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NMR STUDIES OF SELECTIVE POPULATION INVERSION AND SPIN CLUSTERING
Jean Baum
Abstract

This work describes the development and application of selective
excitation techniques in Nuclear Magnetic Resonance. Composite pulses
and multiple-quantum methods are used to accomplish various goals,
such as broadband and narrowband excitgtion in liquids, and collective
. excitation of groups of spins in solids. These methods are applied to
a variety of problems, including non-invasive spatial localization,
sﬁin cluster size characterization in disordered solids and solid
state NMR imaging.

A class of continuously phase modulated radiation pulses that
result in coherent population inversion on rescnance as well as over a
large range of transition frequencies and radiation field strengths
are presented. The inversion behavior is explained by treating the
pulges as highly efficient adiabatic sweeps. A method is presented
for generating a sequence of phase-shifted radiofrequency pulses,
generally called composite pulses, from the continuously modulated
pulse. Simulations of the inversion performance, and experimental
results, are given.

Multiple-quantum NMR is used to understand aspects of nuclear
spin dynamics in solids and to develop new techniques for studying
spin clustering and materials characterization. The progressive
appearance of multiple~quantum transitions with increasing excitation
time is shown to depend on the formation of multiple-spin correla-

tions. Therefore, a time-resolved multiple-quantum experimentn whose



statistics are very sensitive to inter-atomic distances, is employed
to determine the spatial distribﬁtion of atoms in materials lacking
long range order. Experiments are performed by studying the time-
dependence of the mﬁltiple-quantum coherences, and results are
presented on the hydrogen distribution in model systems of selectively
deuterated organic solids. In addition, the technique is used to
study the nature and extent of hydrogen clustering in hydrogenated
amorphous silicon.

Both composite pulses and multiple-quantum methods are applied to
spatial localization and solid state NMR imaging. A spatially selec-
tive composite pulée sequence is designed and used to excite chemi-
cally §hifted NMR signals from localized regions in space, in a non-
invasive manner. Finally, the propertieé of multiple-quantum cohere-
nce are used to improve, by an order of magnitude, the spatial resolu-
tion possible in solid state imaging experiments. Both approaches are

illustrated experimentally on phantom samples.
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I. BACKGROUND

A. Introduction

In NMR, sophisticated radio-frequency pulse sequences are often
designed to excite a desired response from the nuclear spin system.
In this dissertation, two general categories of excitation are addre-
ssed. The first is the tailored excitation of nuclear spins over dif-
ferent radio-frequency field stirengths and transition frequencies.
The second is the collective exéitation of groups of spins, in a
solid, via multiple-quantum NMR. Theoretical approaches to these
problems, and the development and.application of new techniques are
the subject of this work. Applications include spin cluster.size
characterization in materials lacking long-range order, solid state
NMR imaging, and the non-invasive excitation of NMR signals from a lo-
calized region of a sample.

A general analytical proceduré for deriving continuously phase
modulated pulses that result in coherent population inversion on re-
sonance as well as over a large range of transition frequencies or
radio-frequency field strengths is presented in Chapter II. The in-
version behavior is explained by treating the pulse as an efficient
adiabatic sweep. A method for generating a sequence of phase-shifted
radiofrequency (rf) pulses, generally called a composite pulse, from
the continuously modulated pulse is given.

The general principles of multiple-quantum NMR, including the

time-reversal excitation needed in solids, are described in Chapter

[

Ty



I1I. Experimental considerations for the multiple-quantum experiments
used in Chapter IV are presented.

A ﬁime-resolved multiple-quantum NMR experiment is presented in
Chapter IV. It is used to investigate multiple-quantum dynamics in
solid-state NMR and to characterize the hydrogen distribution in
materials lacking long-range order. By studying the time-development
of the multiple-quantum spectral intensities, the nature and extent of
clustering can be ascertained in disordered solids. Many model com-
pounds containing a range of hydrogen distributions - isolated
clusters, concentrations of clusters, uniform distributions - are in-
vestigated experimentally. In addition, the technique is used to
study the hydroéen distribution in hydrogenated amorphous silicon.

Spatiél localization and solid-state NMR imaging are discdssed in
Chapter V. Composite pulses, narrowband in space and broadband in
frequency are found through a computer search, and used experimentally
with a surface coil to selectively excite a local;zed region of a
phantom sample. Multiple~quantum NMR is used to overcome some of the
problems associated with solid-state NMR imaging. By relying on the
property that an n-quantum coherence feels an effective gradient which
is n times its actual strength, iﬁaging in solids is possible with
rather small magnetic gradients. The technique is illustrated experi-
mentally on a phantom sample.

In the rest of this chapter the spin Hamiltonian and the descrip-
tion of the spin system in terms of the density operator are intro-
duced. Different basis sets used for the formalism of broadband ex-

citation and multiple-quantum NMR are presented. Average Hamiltonian

J g g



theory is very briefly described.

B. Nuclear Spin Hamiltonians

1. Zeeman Interaction

The Zeeman Hamiltonian, which describes the interaction of the
nuclear dipole moment with the static external field, is introduced.

Generally, the overall spin Hamiltonian

H=H + H (1.1)

~is a sum of internal and external couplings. The external Hamiltonian
includes all interactions of the spins with the magnetic field, either
static or oscillating. The internal Hamiltonian includes all interac-
tions of Spins with their lqcal environment; for example, dipolar,

chemical shift and indirect scalar interactions.1_“

The energy of interaction of a nuclear magnetic dipole moment u '

with a magnetic field B, is

E = -pe EO . ’ (1.2)

The magnetic moment is proportional to the nuclear spin angular mo-
mentum vector I. Thus when the field §o is along the z direction, the

Zeeman Hamiltonian becomes

sy



H=-p B = -YI_B (1.3)

=_wI 9

where Y is the‘gyromagnetic ratio and We is expressed in angular fre-
quency units of rad/sec. The eigenstates of H are the set {|m>}

defined as

m|m> (1.4)

I_|m>
z

I2|m>

(I + 1) |m> (1.5)

where m = -I, =-I+1, ..., I-1, I.
A nucleus of spin I has (2I + 1) eigenstates labelled by m, the

eigenvalue of Iz. For N interacting nuclei, the number of eigenstates

becomes (2I + 1)N and the eigenoperator I,

I = T I (1.6)

(1.7)



the sum of the individual spin Zeeman quantum numbers. These eigens-

> ...}, and can be composed of linear
h

tates will be labelled {[M;>, [My
combinations of products of single spin states |m;>, |mj>. The i°

state is denoted by I, |M;> = M;[M;>.

2. Radiofrequency Interaction

The radio-frequency field is applied perpendicular to the static

field and results in the Hamiltonian

H.p = -w1(t)2003[wt + ¢(t)] I (1.8)

where wi(t) is the amplitude of the field, w the frequency and ¢(t)

the phase,

3. Rotating Frame Transformation

The interaction of the_nuclei with the large static field can be
removed by a transformation to a new frame of reference rotating at or
near the Larmor frequency; this interaction representation is called

the Potating frame.s’6 Under the unitary transformation
T = g lul b (1.9)
the laboratory frame Hamiltonian HL becomes

dT .-
_ HR = i at T

1 -1
+ TH T (1.10)

T



in the rotating frame. Hence, when an oscillating rf field is applied
to the system to produce a laboratory frame Hamiltonian g

H o= -wI + 2m1(t) Ix(cos(wt + ¢(t))) + H (1.11)

L int ?
the rotating frame Hamiltonian becomes, after the transformation of

Equation (1.10)

By = Ml + @, (8) (I,cos6(t) + I sing(t)) + ylo)

R int »(1.12)

where Aw = w on is the resonance offset and Hégg is the part of Hint .

that commutes with I,. A picture of the rotating frame is shown in

Figure (1.1). The resonance offset term lies along the z-axis and

pulses are applied in the x,y plane with an amplitude wy . ‘The phase,

¢(t), of a pulse is defined relative to the x-axis. According to this -

secular approximation, Iz and Hint share a common set of eigenstates7

I, [Mp> =M M (1.13)

M, > (1.14)

|M1> = {

Hint i

From now on the subscripts will be dropped, and all interactions will

be assumed in the rotating frame unless otherwise stated.
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Figure 1.1. The Rotating Frame.

The time dependence of the radio-frequency Hamiltonian is removed in
the rotating frame. The resonance offset, Aw = wy - w, is the dif-
ference between the Larmor frequency and the rf carrier frequency and
appears along the z-direction. The pulse amplitude and phase are
denoted by wq and ¢, respectively. The phase of the pulse gives the
direction of the radiation in the x-y plane.

JAp T
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4, Chemical Shift Hamiltonian

Each nucleus feels a magnetic field from the electrons surround-
ing it. In high field, the secular part of the chemical shift

Hamiltonian is

H = =L g1 (1.15)

where the sum is over individual nuclei. The chemical shift and re-
sonance offset terms are both linearly dependent on the z component of
the angular momentum operator and will, for convenience be combined

into one term, the resonance offset Hamiltonian,
Hz = AwIz. | (1.16)

5. Dipolar Hamiltonian

The direct interaction between two magnetic dipoles in high field
is described by the secular part of the homonuclear dipole-dipole

interaction

H =-£ D [ 31,1 -i-I] (1.17)
2z 13 ij zi"zj 1 7]

where'F’iJ is the vector connecting spin i to spin j. The dipolar cou-

pling constant is

e



YiY:ﬁ 1 5
3 (5) (3cos eij - 1) (1.18) -
13 i

D,y = I
b4y r

where 6 is the angle between the internuclear vector Fij and the
laboratory z - axis. The sum is over all pairwise interactions. The
dipolar interaction, which involves products of angular momentum oper-

ators, is a bilinear interaction.

