 0, which assumes no effect of proximity to traffic networks in the triggering
process. The resulting test statistics will again follow y? distribution with one degree of
freedom.

The two plots in Figure illustrate the results from fitting Models (3) and (4) to the
data simulated assuming the alternative hypothesis with the given parameters. The scatter
plot of the estimated maximum log likelihoods for the two models indicates that distribution
of the test statistics is likely to shift, compared to the results in Figure as more points are
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scattered to the right. The distribution of the test statistics confirms the shift, and majority
of them are larger than the value of x%(0.95). At 5% significance level, the empirical power,
the probability of rejecting the null hypothesis when the alternative hypothesis is correct
and under the specified parameters, is computed to be 89%, which is remarkably higher
than 58%, obtained for temperature variation.

This result suggests the configuration of our model may be limited to correctly detect
the change in the branching structure of H5N1 according to the temperature. For our study,
understanding how temperature affects the spread of virus is crucial. Although laboratory
experiments have shown colder temperature prolongs the life of H5N1 in water, the implica-
tion of this result to the mechanism of the virus spread has not been found. A reasonable
solution may be to consider a different functional form for the temperature component, since
the impact of temperature in background and triggering processes may differ.

6.3 Prediction

In addition to benchmarking performances of estimation methods and examining the
EAI model’s capability to detect the components in the triggering process, the simulation
algorithms presented earlier can be used to make predictions of the future H5N1 outbreaks in
Turkey. With simulation, virtually any feature of our point process can be forecasted [61"7_[]. A
value of interest, such as the number of future outbreaks, can be obtained from simulating the
EAT self-exciting point process model over a desired time interval in Turkey. By repeatedly
simulating the future outbreaks based on the observed, we can obtain a distribution for the
value of interest. We are particularly interested in three features of the future outbreaks, their
number along with the spatial and temporal distributions of their occurrences. Knowledge
of these features would be greatly beneficial to H5N1 surveillance and the prevention of
future disease spread. The prediction results for these features will be provided, following
the introduction of the prediction algorithm in the next paragraph.

We propose Algorithm 7 to generate the predicted H5N1 outbreaks in Turkey over
(T' — p,T'], where T represents the last day with an observed H5N1 outbreak, and p is
a positive integer, denoting the length of the interval. We chose p to be 60, a third of
observation period, [0,7], because the predictability will suffer for a long prediction pe-
riod. The observed numbers of outbreaks in [0,7 — 60] and (7" — 60, 7] were 130 and 91
respectively. The prediction will use the parameter estimates for Model (4), produced from
fitting backfitting method to data observed during [0, 7 — 60): (a, I;city k&, B, Broad 7)) =
(0.834,25.8,0.0612,16.5,16.9,46.2,0.215). Comparing the predicted results with the ac-
tual outcome will give us a sense of the performance of our prediction algorithm. Algorithm
7 is a modification of Algorithm 5, and we will generate 300 sets of future outbreaks with
Algorithm 7. The details of Algorithm 7 is provided below:

4Although our research did not take the following approach, Vere-Jones [61] additionally notes that
uncertainty in parameter values can be allowed for by adopting a Bayesian framework and selecting the
parameters from the posterior distribution before starting the simulation.
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Algorithm 7: Prediction algorithm for the EAI model

Step 1. Simulate background point process with intensity A\g(z,y,t) using the
parameter estimates for Model (4), produced from fitting backfitting method to
data observed during [0, — p), over S x (T'— p,T]. Call this generation 0 and
denote it G,

Step 2. Simulate one generation of offsprings from the H5N1 outbreaks ob-
served in [0,7 — p| using steps 3, 4, and 5 in Algorithm 5. Delete offsprings
that do not belong to S. Additionally remove offsprings that occurred during
[0, T — p]. Include the remaining offsprings to generation 0, G(©).

Step 3. Simulate the future generations of offsprings over S x (7" — p,T] us-
ing steps 2, 3, 4, 5, 6, and 7 in Algorithm 5.

The results for the three features produced from 300 simulations are shown in Fig-
ures [6.8] [6.9) and [6.10] Figure illustrates the distribution of the predicted numbers,
while Figures and show the spatial and temporal distributions of future outbreak
occurrences.

Examining Figure [6.8] we found the prediction result for the number of future outbreaks
to be satisfactory. Both the mean and the median of the predicted numbers, 89 and 80
respectively, were close to the actual number of outbreaks observed in (T"— 60,7'], 91. In
addition, the actual number of outbreaks fell between the 25" and 75" percentiles of the
distribution, shown as red empty triangles in Figure . In general, the distribution of
predicted number of outbreaks is skewed to the right with its mode, 65, corresponding to
15% of simulated data sets. The predicted outcome suggests less number of outbreaks than
the observed will occur under our model, but this difference is acceptable.