C. Density Operator

The spins are described by a wavefunction

le(e)> = T e (t)|Mp> L (1.19)
i

which is expanded in a complete orthonormal basis set {]Mi>} with

‘complex coefficients

c (t) = [e, (0)] exp(ia,) (1.20)

The phase factor oy is arbitrary and thus the spin system cannot
usually be described directly by a single state.a'9 The density oper- -
ator is particularly convenient for systems that are described as

mixed states; and is defined as
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(£)><y, (£)] (1.21)

p(t) =T P |y
kT

where P, represents the probability of describing the spin system by
ka(t)>. In general, the diagonal elements of the density matrix
representation, |ci(t)|2. are associated with the populations, while
the off diagonal elements yield statistical averages of the cross
coefficients C,(t)Ch(t) and C,(t)CA(t).

When off-diagonal elements are nonzero, a coherent superposition

of states has been established. For example, for isolated spins -1/2,

phase coherence between the |+1/2> and | -1/2> states will have
occurred. For N coupled spins it is possible to excite multiple-
quantum coherences between |M1> and |MJ>' where AM, the difference in

Zeeman quantum number, now assumes any integer value up to N; i.e.

AM = Mi - M, =n where n = 0,%t, ..., *N . (1.22)

An important point to note is that only single-quantum coherence, AM =
*1, can ever be detected directly, as an oscillating time-dependent

voltage, by an NMR receiver coil.

1. Equilibrium Density Operator

At equilibrium, the density matrix is diagonal, with the relative

populations given by the Boltzmann factors. This arises from

Peq ™ exp(-HL/kBT)/Tr[exp(-HL/kBT)] (1.23)

e

1
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where HL is the laboratory frame Hamiltonian. The Zeeman term is the

largest term in the Hamiltonian and kBT >> w. in the high temperature

(o)

approximation. Therefore Peq can be approximated by

1
peq = 2(1 + kBT IZ) (1.24)

where Z, the partition function, is a normalization constant. The
unit operator commutes with all other operators, therefore Equation

(1.24) reduces further to

W

0
Peq ™ bI, where b = (EE?

) (&

7) (1.25)

The constant multiplying Iz is usually omitted. At equilibrium, the

off diagonal elements,

———————————— t
* ila =)
Cm(t)Cn(t) = |cm||cn|e n °m (1.26)

are zero owing to the random phase approximation; 1i.e. no phase

coherence exists between [M;> and le>.

2. Evolution of the Density Operator

The Liouville-von Neumann Equation
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dp(t) _
a4 - i [e(t), H(E)], (1.27)

determines the time development of the density operator.9

The formal solution to this differential equation is

p(t) = Ut) p(0) U(t)™" - . (1.28)
When H(t) is time-dependent, the expression for the propagator is

t
u(t) = T exp(-iJ H(t')dt') (1.29)
)

where T is the Dyson time ordering operatof.1o If we assume that the
time~dependent Hamiltonian is piecewise-constant, i.e. if the
Hamiltonian is equal to Hl' H2, H3,..., Hn for successive times t1,

t2, t3...., tn, then the propagator can be written as

u(t) = exp(-iHntn) cee exp(-intz) exp(—iH1t1)° (1.30)
When H is time-independent, the propagator reduces to

U(t) = e THE (1.31)

and the density operator becomes

PR E £

1
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o(t) = exp(~1Ht) p(0) exp(iHt) . (1.32)

Once the density operator has been calculated, the expectation value

of an operator is
A(t) = Tr (p(t)A) . (1.33)

3. Expansion of the Density Operator in Different Basis Sets

The most general form of the density operator is given by the

expansion

p(t) = £ b(t) Bs , (1.34)
]

where the operators Bs form a complete orthogonal basis set.11

a. Pauli Spin Matrices

For ‘N noninteracting spins-1/2, which behave as an isolated spin-
1/2 or two-level system, the density operator can always be expressed
as a linear combination of {1, Ies Iy, Iz} plus normalization con-

stants:12'13

p(t) = bz(t)IZ + bx(t)Ix + by(t)Iy+ b1 (1-35)

The coefficients of p(t) form a three dimensional vector equivalent to

the magnetization vector

T



14

<M¥> = Tr(Ip(t)) = b_(t)
<My> = Tr(Iyp(t)) = by(t) (1.36)
<M > = Tr(IZp(t)) = bz(t)

The density operator in this case is

p(t) = M(t). 1 (1.37)
where.ﬁ'is the unit magnetization vector. 1In Chapter II, the effect
of a pulse sequence on an isolated spin is described by the trajectory

of the magnetization vector ﬁ?t) on a unit sphere.

b. Quter Product Eigenbasis

Many basis sets can be used. For the multiple-quantum discussion
of Chapters III and IV, two specific choices, the outer product and
single-spin product bases are particularly convenient. The first is
the orthonormal outer product eigenbasis formed by the components
{|M1><Mj|}° Most expressions will be of the form

p(t) ; zM < Mi|p(t)|MJ> |Mi><Mj| (1.38)
i3

Nonvanishing off-diagonal elements indicate a coherent superposition

between states [M;> and le>3 the order of the coherence is n = M; -

ERIPET o
l 10 p
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M When n is greater than one, a multiple quantum coherence has been

j.
?stablished. Because the observable operator is proportional to
I=t1+1)
+ y2'x Ty

the NMR signal

S(t) = Trip(t) I,] | (1.39)

can only be obtained from single quantum coherences. Therefore,
multiple quantum coherences must be detected indirectly in a two-dim-

ensional experiment.

¢. Single Spin Product Operators

The 22N orthogonal single-spin product operators

(g-1)

a
Bs = 2 )it (Ikv) sk (1.40)

1h In the above

completely describe a system of N coupled spins-1/2.
expression k is the index of the-'nucleus; v =x, ¥y, or z; q is the
total number of single spin operators in the product; and agk = 1 for
q nuclei and agk = 0 for the N-q remaining nuclei. The multiple
quantum order, n, can be read easily by adding the orders of in-
dividual raising and lowering operators. For example, there may be

single~quantum/single-spin terms such as Ixi or Iyi; zero

quantum/single-spin terms such as Izi; "combination" single-

B
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quantum/three-spin terms may look like I+1 I+2 I_3; and, finally, the
two N-quantum, N-spin terms are I,q I, Iigz eee Luy and

I_,1 I_Z ©c e I--No

D. Pulse Sequences

If all internal interactions can be neglected for the duration of
the pulse, i.e. if Hnp >> Hj,¢,» then the Hamiltonian of the spin
system during the pulse is merely H = w1I¢, assuming the pulse is
applied on resonance, Aw = 0. This situation is referred to as the §-
pulse limit and is usually a good approximation in liquids. If the
length of each pulse is 1t and the flip angle defined as w?T = 0, then

the propagator for a pulse,

U(r) = e 181, (1.41)

is a rotation operator in the operator space spanned by {1, Ix' Iy,
IZ}. After a pulse applied in the x-direction, the spin system is

described by the density operator

p(t) = e-ieIx Iz eieIx

(1.42)

= Izcose - Iy sige

This is shown in Figure (1.2). Pulse sequences in NMR can take on

[

1
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> N

XBL 859-11358

Figure 1.2. The equilibrium density operator, proportionall to Iz, is
represented by a vector pointing along z. Here a pulse, with
amplitude wq is applied along the x-direction of the rotating frame
for a time 1, causing the vector to rotate by an angle Wy T about the

X-axis. .

g
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many different forms: for instance, pulses can be followed by delays
during which internal interactions are allowed to act on the density
operator; pulses can be followed directly by other pulses. Many
possibilities exist.

In Chapter II, the form of the radiofrequency pulse itself is
changed and is‘continuously phase modulated in time. The continuously
modulated radio-frequency (rf) can be divided into numerous piecewise-
constant rf pulses, resulting in sequences of contiguous pulses with
different phases. These are denoted bY‘(91)¢1’ (92)¢2, cees (en)¢n
where ei represents the flip angle and by the phase of the ith pulse.
The propagator for the piecewise-constant rf Hamiltonian follows dire-
ctly from Equation (1.30). These different pulse sequences are
appiied to noninteracting spin 1/2 particles and their effects can be
visualized by following the trajectory of the magnetization on the
unit sphere.

In Chapters III and IV, pulse sequences consisting of pulses
followed by delays are applied to solids. Again, the Hamiltonian can
be-considered piecewise-constant but the calcdlation of the evolution
of the density operator can be enormously complicated for these
coupled spin systems. Now, contrary to the case for isolated par-
ticles, the evolution does not take place in a space spanned by {1,

I

I Iz}, but rapher is described in the basis sets of Equations

4,15

xi y’

(1.38) and (1.40). Instead, average Hamiltonian theory can be
used to calculate an effective time-independent Hamiltonian, Heff’
which acts for the duration of the pulse sequence and brings about the

same change as the piecewise-constant Hamiltonian.

G|

[
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The overall propagator in average Hamiltonian theory can be

described by

ut,) = olflerr to

(1.43)

provided that the radio-frequency interaction is cyclic over the cycle

time tc. By applying ﬁhe Magnus Expansion,16 the propagator takes the

form
U(tc) = exp[-i(ﬁ(o) + §(1) + ... ﬁ(n))tc]
where
t
=(0) 1 c =~
-H = { Hint(t)dt
¢
o}
t t
=(1) -1 c 2 ~
c o 0 '
and

~ -1
Hint(t) = Urf(t) Hint(t)urf(t)

(1.44)

(1.45)

t2), Hint(t1)] (1.46)

.

(1.47)

[ IR
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Here a transformation Urf(t) has been defined from the rotating frame

THFF

to an interaction representation usually called the toggling frame.

Provided that Hefftc << 1, then higher order terms become neligible. 3

th order

ﬁ(O) is called the average Hamiltonian and ﬁ(i) is the i
correction term to the average Hamiltonian. All odd orders #¢'), #(3)
etc.. can be made to vanish when the sequence is symmetrized, i.e. -

when

H(t) = H(t - 1) . (1.48)

In order to design a pulse sequence, it is convenient to consider
the succession of orientations of the angular momentum operator I, in

the toggling frame fz,
Iz = exp(iHrf(t)t)Izexp(-iHrf(t)t) . (1.49)

For instance, a 90y pulse which transforms fz(t1) = I, to fz(tz) = -

I

x ¢an be denoted by the shorthand notation (Z)-E).,W’18 In the § pulse

limit, this transition is instantaneous whereas when finite pulse

widths are considered, iz varies continuously between t1 and t2.. In

solids, where the internal interactions may be comparable to Hrf’ it -
is important to consider the effects of the former during the pulse

and work with finite pulse widths.
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II. DBROADBAND AND ADIABATIC INVERSION OF A TWO LEVEL SYSTEM

BY PHASE MODULATED PULSES

A. Introduction

1. Backghound

The impiementation of population inversion between energy states
is an important requirement of many techniques in nuclear magnetic re-
sonance (NMR) and coherent optical spectroscopy, including relaxation
time1 measurements, spin or photon echoesz’3 and spin decoupling.u
The simplest wa& to coherentiy invert populations is with a single 7
pulse, i.e. a pulse of radiation such that the product of amplitude in
angular frequency units and the time in seconds equals w. For good
population inversion to be achieved, the difference between the radia-
tion frequency and the resonant frequenéy of the transition for which
populations are ipverted must be much smaller than the radiation
amplitude. In other words, the inversion bandwidth of a single =
pulse is quite limited. Often it is the case experimentally that the
bandwidth of resonant frequencies is comparable to or greater than the
available radiation amplitude. \In NMR, the bandwidth may result from
static magnetic field gradients, chemical shifts or spin couplings.
In coherent.optics, this may be due to inhomogeneous broadening from
crystal strains or Doppler shifts.

An established technique in NMR for inverting spin populations

over a large bandwidth is Adiabatic Rapid Passages, in which the fre-

quency of applied radio frequency (rf) radiation is swept through the

ApFe
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resonances at a constant rate that is small compared to the rf

amplitude but large compared to the inverse of the relaxation times.
Adiabatic sweeps have been employed in coherent optics as we116_11.

An alternative approach to broadband inversion in NMR was proposed
some time ago by Levitt and Freeman12. They suggested using a
sequence of phase-shifted pulses, colléctively called a compoéite T
pulse, to produce inversion over a broad bandwidth. Composite pulses
have led to a wide range of applications. Several approaches to their

design in NMRY* 12727 and coherent opticsze-29 have been described.

The original work was based on computer simulations of spin

trajectories and geometrical intuition13. This was followed by a more '

14-16

formal analysis in terms of rotation operators. More recent

developments include an approach based on coherent averaging
theory17’18 and the introduction of iterative methods for generating
composite =« pulses.u’w_22 ‘The coherent averaging theory approach and
another based on a fictitious spin-1/2 formalism have led to composite
pulses for coupléd spin .9.ys’r,ems.23'25

This péper introduces an approach to broadband population inver-
sion that bridges betweeniadiabatic sweeps and composite T« pulses.26
This work -- which Qas subsequently appreciated by Silver, Joseph, and
Hoult27 -- was orginally motivated by the self-induced transparency
effect30 observed in coherent optical spectroscopy. The phenomenon of
self-induced transparency, first discovered and studied by MecCall and
Hahn, occurs when a radiation pulse with an area of 27 and amplitude

modulated according to a hyperbolic secant function brings a two-level

absorbing system from its ground state back to its ground state re-

RIEE
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gardless of its resonance frequency; In that sense, a hyperbolic

secant pulse is a perfectly broadband 2rm pulse. Allen and Eberly have
proposed a similar class of pulses for population inversion, but with
both bhase and amplitude modulation3!. If wy(t) is the amplitude and
#(t) is the phase of the radiation, the pulse of Allen and Eberly may

‘be written:

m1(t) = (w?/sinY)sech(w?t) (2.1)

a(t) = (-m?cotY)tanh(m?t) - (2.2)

where ¢ extends from -« to +=, Y is a parameter that determines the
depth of the modulation, with no phase madulation when Y equals ;/2
and increasing phase modulation as Y approaches zero. Thié pulse
inverts populations in a two-level system regardless of the values of
Y and m?, provided that the radiation freduency exactly equgls the re-
sonance frequency, i.e. "on resonance". Allen and Eberly point out
that the pulse resembles an adiabatic sweep for small values of Y, due
to the equivalence of phase modulation and frequency modulation.

Thus, it may be anticipated that a pulse with phase modulation similar
to that of Equation (2.2) will have broadband inversion properties.
The performance of a class of phase modulated pulses related to
Equations (2.1) and (2.2) is investigated in detail below. Com-
‘parisons with adiabatic sweeps are made.

The relation to a composite w pulse arises from considering a com-
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posite m pulse as a single phase-modulated pulse, with a piecewise-
constant phase function. A composite 7 pulse may then be regarded as
an appfoximation of a continously phase-modulated pulse. One way to
generate composite w pulses would be by approximating the continously
varying phase function of a pulse similar to that of Equations (2.1)
and (2.2) by a piecewise~-constant function. Procedures for generating
composite m pulses from continuously phase modulated pulses are

developed below.

2. Organization

In Section II, a class of phase-modulated, constant-amplitude
pulses are derived from consideration of the magnetization trajectory.
Simulations of population inversion performance are given. A geﬁeral
tranéformatioh from a pulse with a modulated phase and a constant
amplitude to a pulse with both phase and amplitude modulation is
introduced, in order to demonstrate the relationship between our
pulses and those of Allen and Eberly.

Section III treats phase-modulated pulses as adiabatic frequency
sweeps. Criteria for adiabatic inversion are discussed. They lead to
the concept of the efficiency of an adiabatic sweep and to the deriva-
tion of a new class of phase-modulated pulses based on efficiency con-
siderations. A comparison of the inversion performance of linear
sweeps, pulses derived in Section II, and pulses derived from con-
siderations of efficiency is made.

The treatment of adiabaticity in Section III suggests that the

phase modulated pulses of Section II may invert spin populations over
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large ranges of rf amplitude as Qell as large ranges of resonant fre-
quencies. The inversion performance as a function of the rf amplitude
is treated in Section IV. Section V describes a method for deriving
discrete composite pulse sequences from continously phase-modulated

pulses. Experimental results are presented.

B. Derivation of Phase Modulated Pulses for Population Inversion

1. Frames of Reference

We begin with a description of two frames of reference, shown in
Figure (2.1), that are of importance in tﬁe remainder of the paber.
The first of these is the usual rotating frame,32 If an isolated spin
or two level system with resonance frequency wg is irradiated with an
rf pulse with any general amplitude and phase modulation, its motion
PM

in the usual rotating frame is determined by the Hamiltonian H

(where PM refers to Phase Modulation):

HPM = Ml - w1(t)flxcos¢(t) - Iysin¢(t)] (2.3)

wy(t) and ¢(t) are the pulse amplitude and phase; Aw is the
difference between Wy and the rf carrier frequency w, i.e. the
resonance offset. HPM is derived from the laboratory frame

Hamiltonian by the transformation TPM:

™ . exp(-1ul_t) (2.4)

1

e
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A. PM Frame
z

| -

B. FM Frame
2

x

Figure 2.1. a). Phase Modulated (PM) frame. b). Frequency modu-
lated (FM) frame. The resonance offset, Aw = wy-w, is the difference
between the Larmor frequency and the rf carrier frequency. The pulse
amplitude and phase are denoted by w,(t) and ¢(t), respectively. In
the PM frame which is the equivalent of the usual rotating frame used
in NMR, the phase of the pulse which varies with time, gives the dire-
ction of the radiation in the xy plane. 1In the FM frame, the direc-
tion of the radiation in the xy plane is fiied, and the time deriv-
ative of the phase function, &(t), appears along the z direction as an
additional resonance offset. The two frames are related by a rotation-

about the z axis by ¢(t).
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In this reference frame, which we call the PM frame, the rf frequency
appears constant and the phase, i.e. the direction in the xy plane,
varies. This is seen in Figure (2.1a).

An alternate rotating frame transformation that is useful in
dealing with continuously modulated pulses is accomplished by the

unitary operator TFM (where FM refers to Frequency Modulation):

™ o expl-i(ut + #(t)1,] (2.5)

In the FM frame, the Hamiltonian is:

HY o (pw + BENT, - w, (8)I (2.6)

and the time derivative of the phase function appears as an additional
resonance offset with the xy plane component c¢onsgstant in direction, as
shown-in Figure (2.1b). That a phase-modulated pulse -can be viewed in
either the PM or FM frames is a statement of the equivalence of phase
and frequency modulation. Of course, due to the design of a typical

pulsed NMR spectrometer with its constant frequency reference, spin

evolution is normally observed in the PM frame. For our purposes, the

FM frame serves as a useful tool for deriving modulated pulses.

2. Derivation of Phase Modulation from Magnétizétion

Trajectories
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An isolated spin can be described in the FM frame by a density

operator p(t) of the following form:

p(t) = M(£)-I (2.7)

where Q(t) is a three-vector proportional to the magnetization and I
is a three-vector whose components are the angular momentum
operators33. With Equation (2.6), M(t) satisfies the Bloch equations

without relaxation:

dM

= = (cuy(£), 0, 6(t) + du) x M (2.8)

If the initial condition for M is known and if $(t) and wy (t) are
given, then Equation (2.8) determines the evolution in time of M. For
arbitrary é(t) and m1(t), Equation (2.8) can be solved by numerical
methods for ordinary differential equations. Alternatively, ¢(t) and
wy(t) may be approximated by piecewise-constant functions possibly by
dividing time into small intervals over which ¢(t) and wy (t) are
assigned their respective values at the midpoint of each interval.