The spatial pattern of future outbreaks shown in Figure indicates that the majority
of the predicted outbreaks may have been triggered by the few last observed outbreaks in
(0,7 — 60]. The areas with high density of outbreak occurrences, especially near Elazig,
overlap with the locations of the past outbreaks from the observed data, marked with blue
crosses in Figure The plot also suggests that our prediction approach based on Monte
Carlo simulation suffers from the edge effect, unable to predict the majority of the outbreaks
occurred near the coastal cities of Samsun and Rize situated on the border. On the contrary,
the predicted result matches better with the outbreaks occurring inland.

Turning our attention to the temporal distribution of the predicted outbreaks in Fig-
ure [6.10 we notice that the distribution is skewed to the left and is gradually increasing over
time. This pattern is an opposite of the temporal trend of outbreaks observed in (T'— 60, T'].
In reality, the temporal distribution of outbreaks peaks around 127** and 143" days and tails
off as time elapses. A viable explanation for such a difference is the absence of a temporal

®Only the past outbreaks occurred in [T — 90,7 — 60] are shown because the triggering function that
involves temporal lag tails off to 0 at 30 days.
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component in Model (4), which can adjust the strength of triggering in addition to the tem-
poral lag. With Model (4), depending on the rate of decay for the temporal lag component,
it is possible for outbreaks to continue triggering other outbreaks for a long time period.
Model (5), in comparison, is designed to limit the triggered number of outbreaks with the
additional temperature component in the triggering process, although the estimate of the
corresponding parameter turned out to be approximately equal to zero.

Overall, the prediction results were satisfactory. Both the mean and the median of
predicted number of future outbreaks were close the actual observed number of outbreaks,
91. The observed number of outbreaks also fell between the 25" and 75 percentiles of the
predicted distribution. Spatially, future outbreaks simulated under model (4) did not agree
with the observed dense clustering near the boundary, due to edge effect. The predicted
locations matched better with outbreaks that occurred inland. Temporally, the predicted
results were opposite of the observed, exhibiting skewness to the left and increasing over
time. The predicted outcome indicated that the risk of future disease spread could last for
a long time, under the configuration of model (4).

Lastly, we would like to make a remark regarding comparison of our prediction results
to those of the past research, such as Gilbert et al. [22] and Fang et al. [16]. While the
prediction map based on the spatial logistical regression models is temporally invariant, our
prediction results are highly dependent on the outbreaks observed in the past, as shown in
Figures and [6.10] We believe that in practice, the prediction results produced from the
EAI model are more useful, because it provides an idea of how the virus will spread based on
the past progression of outbreaks. The prediction results produced from the spatial logistical
regression models could analogous to predicting future outbreaks using only the background
process of the EAI model. Besides the prevention of the recurring virus spread, which can
be predicted by the background process of our model, prediction results from the triggering
process will be helpful in containing the future disease dispersal, after HSN1 outbreaks are
observed. The predicted spatial distribution of outbreaks can serve as a guide for establishing
an effective disease quarantine.
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Figure 6.1: Progression of estimates of # and their associated likelihood values at each
iteration using the backfitting algorithm. The data was generated without the edge correction
and the starting values were drawn from uniform distribution, whose range is %th of the true
value to 5 times the true value, per parameter. The black dotted lines mark the true values
of the parameters. The scale on y-axis is proportion to the true value of the parameter.
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Figure 6.2: Progression of estimates of # and their associated likelihood values at each
iteration using the Poorman’s EM algorithm. The data was generated without the edge

. : . R . 1th
correction and the starting values were drawn from uniform distribution, whose range is :

of the true value to 5 times the true value, per parameter. The black dotted lines mark the
true values of the parameters. The scale on y-axis is proportion to the true value of the

parameter.
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Figure 6.3: Progression of estimates of € and their associated likelihood values at each
iteration using the EM algorithm. The data was generated without the edge correction and

the starting values were drawn from uniform distribution , whose range is £

1th

of the true

value to 5 times the true value, per parameter. The black dotted lines mark the true values
of the parameters. The scale on y-axis is proportion to the true value of the parameter.
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Figure 6.4: Comparison of parameter estimates and the numbers of iterations required ac-
cording to the three estimation methods, backfitting, poorman’s EM, and EM. The plots
were generated using a violin plot, a modification of boxplot with density plots of the cor-
responding distribution shown on the sides. The white dot represents the median and the
black box illustrates the IQR (Inner Quartile Range). The first seven plots show the distri-
butions of estimates obtained for (a, beity, k, &, 3, Broad, ¥)- The remaining plot displays the
distribution of number of iterations took for each run grouped by the three methods.
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Figure 6.5: Comparison of parameter estimates and the numbers of iterations required ac-
cording to the three estimation methods: backfitting, poorman’s EM, and EM with edge
correction. The plots were generated using a violin plot, a modification of boxplot with den-
sity plots of the corresponding distribution shown on the sides. The white dot represents the
median and the black box illustrates the IQR (Inner Quartile Range). The first seven plots

show the distributions of estimates obtained for (a, beiy, &, o, 3, Broad; 7)-

The new results

with edge correction were plotted next to previous outcome represented in figure [6.4, The
remaining plot displays the distribution of number of iterations took for each run grouped
by the three method both with and without the edge correction.