For each interval with constant &(t), the evolution of @lis simple. M
precesses around the effective field vector with x component ~wq and
Z component (é + Aw) at an angular rate equal to (w? + (é + Am)2)1/2.
The length of M is conserved. If M is assumed to have unit length, M

follows a trajectory on a unit sphere. A trajectory of M from +z to -

Z corresponds to the inversion of spin state populations.

Ay



30
An important question which now arises is the following: given a

trajectory for M(t), how can we determine the ¢(t) and w,(t) which

will yield that trajectory? We begin our consideration of this

question with a class of trajectories that is of particular importance
in the rest of the paper, namely those that follow a great circle from
+z to -z in the FM frame, as depicted in Figure (2.2a). The appendix
presents a formalism for treating other trajectories. A great circle

trajectory is of the form:

M(t) = (cosY cose, sinY cose, -sine) (2.9)

where Y is a constant azimuthal angle and € is a polar angle. € is a
function of t that is to be determined. Since the trajectory depends
on the resonance offset, we specify that Aw = 0, i.e. that Equation

(2.9) should hold on resonance. In addition, we initially search for

a pulse with a constant amplitude equal to w?. The general case of

amplitude modulation is treated later. Equations (2.8) and (2.9) lead

to:

(écosYsine, -ésin¥vsine, -écose)

= (-¢ sinYcose, -w?sins + ¢ cosYecose, -w?sinYcose) (2.10)

which implies:

e p

1
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XBL 855-8867A

Figure 2.2, Inverting magnetization trajectories for an on—resonance

spin the ™ (a) and PM (p) frames calculated from Equations (2.9,
2.11) and (2.13, 2.1W) respectively. with ¥ = 0.1,
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€ = (w?sinY)t (2.11)
.0 0 '
$ = w, cosY tan(m1sinYt) (2.12)
2w, 8inY 2w,s8inY

1 1

Equation (2.12) dictates a class of phase~modulated pulses that invert
spin populations exactly on resonance, since it is derived from the
inverting trajectory in Equation (2.9). With Y = #/2, the phase is
constant, the PM and FM frames coincide, and a standard w pulse is
recovered. Q(t) ;s confined to a plane perpendicular po the plane of
the effective field. As Y approaches zero, the phase modulation
deepens, the pulse iength increases, and the plane of the
magnetization trajectory approaches coincidence with the plane of the
effective field, suggesting adiabatic behavior. Equation (2.11)
indicates that g(t) moves with a constant angular velocity along the
trajectory of Equation (2.9) regardless of the value of Y, provided
that w, is constant.

The derivation of the phase modulation has been carried out in
the FM frame. Since the PM and FM frames are related by a rotation
about z by 4(t), the trajectory in the PM frame does not follow a
great circle but is still an inverting trajectory. This is shown in

Figure (2.2b). To obtain ¢(t), we integrate Equation (2.12):
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¢(t) = -cotY ln[cos(m?sinYt)],

where:

T ¢ £ e
2m1sinY 2w1sinY

#(t) and ¢(t) are plotted in Figure (2.3). A pulse specified by
Equations (2.12) and (2.13) will be referred to as a Modulated

Inversion Pulse (MIP). The magnetization trajectory in the PM frame

(Figure 2.2b) is:
MzM = cos[Y+¢(t)Jcos((w?sinY)t)

Mi“ - sin[Y+¢(t)]cos((w? sinY)t) (2.14)

M:” = -sin((w?sinY)t)

3. Inversion Performance Off Resonance

Although the MIP is derived so as to invert spin populations on
resonance, the appearance of adiabatic behavior suggests that spin
populations may be inverted over large ranges of resonance offsets as
Y approaches zero. Figure (2.4) shows simulations of the inveréion

performance of the MIP as a function of the resonance offset for

IR
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Figure 2.3.
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a. Frequency Modulation b. Phase Modulation
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Continously frequency (a) and phase (b) modulated inver-

sion pulse (MIP) plotted versus u? for values of Y = 0.2 and Y = 0.1.

The pulse amplitude is constant and the phase modulation increases as

Y decreases.
= nw/sinY).

Also, as Y +0, the overall pulse length increases (2w?t
The MIP is an exact analytical solution to the problem of

population inversion on resonance (Aw = 0) for all values of Y.
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| | I T T
P(t) = -cot” In[cos(sinY w?t ]

B —— e =

1.0

c
.o L
o
S ol
£ n
1.0
1 | 1 ] ]
o) 1.0 2.0 3.0

XBL 855-2601

Figure 2.4. Simulations of spin inversion from the MIP as a function
of the relative resonance offset for various values of Y. Inversion
is defined as the negative of the final z component of the spin
angular momentum; initially the spin system has a z component of +1.
For all values of Y, the inversion is always perfect on resonance.
For Y = 7/2, 1.e. no phase modulation, the MIP is equivalent to a
standard w pulse, which can be used here as a reference. As Y =+ 0,
i.e. increasing phase modulation, good inversion is accomplished over

an increasingly large range of frequencies.

E
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several values of Y. The extent of inversion is defined to be the
negative of the final z component of M. Apparently, the range of
offsets for which the inversion is nearly complete can be made as

large as desired by taking Y to be sufficiently small.

4, Transformation to Amplitude-Modulated Pulses

Equation (2.13) is derived above with the assumption of a
constant pulse amplitude. Although there is at most one rf phase
function that yields a given magnetization trajectory on resonance
with a given constant rf amplitude, there may be an infinite variety
of combinations of phase and amplitude functions, if amplitude
modulation is allowed. Here we present a method for converting a
phase-modulated, constant-amplitude pulse to a pulse with both phage
and amplitude ﬁoddlation that produces the same trajecfory on
resonance,

The essential idea becomes apparent from considering a single

0

pul'se with a constant phase bgs @ constant amplitude wy, and a length

t. The effect of such a pulse when Aw = 0 is to produce a rotation of
M by an angle w?T about an axis in the xy plane at an angle ¢g to the
X axis. Since it is only the area of the pulse that matters, however,
the net effect is unaltered if the pulse amplitude is changed,
provided that the pulse length is also changed so that the pulse area
remains equal to w?r. In general, a phase-modulated, constant- '
amplitude-pulse can be approximated to arbitrarily high accuracy by a

sequence of many constant-phase, constant-amplitude pulses. 1In order

to transform the overall pulse to some desired amplitude modulation,
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it is then only necessary to increase or decrease the amplitudes of o

the individual pulses and correspondingly decrease or increasée their
lengths. The total pulse area must remain constant. Figure (2.5) =

illustrates the procedure.

Mathematically, the amplitude transformation is a distortion of -
time. In general, suppose a pair of functions w;(t) and ¢(t) produce

a certain magnetization trajectory, with:

w1(t)dt = A
(2.15) 3

If there is another amplitude function 61(t), also with area A, then

we implicitly define a time transformation t' = h(t) by the relation:

t! )
'(2.16) J; w1(u)du = jz -w(u)du | -

The phase function ¢(t) = ¢(h(t)), along with the amplitude function

wy(t), will produce the same magnetization trajectory.

Thus we have arrived at the most general procedure for finding
phase and amplitude combinations that produce a desired magnetization .
trajectory. We first derive a unique constant-amplitude pulse. Then
we may transform to any other amplitude function of the same area,
with the trajectory uniquely determining the pulse area.

To derive the pulses of Allen and Eberly, we transform the pulses
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Figure 2.5. Schematic representation of the transformation from a
pulse with constant amplitude and phase modulation (a) to a pulse with
both amplitude and phase modulation (b). In (a) the total time inter-
val 1is divided into subintervals of length 1, represented by the
dashed lines, which are each assigned a constant phase and a flip
angle = wyt. The transformation from (a) to (b) is effected by choos-
ing the desired overall amplitude modulation, and then changing the
lengths of the individual pulses while still maintaining that their
flip angle remain equal to wyTe The new phase modulation emerges from

the time transformation.

Ay
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of Equation (2.13) to the amplitude function of Equation (2.1). The o

corresponding time transformation is:

h(t) =

01 tan” | (sinh w?t) (2.17)

While the pulses of Equations (2.1) and (2.2) and of Equation (2.12)
yield the same on-resonance trajectory, the utility of the pulses lies
in their ability to invert spins off resonance. The significant,
dimensionless quantity that characterizes off-resonance behavior is
the ratio Am/m1. In simulations, we find that the constant amplitude
pulses of Equation (2.13) give inversion over a larger range of
resonance offsets than the amplitude-modulatea pulses of Equations
(2.1) and (2.2). An expianation for this is that Aw/w, is always at

its minimum for the constant amplitude pulses.

C. Population Inversion by Adiabatic Sweeps ' -

We saw in Section B that modulated pulses invert spins perfectiy
on resonance and also over a large range of frequencies as Y + 0.
Because the on-resonance magnetization trajectories are suggestive of
adiabaticity, we now treat the above pulse in the framework of _

adiabatic sweeps and compare different adiabatic approaches.

1. Criteria for Adiabatic Inversion

The Hamiltonian of Equation (2.6) can be written: ;,
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FM
H' =0 op(t)el (2.18)

weff(t) = (-w1(t), 0, Aw + $(t)) . (2.19)

Spin populations may be inverted adiabatically if &(t) and w,(t) are
such that the direction of éeff(t) moves from -z to +z, or from +z to
-z, at a sufficiently slow angular rate. In that case, the
magnetization, or spin density operator, is said to follow the
effective field wypp(t).

If wepp(t) is written as:
Wepp(t) = w o (t)(-cose, 0, sing) , (2.20)

6 = tan” [(&w + $(£))/w (£)] , (2.21)

the two criteria for adiabatic inversion by a pulse between times -to

and ty can be stated as follows:6'7'26

d
1. . Ty 8(t) I << Wepp

2. 8(tt)) = fq/2 .

Criterion 1 states that the effective field must change direction
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QFM precesses. In order to £

slowly compared to the rate at which

quantify criterion 1, we define the adiabaticity factor Q(t) according

to:
d
Q(t) = weff(t)/[ Tl a(t)] (2.22) : i

The larger the value of Q(t), the more adiabatic the frequency sweep.
In what follows, we consider only sweeps for which Wy is constant
and non-zero. Therefore, criterion 2 requires that the sweep begin
far below resonance and end far above resonance, such that ]Aw +
o(2tg)| >> wy.
There are many possible.forms for &(t) that result in adiabatic
inversion:. We call a sweep efficient if it accomplishes population
inversion in a comparatively short time. Different forms of sweeps
may have different efficiencies for the following reason. Consider
criterion 1. Taking wy to be constant, Werf is smallest when 6 = 0 -
and ¢(t) = -Aw, i.e. when the sweep passes throuéh resonance. It is =
at this time that criterion 1 is most restrictive so that |de(t)/dt]
must be smallest. When the sweep is far from resonance, |d6(t)/dt |

may be larger while still satisfying criterion 1 since Wapf is larger.
If |de(t)/dt| indeed becomes larger far from resonance, criterion 2
may be satisfied for comparatively small values of to.

:In the remainder of this Section, three forms of sweeps are
examined in light of the above criteria for adiabaticity. The factors
that limit their inversion bandwidths are discussed, and their

efficiencies are contrasted.
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2. Linear Sweep

The simplest and most commonly used frequency sweep is a linear

sweep defined by:

d(t) = -kt, -ty <t <ty (2.23)

where k is the constant sweep rate. Since k is constant, criterion 1
is satisfied for all values of Aw once k is small enough so that
criterion 1 is satisfied at any particular value of Aw. For Aw = 0, a

linear sweep has:

) = [WhH? + 3622132 /- (2.21)
Q(t) has its minimum at t = 0, where Q(0) = (w?)z/k. Simulations show
that the maximum value of k for which populations are inverted
adiabatically with Aw = 0 is given approximately by kmax = O.2(w?)2.
This limit is determined by simﬁlating the effects of linear sweeps
with to taken to be very large.

For values of k less than or equal to Kpay» criterion 1 is
satisfied throughout the sweep. With k fixed, the choice of to
determines whether criterion 2 is satisfied.

Simulations of inversion as a function of Aw/w? for linear sweeps
with k = O.Z(m?)2 and various values of tg are shown in Figure (2.6).

For the inversion to be essentially complete for Aw = 0, the minimum
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Figure 2.6. Simulations of inversion as a function of resonance
offset, resulting from the linear frequency sweep of Equation (2.23)
of the text with k/(m?)2 = 0.2. The linear sweep consists of a con-
stant amplitude rf field whose frequency is changing at a constant
rate of k/(w?)z. The overall lengths of the sweeps are Zw?to = 15.82
(a) 31.46 (b) 62.86 (c) 200.0 (d). The minimum overall length re-
quired to achieve adiabatic inversion on resonance is approximately
2m?to = 100, Once inversion is achieved on resonance, it is also
accomplished over a large range of resonant frequencies. The overall
lengths of 6 (a), (b) and (c¢) are equal to the overall lengths of the
sweeps used to simulate inversion performance from the MIP in Figure
(2.4) when Y = 0.20, 0.10, and 0.05 respectively.

I Fo
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length of the sweep must be given approximately by 2t0 = 100w?. =

Inversion is achieved over a large range of resonant frequencies

because criterion 2 is satisfied for a large range of resonant
frequencies once it is satisfied for Aw = 0. ;n other words, ¢(tt0)
is only a weak function of Aw when |¢(fty)| = w/2. However it is
still criterion 2 that ultimately limits the inversion bandwidth for

any given value of t,.

3. Modulated Inversion Pulse

When treated as a frequency sweep, the MIP of Equation (2.12) and
Figure (2.3a) satisfies criterion 2 for all values of Y and Aw. This
is because é(t) becomes infinite at the beginning and end of the
pulse. Thus, it is c¢criterion 1 that determines whether the MIP
functions as an adigbatically inverting frequency sweep. Recall that
the MIP was derived in Section B in such a way that the inversion at
Aw = 0 is complete regardless of Y. The adiabatic nature of the
inversion is therefore expressed not by the inversion at Aw = 0, but
rather by the appearance of a large inversion bandwidth as Y
decreases.

The adiabaticity factor for the MIP with Aw = 0 is given by:

Q(t) = [1 + (cosYtanw?sinYt)]3/2/[cosYsinY(1 + taan?sinYt)]

(2.25)

Q(t) has its minimum at t=0, where Q(0) = (cosYsinY)'1. Broadband

inversion occurs when Y is less than or about equal to 0.20, as was
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seen in Figure (2.4). When Y = 0.20, Q(0) = 5.1. This result is con- ;

sistent with the finding that a linear sweep effectively inverts :

populations only when the sweep rate k is less than or about equal to
0.2(m?)2, making the adiabaticity factor for a linear sweep greater
than or equal to 5. Thus, the adiabaticity factor appears to be a -
meaningful quantity for predicting the performance of a frequency
sweep. In addition, the agreement of the adiabaticity factors for the
MIP and the linear sweep supports the contention that the broadband
properties of the MIP are due to the adiabatic nature of the inver-
sion.

A comparison of Figures (2.4) and (2.6) reveals that nearly com-
plete inversion is achieved by the MIP in less time than by a linear
sweep. The sweeps in Figures (2.6a), (2.6b), and (2.6c) require the -
same total time as the MIP in Figure (2.4) with v = 0.20, Y = 0;10,
and Y = 0.05, respectively. The inversion results in Figure (2.4) are
generally superior, however. Thus, the MIP is a more efficient fre-
quency sweep. This is because the instantaneous sweep rate, i.e. é is
greater at the beginning and end of the sweep than at t = 0.

The fact that the sweep raie is not constant makes criterion 1
the limiting factor on the inversion bandwidth for the MIP. At reso-
nant frequencies for which the sweep rate is rapid as the sweep passes
through resonance, defined by the condition %(t) = -Aw, criterion 1 is -

not satisfied and populations are not inverted.

4. Constant Adiabacity Pulse

A third class of frequnecy sweeps may be derived by making the



restriction that Q(t) be constant when Aw

Q(t) = ¢

=Oo
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(2.26)

Based on the above discussion, such a sweep with q = 5 is expected to

be particularly efficient for adiabatic inversion.

Equation (2.26) implies:

dt eff

In addition, we have:

w cosSf = w?

eff

w_..8ind = §

eff

Equations (2.27) and (2.28) imply:
sing = w?t/q

Equations (2.29) and (2.30) lead to:

3(6) = (wHZt/la%- (W%

1

0,2,241/72
w

-q/w

1

% ¢ « q/w?

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)
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Equation (2.31) defines the desired frequency sweep, which we refer to
as the constant adiabaticity pulse (CAP). Integration of Equation

(2.31) gives the equivalent phase modulation:

0,2, ,2-1/2
w ]

8(t) = -[a® - (w))%e . q (2.32)

Note that ¢(t) remains finite, although é(t) becomes infinite at t =
*q/ug.

Figure (2.7) is a comparison of the frequency and phase modula-
tions of the CAP, the MIP, and the linear sweep. The specific
parameters in Figure (2.7) are chosen so that the adiabaticity factor
at t = 0 is the same for the three sweeps. For a given minimum
adiaﬁaticity factor the CAP requires the least total time of the three
sweeps.

The adiabaticity factors as functions of time for the CAP, the
MIP, and the linear sweep with Aw = 0 are shown in Figure (2.8). The
adiabaticity factor has its minimum value throughout the sweep for the
CAP. The adiabaticity factor for the MIP remains close to its minimum
value for a greater portion of the sweep than for a linear sweep.

The inversion performance as a function of Aw for the CAP with
various values of q is shown in Figure (2.9). The values of q are
chosen so that the overall lengths of the sweeps in Figure (2.9) are
the same as those in Figure (2.4). The bandwidth of the CAP is
limited by criterion 1. A comparison of Figures (2.4), (2.6), and
(2.9) reveals that the MIP exhibits the best inversion performance for

equal sweep lengths.

1]
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Figure 2.7. Comparison of 3 adiabatic frequency (a) and phase (b)

modulated pulses: the constant adiabatic pulse (CAP), the MIP and the

linear sweep. The CAP, a constant amplitude pulse, was derived from
In this figure,

considerations of efficiency for adiabatic sweeps.

the parameters were chosen such that the adiabaticity factor Q(t)
defined by Equation (2.22), be equal to 10.067 for all three pulses at
t = 0. The larger the value of Q(t), the more adiabatic the sweep.

L
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Figure 2.8. Comparison of the adiabaticity factors Q(t) with Aw =0
for the MIP, the linear sweep and the CAP. Q(t) is defined in the
text by Equations (2.25), (2.24), and (2.26) respectively. The
efficiency of the sweep is determined by the length of time Q(t)
remains close to its minimum; the linear sweep is the least efficient

sweep.

[
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Figure 2.9. Simulations of 1nveﬁsion as a function of Am/m? for the
CAP. The overall lengths of the sweeps were chosen such that they
correspond to the overall lengths of the sweeps of Figure (2.4) (q =
n/2sinY, the overall length is 2q). Simulations indicate that when
Q(0) > 5, the CAP, the MIP and the linear sweep exhibit adiabatic in-
version over a large range of frequencies. A comparison of Figures
(2.4), (2.5(a)(b)(e)) and (2.8) indicate that the MIP produces the
best adiabatic broadband inversion for equal sweep lengths and always

inverts on resonance spins.
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D. Inversion in an Inhomogeneous RF Field

Although the MIP was derived by -considering a particular class of
inverting trajectories for a spin on resonance, Sections B and C show
that the MIP méy invert spin populations over large ranges of re-
sonance frequencies due to its adiabatic characteristies. Adiabatic
sweeps may invert populations over large ranges of rf amplitudes as
well as resonance frequencies. Therefore, in this section we inves-
tigate the inversion performance of the MIP as a function of w,.
Deviations of wy from its nominal value of w? arise experimentally
from rf inhomogeneity and from miscalibration of the rf field. 1In
coherent optics, it is the laser beam profile that is the analogous
source of ‘amplitude inhomogeneity.