79

Likelihood comparison Histogram of test statistics

300
!

Power = 58%

200
I
%\

10 20 30 40 50 60

T T T T T T T T T 1
-100 0 100 200 300 0 20 40 60 80

With temperature in triggering
-100 0 100
| | |
\.
Frequency
0
|

Without temperature in triggering Test statistic

Figure 6.6: The scatter plot on the left shows the relationship between the maximum log
likelihood values from fitting 100 simulated data sets including temperature variation in
the triggering process, using two models: with and without temperature component in the
triggering process from the intensity . The histogram on the right displays the computed
test statistics for the likelihood ratio test. The blue triangle marks X%(.%).
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Figure 6.7: The scatter plot on the left shows the relationship between the maximum log
likelihood values from fitting 100 simulated data sets assuming model 4, using two models:
with and without proximity to nearest traffic network in the triggering process from the
intensity . The histogram on the right displays the computed test statistics for the
likelihood ratio test. The blue triangle marks Xf('%).
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Figure 6.8: Density plot of predicted number of outbreaks from 300 simulated data over
S x (T —60,T]. The blue dotted line marks the number of H5N1 observed in reality, 91. The
mode of the distribution, 65, is less than the observed. The red filled and empty triangles
indicate the median, 80, and the 25" and 75" percentiles, 52 and 115, of the distribution

respectively.
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Figure 6.9: Kernel density estimation plot for spatial patterns of predicted outbreaks from
300 simulated data over S x (T' — 60,7]. The darker areas on the map corresponds to
higher density of predicted outbreaks. The red triangles mark the locations of the outbreaks
observed in S x (T'—60,T]. On the other hand, the blue crosses represent the past outbreak
locations occurred in S x (T"— 90,7 — 60]. The railroads and major highways are shown in
green.
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Distribution of predicted temporal occurrences
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Figure 6.10: Density plot of predicted occurrence times of outbreaks from 300 simulated
data over S x (T — 60,7]. The blue line corresponds to the density of the actual time
of occurrences observed in (T — 60,T]. The black line represents the density of predicted
temporal occurrences.
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Chapter 7

Conclusion

As mentioned in the first chapter of this thesis, our work on spread of avian influenza
(H5N1) had three goals: first, using exploratory data analysis, to investigate the mechanism
of the H5N1 spread and determine the key factors that contribute to its explosiveness; second,
to develop a statistical model based on point process to model the past progression of the
disease in Turkey; third, to develop an algorithm using our estimated statistical model to
predict the future disease spread conditioned on the past observations of the Turkish H5N1
outbreaks.

Our explanatory data analysis in Chapter [2[ demonstrated that spatially, proximity to
the nearest traffic networks and cities are both influential factors of the disease spread mech-
anism. This observation agrees with the fact that poultry farms tend to be located near
traffic networks and cities for easy access to markets [65]. Temporally, the global seasonality
was also observed in Turkey, and temperature was found to be associated with this trend.
Laboratory results confirm temperature as one of the key factors of H5N1 spread, noting
colder temperature extends the infectivity of the avian influenza virus in water [6}/7]. Due
to insufficient evidence, we decided to exclude the role of migratory birds in our temporal
analysis.

Using these identified factors as predictors, we proposed our EAI (Epidemic Avian In-
fluenza) model in Chapter 4| to quantify the relationship between the factors and the Turkish
H5N1 spread. The EAI model is inspired by the ETAS (Epidemic Type Aftershock Squence)
model, an extension of the self-exciting point process [24], which allows one to incorporate
temporal trend and spatio-temporal dependencies of the H5N1 outbreaks, excluded from
statistical analyses in past studies [22[16] discussed in Chapter . Among the five variations
of EAI models we considered, shown in Table Model (4) demonstrated the best fit in
terms of the AIC (Akaike Information Criterion) score. Model (4) assumes that the out-
breaks tend to occur near the cities and in a colder temperature, and these outbreaks trigger
other outbreaks at nearby locations and times, forming clusters of outbreaks along traffic
networks. Analyzing the residuals of the fitted models in Chapter [, Model (4) was shown to
improve upon the second best model, Model (2), which does not include a triggering process.