The inversion performance as a function of wq may be anticipated
by referring to the criteria for adiabatic inversion discussed in
Section C. For the MIP, criterion 2 is automatically satisfied, since
&(t) becomes infinite at tto. Once criterion 1 is satisfied for wy =
w?, it is satisfied even more strongly for wy > w?. Therefore, it is
expected that essentially complete inversion may be achieved over a
large range of Wy when the MIP becomes adiabatic, i.e. for Y < 0.20.

Figure 2.10 shows simulations of inversion as a function of wq
for the MIP with various values of Y. The above predictions are veri-
fied. Figure (2.11) shows a simulated contour plot of inversion as a
function of W, and Aw simultaneously for the MIP with Y = 0.10. A

large region of essentially complete inversion is apparent.
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Figure 2.10. Simulations of invérsion as a function of w1/w? for the
MIP with values of Y as shown. When Y < 0.2 (Q(0) > 5), the inversion

becomes perfect over a very large range of Wy .

s



54

4.0 a— T I | T

XBL 8412-5493

Figure 2.11. Simulated contour plot of population inversion as a fun-

ction of Aw and uw, for the MIP with Y = 0.10. The MIP compensates

simultaneously for resonance offset and rf inhomogeneity effects.
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For comparison, Figure (2.12) shqws the inversion performance of
a linear sweep as a function of w{.- Much smaller bandwidths are
achieved with much longer sweeps. For a linear sweep, criterion 1 of
Section D is again satisfied for Wy > w? once it is satisfied for wy =
w?. However, criterion é is not automatically satisfied. Rather,

6(ty) is a strong function of w; when [8(ty)| = /2, so that criterion

2 is not met at large wq .

E. Generation of Discrete Composite Pulses from Continuously Phase

Modulated Pulses

It is often difficult to implement the single continuously phase
modulated pulse experimentally. Fréquently it is more convenient ﬁo
use a sequence of phase shifted rf pulses forming a éomposite T pulse.
This section describes the method by which we approximate the contin-
ous pulse by discrete pulsé sequences that have both unrestricted
phases as well aslrf phases which occur only as multiples of a speci-

fied value.

1. General Method of Approximation Using Magnetization

Trajectories

The goal is to arrive at a discrete pulse sequence with inversion
properties that are very similar to those of the continuously phase
modulated pulse. In the computer simulations described above, the MIP
is approximated with a large number of pulses, each with a small flip

angle, by extracting the individual pulse phases and flip angles from
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Figure 2.12. Simulated inversion performance as a function of wj/w?
for the linear sweep with k/(w?)2 = 0.2. The overall pulse lengths
are 2uit, = 31.46 (a), 62.86 (b), 100.0 (c), 200.0 (d). For longer

sweeps that shown in Figure (2.10), the inversion is worse.
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¢(t) in Equation (2.13). This was done by dividing the total time
interval into subintervals and assigning a constant phése to each sub-
interval as shown in Figure (2.13a). As'the number of pulses, or sub-
intervals, increases and the flip angles become smaller, this is an
increasingly accurate approximation. However, if the number of pulses-
is small, i.e. less than 100, this is a poor approximation, par-
ticularly for small Y. The spin evolution brought about by the MIP
over a subinterval is not the same as that brought about by a con-
stant-phase pulse with a phase equal to ¢(t) at the midpoint of thét
subinterval. Errors in the magnetization trajectory accumulate from
one subinterval to the next, so that even on-resonance spins are no
longer inverted. .Clearly, a new approximation method is needed., Our
method is based on following the on-resonance magnetizaiion trajectory
MPM(e).

Figure (2.13b) is a schematic representation of the method used.
The first step is to approximate the trajectoﬁy of the magnetization
by choosing points in time along it. We then calculate the constant
phase pulses that give the evolution of the magnetization from one
point to the next. The result is a sequence of radiofrequency pulses
or a composite pulse whose magnetization trajectory and inverting
properties are very similar to those generated from the continuous

pulse. .

2. Pulse Sequences with Unrestricted Phases

For a 2n-1 pulse sequence, we need to choose 2n + 1 points on the

trajectory @(t). These points are denoted by Mos Myseeos MpsooMone
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Figure 2.13. a) Schematic diagram of a method for approximating the
MIP by a large number of constant phase pulses. The total length of

the pulse is divided into a large number of subintervals with lengths
inversely proportional to &(t); this is indicated by the dotted
lines. The.pulse flip angles are calculated from the subinterval
lengths and the constant amplitude. Based on ¢(t), a constant phase
is assigned to each subinterval., If fhe number of pulses is small,
this is a poor approximation. b) Schematic representation of the
method used to approximate the continously modulated’pulse (MIP) by a
discrete pulse sequence. The magnetization trajectory QPM(t) of an
on-resonance spin subjected to the MIP is approximated by a discrete
number of points. The flip angle and constant phase that give the
evolution of the magnetization from one point to the next are calcu-
lated. The result of this "connect the dots"™ technique is a composite
pulse whose inversion properties are similar to those of the contin-

uous pulse.
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The individual flip angles apd phases of the derived pulse sequences
are denoted respectively by B1se0esbpn_q1 BNd Gq4e0eydon.y where 0 =
wit; and t; is the length of the i'M rf pulse. We set the first point
@0 = +z and the last point @Zn = -z to ensure that on resonance spins
are always perfectly inverted by the discrete pulse sequence. Then in
order to follow the trajectory as closely as possible, as indicated in
Figure (2.13b), more points are selected in the regions where @PM(t)
spirals more. A weighting function, ¢(t), which is itself a function
of Y is used to generate a set of times (t1,...,t2n-1) from which the
intermediate points M; = QPM(ti) can be calculated.

More specifically, the intermediate points are calculated as
follows. First, we choose a value tc < 0 which represents a cut-off
time for ¢(t). The means by which t, is chosen is discussed below.

We evaluate ¢(t,) and calculate a set of phases (¢(tq),...,¢(t,))

satisfying

¢(ti) - ¢(tc)(n-i)/n. , (2.33) —

Using the set of times (t1,...,tn) calculated from the set of phases
above, we find M, through Mn by evaluating !i = gPM(ti). The -remain-
ing points are determined by the symmetry of QPM(ti); Mon-i is
related to M1 by reflection in the xy plane. Next, we calculate the
phases and flip angles of the 2n pulses that move on resonance spins
between successive points, i.e. that connect !i with §i+1' A sequence
of pulses with symmetric phases and flip angles emerges. The centfal

two pulses can be fused into one, since they have the same phase, so
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that an odd number of pulses results.

The "connect-the-dot" method described above ensures that on-re-
sonance spins are inverted. Moreover, the fact that the intermediate
Mi are chosen according to constant increments in ¢(t) ensures that
more points occur where ¢(t) is larger, in other words where MPM(t)
spirals most rapidly. Thus, we achieve a good approximation to the
trajectory generated from the MIP and it may be expected that the
broadband inversion properties of the MIP will be preserved.

In this method, there are only two parameters which must be com-
puter optimized in order to get the best inversion performance over
resonance offset or rf inhomogeneity effects, for a specified number
of pulses. These are Y and t,, the cut-off time on ¢(t). They are
optimized according to a best-average criterion. This means that we
cycle through different values of Y and tc within certain restric-
tions, and find the values for which the average inversion, over a
specified bandwidth of offsets or rf values, is a maximum.

Figure (2.14) illustrates three composite pulse sequences that
are optimized for broadband inversion with respect to wq . Both sim-
ulations and experiments are shown. Inversion results for a single 7
pulse are plotted as a reference. The inversion performance improves

for a larger number of pulses.

3. Composite Pulses with Constant Phase Increments

For reasons of experimental convenience, it would be desirable to
derive sequences in which rf phases occur as multiples of a constant

phase. 1In looking at the form of the pulse sequences derived earlier,
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Figure 2.14. Simulations (solid lines) and 'H experimental measure-

ments (dots) of population inversion as a function of m1/m? for dis-
crete pulse sequences derived from the MIP using the technique
described in Figure (2.13b). Results are shown for (a) single w pulse
presented as a reference; (b) 3 pulse sequence (5#)90(162.8)0(5“)90;
() 31 pulse sequence (18.3)6y(4.8)g5(5.3)172(5.7)159(6.3) 1y
(6.9)132(7.6)119 (8~5)106(9°”)93(1°°5)79(12'°)66(13-9)53
(16;u)u0(20.2)26(27.3)13(127.0)0(27.3)13(20.2)26(16.N)u0(13.9)53
(‘2'0)66(10'6)79(9-")93(8~5)106(7'6)119(6-9)132(6'3)146(5'7)159(5°3)172
(4.8)1g5(18.3)5¢y. The notation is (e)¢ where 6 and ¢ are the flip
angles and phases of individual pulses in degrees.
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we see that the phases oo to $on-1 of the 2n-1 pulse sequence occur in
constant increments but that ¢1 and ¢2n-1 are arbitrary and hold no
relationship to the other phases. Our goal in this section is to
devise a method whereby we are able to specify the value of the con-
stant phase increment, as well as make the first and last pulse have a
phase that is some multiple of that increment.

In our method, the values of the phases, o5 to bop-2» of the

derived pulse sequence are determined solely from the constant phase

increment used on the weighting function ¢(t). The phase of the ith
pulse is calculated from the (i-1)St1 and ith point on the trajectory
by
_e M(E) - M (e, L) ‘ '
Tx 4 X 17l 2¢ 1< an- (2.34)

¢, = tan - :
i My(ti-1) My(ti)

By substituting the values for M, and My of Equation (2.14) into the
above equation and using the fact ¢(ti) = (n-i)¢o (Equation 2.33), we

find that

o = i¢0+ C 4 (2.35)

where C is constant. This indicates that the times corresponding to
constant phase increments in ¢(t) also correspond to points on M(t)
that may be connected by pulses with constant phase increments.
Therefore we can specify ¢g to be any constant phase we desire, and

for a 2n-1 pulse sequence all the calculated pulses from the trajec-

|y

oy



65

tory between 2 and 2n-2 will have phases that differ by a multiple of.
¢0-

-To ensure that the first and last pulse also have a phase that is
a multiple of ¢0 the following procedure is used. Rather that setting
Mo and M,, at 1z as before, we now choose Mo, such that the pulse con-
necting §2n-1 to QZn have a phase bop-1 = Még where m is an integer.
In order to still invert on-resonance spins, we also stipulate that

@2 should remain as close to -z as possible. Therefore, to find the

n

best position for Mo, the flip angle of the last pulse is optimized by

setting

)cos(m¢0)

M (t )sin(m¢,.) - M (¢t
-1 X' “2n-1 0 y 2n-1
8,1 = tan MCE ) . (2.36)

z 2n-1

Mo is fouhd from Mon by symmetry. As before, the composite pulse is
found by cglculating the phases and flip angles which connect all the
points !1'

Note that contrary to before, we no longer optimize tc and
thereby ¢0, but rather ¢0 is chosen and tc is found from ¢(tc) = n¢0.
The only parameter to be varied is Y and once again the best average
criterion is used to select the pulse sequence that inverts best over
the specified range of frequencies and rf amplitudes.

In Figure (2.15), we show computer simulations and experimental
data of inversion versus resonance offset for pulse sequences gener-
ated by the above method. As expected; when the pulse sequence

becomes longer, inversion is achieved over a large range of offsets.
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Figure 2.15. Simulations (solid lines) and 'H experimental measure-

ments (dots) of population inversion as a function of Aw/w1 for dis-
crete pulse sequences derived from the MIP. Results are shown for (a)
single w pulse presented as a reference; (b) 7 pulse sequence
(39.6)315(68.&)180(87.9)90(275.7)0(87.9)90(68.4)130(39.6)315; (e) 11
pulse sequence (30.2)270(28.7)180(3&.9)135(H3.8)90(58.9)45(225.u)0
(58.9)45(u3.8)90(3u.9)135(28.7)180(30.2)270; (d) 15 pulse sequence
(21.5)9(19.4) 279 (23.0) 255(27.5) 185 (33.6) 1 35(42.5) 9o (57.5) 5 (222.8)  (57.
5)u5(u2.5)90(57.5)u5(222.8)0(57.5)u5(u2.5)90(33.6)135(27.5)180(23.0)225
(19.")270(21.5)0.
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The inversion bandwidths are comparable to those achieved by recently

developed iterative technique321'22.

F. Experimental Methods

All of our experiments were perforhed on a small H20(2) sample
using a homebuilt spectrometer operating at a proton resonance fre-
quency of 360 MHz described in reference 34. The pulse sequence used
in the experiments consists of a composite pulse followed by a delay =t
= 100ms, followed by a nw/2 detection pulse. Large static field in-
homogeneity causes transverse magnetiztion to dephase during 1. The
ensuing FID is collected and Fourier transformed to give the final
spectra. The resulting peak height is used as a measure of inversion.
The peak height resulting from a single /2 pulse alone is used as a
calibration. A correction is made for spin-lattice relaxation during
1.

Experimental tests of composite pulses designed for broadband in-
version with respect to wq were‘pérformed on resonance. The rf
amplitude was varied with an attenuator following the transmitter.

The length of the detection pulse was adjusted to maintain a constant
flip angle. Rf amplitudes were calibrated as in reference 23. Phase
shifts were generated by a digitally controlled phase shifter capable
of 360°/256 phase increments, with a 3us switching time. The switch-
ing time required that delays be inserted between individual pulses.
These delays do not affect inversion performance on resonance,

although off resonance performance may degrade appreciably.
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Experimental tests of broadband inversion with respect to the re-

[

sonance offset required rf phases in 45° increments. This was accom-

P

plished by mixing the outputs of the two quadrature generation

circuits in the spectrometer. Each quadrature circuit produces phases =
in 90° increments. A delay line was inserted between the two |

circuits, producing a phase difference of 45° pbetween them. A vector

voltmeter was used to determine the length of cable needed. The quad-

rature circuits were driven by a variable IF, allowing the resonance

offset to be adjusted. The detection pulse was generated indepen-

dently with a 30 MHz fixed IF source and maintained on resonance. All

experiments were performed with m?/Zw = 10kHz. A schematic drawiﬁg of

this setup can be found in reference 35. _ ] -
G. Summary

We have described a general analytical procedure for deriving
continuously phase modulated pulses that result in coherent population
inversion on resonance. In the'general case, both the phase and
amplitude of the inverting pulse can be modulated continuously. Here,
however, we have focussed on a class of constant amplitude, phase
modulated pulses characterized by a single parameter Y, the depth of «
' modulation. For small values of Y, when the phase modulation is
deepened, the modulated inversion pulse (MIP) inverts spin populations
simultaneously over large ranges of resonance frequencies and rf
amplitudes.

We have proposed that the inversion behavior can be explained by
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treating the MIP as an efficient adiabatic sweep. To support this,
the simulated inversion performance of the MIP is compared to two
other adiabatic sweeps in light of two criteria for adiabatic inver-
sion. One sweep is the commonly cited linear frequency sweep and the
other is a constant adiabaticity pulse derived directly from con-
siderations of efficiency for adiabatic inversion. Comparisons indi-
cate that the broadband properties of the MIP are in fact due to the
adiabatic nature of the pulse and that for equal sweep lengths the MIP
has superior inversion properties.

Having established the adiabatic properties of the MIP, we then
present a method for generating a sequence of phase shifted rf pulses
from the continuously phase modulated pulse. The composite pulses are
calculated directly from the magnetization trajectory followed by on-
resonance spins subjected to the MIP. Selected points are chosen
along the inverting trajectory and the corresponding constant phase
pulses needed to connect these points are found. The broadband
properties of the MIP are retained by the discrete pulse sequences,
which can then be implemented on most modern NMR spectrometers. This
approach connects modulated transparency and inversion pulses used in

optics with composite pulses of NMR.
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H. Appendix

In fhis appendix we treat the problem of finding rf pulses that
cause on-resonance magnetization to follow a given trajectory. The
trajectory in the FM frame is defined by a funetion g(e), where M is
the unit magnetization vector in Equation (2.7). 1In the special case
of Equation (2.9), € was a polar angle. In general, e is simply a
variable that parametrizes the trajectory. Here we require that ¢ lie
in a unit interval. We make the restrictions that M(e) be continuous
and differentiable. These restrictions are consistent with the physi-
cal requirements that the trajectory be.smooth and unbroken. A
piecewise-differéntiable trajectory may be treated by considering each
piece separately.

With the rf amplitude constant and equal to w?, the task is now

to determine e(t) and &(t). With the definition:

B = —: (2.37)

Equation (2.8) becomes:
. 0
ép = (-uw,,0,4) x M . (2.38)

leading to:
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L o My
H
Z
m? M
g = - Lo (2.40)
Y2
Equation (2.39) gives the phase modulation as a function of e.
Equation (2.40) gives t as a function of e€:
€ M,
t = - de! (2.41)
0 wo M
1Y

Inverting Equation (2.41) gives € as a function of t, which completes
_the derivation of the phase modulation.

The phase function obtained in this way produces the desired
trajectory forvAm = 0 and m1(t) = w?. For non-zero values of Aw, the
same trajectory may be produced by subtracting the constant Aw from $
in Equation (2.39). Of course, this is equivalent to shifting the rf
carrier frequency. The phase fﬁnction that corresponds to an
amplitude modulated pulse can be derived according to the discussion
in Section II.D.

Finally, it should be realized that not all trajectories are
obtainable. In particular, there is no pulse that produces the
desired trajectory if t is not a monotonic function of € in Equation

(2.41).
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III. MULTIPLE-QUANTUM NMR IN SOLIDS: THEORY AND EXPERIMENTAL

CONSIDERATIONS

A. Introduction

Most applications of 1

H multiple-quantum NMR spectroscopy have
necessarily been limited to small spin systems in isotropic or par-
tially oriented phases, where the size of the system is clearly
defined by the nature and extent of the spin-spin coupling.1’2’3 In
liquids, for example, only indirect scalar coupling remains after
anisotropic interactions have been averaged to zero by rapid isotropic
molecular motion. If instead, the molecules are dissolved in a
nematic liquid crystal, translational freedom is retaineq but re-
orientation via tumbling is restricted so that intramolecular dipolar
coupling becomes the principal interaction among the spins. 1In either
case the spin-spin interactions are short range, and the system
usually remains small enough to be characterized by a density operator
that can be constructed from a finite, manageable number of basis

A In this regard, expansions based on fictitious spin-1/2,5

6

operators.
spherical tensor,- and product7 operators have proved quite useful for
describing many experiments involving multiple-quantum effects. Among
the numerous applications reported to date have been methods to sim-

8 determine spin connectivity

plify complicated single-quantum spectra,
and topology,9 obtain high-resolution spectra in inhomogeneous magnet-
ic fields.10 and facilitate coherence transfer and indirect detection

in systems containing magnetically raré nuclei.11 On the other hand,
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the extension of 1H multiple-quantum spectroscopy to strongly coupled
solids, where the coupling network includes all the spins in the
sample, has also been illustrated r'ecently.12 This work has demonstr-
ated that high order multiple-quantum coherences can be prepared- and
detected in solids, provided that time reversal excitation is used to
counter the effects of dipolar dephasing.13

In this chapter, the basic principles of multiple-quantum NMR are
described in Section B, and the need for time-reversal excitation in
solids is motivated and explained in Section C. Time reversal excita-
tion requires specialized pulse sequences: their design, using
average Hamiltonian theory, is presented in Section D. Experimental
consideragions for the implementation of multiple-quantum NMR in
solids are given in Section E. These include the aétual experimental
pulse sequence used in Chapter IV, the tune-up procedure, and the

spectrometer implementation.