In Chapter [0, we used simulation to assess the performance of the three proposed estima-
tion methods for the EAI model: backfitting, poorman’s EM (Expectation - Maximization),
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and EM. The results from simulating and estimating the parameters of Model (4) indicated
that the backfitting algorithm is able to achieve the fastest convergence, closely followed by
the poorman’s algorithm. While the EM algorithm was remarkably slow in comparison, it
was found to produce more accurate estimates than the other two methods, especially for the
two troublesome parameters, a and (3. The resulting estimates for a and f—corresponding
to scale and spatial lag parameters in the triggering process—were heavily biased compared
to the other parameter estimates. In order to cope with this bias, we implemented edge
correction in our simulation, and while the accuracy greatly improved for these parameter
estimates, the edge correction introduced a slight bias to other parameter estimates.

Moreover, using the simulation results, we investigated whether our model is able to suc-
cessfully detect the individual component in the trigger process by constructing a likelihood
ratio test. The empirical power calculated for effect of temperature to the triggering process
suggested that our model struggles to determine its presence.

A further application of the simulation algorithms is prediction of the future outbreaks,
discussed in Section [6.3] Based on the past progression of H5N1 outbreaks, we simulated
and obtained distribution of number of predicted outbreaks, their locations and times of
occurrences via Algorithm 7, for 60 days before the last observed H5N1 outbreak in Turkey.
The prediction results agreed with the actual H5N1 spread observed during this time period
with the mean and the median of numbers of predicted outbreaks closely matching the
observed.

While the overall results of our analysis are satisfactory, there are areas in need of further
research. The functional form of the temperature component in the triggering process can be
reconsidered with possible addition of a threshold, similar to the magnitude threshold for the
ETAS model described in Section[f.1.1} As shown in Figures2.2and 2.3 number of outbreaks
seemes to increase when the temperature drops below 0°C. In addition, temperature may
not have log-linear relationship with the number of outbreaks, and the empirical power
calculation in Section confirmed that the current model is not able to properly detect
the temperature component in the triggering process, even when it is present.

In Chapter [6] fitting our EAI model to simulated data using edge correction generally
produced more accurate parameters than simulated data without. Likewise, we could further
improve our estimation results by applying edge correction in the estimation procedure.
Fitting the EAI model to the data in extended space and time may produce better estimation
results.

Another area of potential improvement is prediction. As mentioned before, uncertainty
in parameter values can be allowed by adopting a Bayesian framework and selecting the
parameters from the posterior distribution before starting the prediction procedure [61].

This thesis is a product of our effort to contribute to the ongoing H5N1 surveillence.
We hope our results provide a new perspective on analysis of avian influenza (H5N1) and
statistical modeling strategies involving self-exiciting point process.
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Appendix A

Maximum Likelihood estimation

A.1 Mollweide Projection

Mollweide projection is a popular area preserving projection method for depicting the
surface of the Earth. Our study area, Turkey, with Mollweide projection applied is shown
in Figure The locations of centers of the squares in the grid is first determined using
the Mollweide projection. The coordinates of the centers are projected back into longitude
and latitude, which allows to calculate the geodesic distance between a center of a grid and
a given location in Turkey. This re-projection is illustrated in Figure [A.2]

With this construction, the grid has 10,537 centers with corresponding area of 74.98 km?.
The approximated area of Turkey computed using the grid is 790,076.3 km?. This result is
very close to the actual area of Turkey, 783,562 km?.

N S

Figure A.1: Molleweide projection with the dots indicating the center of squares in the grid.
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Figure A.2: Re-projection of figure |A.1|into longitude and latitude.

A.2 Derivation of integral 5.7

In this section, we present the derivation of integral shown in equation 5.7. The expression

/ > k(T (t)) g(t — t)dt (A1)

Bt <t

can be broken into integrals with smaller time intervals, (¢;,t;11], for (1 <i < N —1):

/ 0dt+/ t—tl)dt+/t3k(T(t1))g(t—t1)+l<:(T(t2))g(t—t2)dt (A.2)

t2

4+ /t n [k(T'(t1)) g(t — t1) + -+ + k(T (ty-1)) g(t — ty-1)]dt. (A.3)



Gathering k(T'(t;)) g(t — t;) for each i yields:
= [ e gte— s [T k) -
/tts kE(T(tg)) g(t — to)dt + - - + /ttnl k(T(ts)) g(t — t2>dt]

+ /tN KTty 1) gt — 1 )dt

/ " RT() gt — )t + / " KT gt — to)dt

+/T k(T(tN_l))g(t—tN_l)dt
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