B. Generalized Multiple Quantum NMR Experiment

The general form of a two-dimensional multiple quantum NMR exper-
iment is shown in Figure (3.1).“4’15 The pulse sequence is parti-
tioned into four distinct periods each characterized by a time vari-
able: preparation (1), evolution (t;), mixing (t) and detection (t,).
The multiple-quantum coherences are prepared during the preparation
period 1, after which they evolve freely in the presence of local
dipolar fields for a time £y These unobservable multiple-quantum

coherences are converted to observable single quantum coherences dur-



76

Preparation Evolution Mixing Detection
Propagator : - 1] exp (~iHt) v exp (-iHp tp)
Time variabie: T t T’ ta
XBL 853-10i24

Figure 3.1. General form of the two-dimensional multiple-quantum
pulse sequence. Multiple-quantum coherences are created by the pre-
paration period propagator, U(t), and respond to local fields during
the evolution period t,. The mixing peridd propagator, v(t), trans-
fers multiple-quantum coherence to single-quantum coherence for detec-

tion during t,.
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ing the mixing period 1', after which either a single point or a full
free induction decay (FID) is sampled during ts. The entire experi-
ment is repeated for different values of t1 to map out the multiple
quantum interferogram. Complex Fourier transformation with respect to
ty results in a multiple quantum spectrum, an example of which is
shown in Figure (3.2). In the following sections, all four periods
will be examined in detail to clarify their functions.

For simplicity, a form of the multiple quantum experiment cons-
isting of only three pulses (Figure 3.3a) is considered first. The

internal Hamiltonian considered here is

H =H +H ' (3.1)

N

(31, I, -I,+1I,) -I Aw

zi “zj i J =1 Iz

itz °

where sz is the dipolar coupling term and Hz the chemical shift or

resonance offset term. The dipolar coupling is

Y%ﬁ 300326ij -1
Dij - r3 5 (3.2)
13

for a homonuclear interaction.

1. Preparation Period

The pulse sequence during this period determines the form of the
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n (number of quanta)

XBL 8512-12835

Figure 3.2. 1H multiple-quantum spectrum of adamantane. 1In multiple-
quantum NMR, coherences between states |M1> and |MJ> are established
where the total Zeeman quantum number, AM = Mi - MJ = n, is equal to
any integer value up to N, the number of spins in the system. 1In a
solid, individual transitions within each order can not be resolved,
resulting in broad lines. Very high multiple-quantum orders, n, can

be created by using time-reversal excitation.
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Figure 3.3. Pulse sequences for multiple-quantum NMR: a) Basic three
pulse.experiment suitable for systems where individual transitions can
be resolved; b), ¢) and d) Time-reversal sequences used for solids.
The preparation and mixing periods are composed of 8 w/2 pulses of
length tp with delays as indicated. This combination of pulses and
delays creates a two-quantum average Hamiltonian, ﬁDFO) = 1/3(Hyy -
Hxx) under which coherences of even order can develop. Time-reversal
excitation is accomplished by phase-shifting all of the preparation
period pulses by n/2. Therefore, when the phases of the pulses are x
and X, the sequence produces ﬁD(o) = 1/3(Hyy - Hxx); during the
mixing period, when the phases of the pulses are y and ¥, the
Hamiltonian becomes -1/3(Hyy - Hxx), i.e. the negative of the prepara-
tion period Hamiltonian. The differences between the sequences are
discussed in detail in Section D of the text. The total prepara-
tion/mixing time t is achieved by repeating the basic pulse cycle m
times. To separate the mutliple-quantum orders, the preparation
period pulses are incremented by a phase ¢ for each value of t,,

About 2 ms after mixing, the z-component of the magnetization is
monitored with standard detection schemes shown in Figure (3.7). The
entire sequence is repeated for different values of ty to obtain the
multiple quantum free induction decay. Fourier transformation with
respect to ty then yields the multiple-quantum spectrum.
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multiple quantum excitation. Even selective (n=0,%*2,..,%N), odd
selective or both; selective excitation of only one multiple quantum
order, etc... are just a few examples of the possible or desired
schemes.1'3 ‘"The preparation period addressed here is an even selec-
tive sequence qf the form (1r/2)x -1 - (“/Z)R' The propagator, U(1),

for this sequence is:
.‘II’. )
U(t) = exp (1§Ix) exp( iHintT) exp ( 1§Ix) (3.3)

and assuming no resonance offset, Aw=0, U(1) becomes

q(t) = exp(i%lx) exp(-inzt) exp(-iglx) (3.4)

Two ways can be invoked to understand what happens to the equilibrium
density matrix under this pulse sequence: either a step~by-step
approach or an effective Hamiltonian approach both leading to the same
result can be employed. The latter is the more convenient, although
the former will be examined in order to gain insight into single
quantum NMR. The equilibrium density operator, proportional to Iz, is
acted on by a (n/z)x pulse to give I; which then evolves freely under

¥

the internal Hamiltonian sz for a time 1, resulting in

p(1) = exp(-inzt)I§ exp(inzT) (3.5)

If p(1) is expanded in the outer product eigenbasis {|Mi><Mj|},

described in Chapter I, Section C.3.b. then
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(1) .ifj exp (-im 1) <MilI§le> lMi><Mj| (3.6)

where wjy = (wi - wj), is the difference in energy between |Mi> and
IMj>. The most important point to note is that since Iy = -1/2 [1I, -
I_] only states differing by AM = *1 can be connected. Only single-
quantum transitions are induced by a single w/2 pulse.

A second way of viewing the same event is to expand p(t) into
products of single-spin operators_which were described in Chapter I,

Section C.3.c.7 Equation (3.5) can be rewritten as
p(t) = I + 1t [I=, H__ 1 =22 [ [ I=, H._J, H ] + «eo  (3.7)
y y’ zz 2 y' zz?' 2z

Evaluation of the nested commutators results in products of operators
such as Iy1. Iz2"' izq where q, the number of interacting spins,
ranges from 1 to N. Only single-quantum/multiple-spin terms can arise
from this density operator. Conversion of the single-quantum cohere-
nces to multiple-quantum coherences is accomplished by the second
(m/2)y pulse.

Rather than having the pulses act on the density operator step by
step, it is mathematically more convenient to let the pulses act on

Hint to create an effective Hamiltonian Hint'

T
[ - - -
H exp ( iZIx) Hin

m
int exp(izlx) (3.8)

t
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In this case, rotating H,, by w/2 about the x axis results in

T T
Hyy = exp(lzlx) H,, exp(AiZIx)

- ;53 Dy (31, I,y = I;°1,) (3.9)
--lu +32 £ oD (I.I,+I.I.)
R

The rotated dipolar Hamiltonian, H y? contains both zero quantum oper-

Y
ators from H,, and double quantum operators of the form I+iI+j

from the second term of Equatibn (3.9). The preparation period-

+ I'iI'j

density operator becomes

p(t) = exp (-iHyyr) Iz exp(iHyyr) (3.10)

. 1 2
- IZ + it [IZ’ Hyy] - é T [[IZ' Hyy]) Hyy] +e0e (3-11)

The density operator now contains multiple-quantum/multiple-spin
terms. Because Hyy is a pure zero/double quantum operator, the
density operator of Equation (3.11) will excite only zero or even-
quantum coherences. Most importantly the Hamiltonian under which p(0)

evolves must contain bilinear operators to excite multiple quantum

coherences.
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2. Evolution Period

Multiple-quantum coherences cannot be detected directly. Since
the detection coil is only sensitive to single spin operators I, or
I_, multiple quantum coherences, for example operators of the form
I+1I+ZI_3...I+q, are not observable. A method of indirect detection
is used: the multiple quantum coherences evolve under an internal
Hamiltonian for a time t1, the frequency information is then stored
and later retrieved during the detection period in t,. The evolution

of the coherences depends entirely on Hint'

a) Hypy = Hyy

The density operator after a time t, is

) p(t) exp(iH__t.) (3.12)

plt, t1) = exp(-iH 2251

zzt1

-1 e twysty

(1) M >< M|
1,3 b

where piJ(T) = <Mi|p(1)|Mj>. Each multiple-quantum coherence between
|M1> and |MJ> is frequency labelled by wiy» the energy difference

between the two states.

b) Hipy = I,

Now the density operator after a time t1 is:

p(T, t1) - exp(-iAwIzt1) p(1) exp(iAwIzt1)
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o-NAut (1) IMi><MJ.

=z 1 Py (3.13)

i,

This equation indicates that a multiple quantum coherence between |Mi>
and |M3> osciliates at n times the frequency offset rather than the
actual frequency offset, Aw. A schematic drawing is presented in
Figure (3.4). The n-fold increase in oscillation frequency is used in
a number of experiments: 1in particular, it forms the basis of the NMR
imaging experiments in'solids16 described in Chapter 5, and also forms
the basis of the method of time proportional phase incrementation,
which is used to separate multiple quantum orders in a spectrum.

c¢) Time Proportional Phase Incrementation17

Effectively, the internal Hamiltonian becomes Hint = H,, + H, and

the density operator evolves as

e-iwi t e-inAwt

p(t, t,) = L in 1

(1) M, ><M, | (3.14)
1,] b

Clearly withouﬂAthe second oscillating exponential in the equation the
different n-quantum coherences would not be readily distinguishable.
Performing the experiment with a large enough resonance offset is in-
convenient; instead a trick is used. The overall phase of the
preparation period is incremented proportionally to tys 1.e. A¢=
Aw't1. This artificially introduces a resonance offset term, Aw',

into the evolution period. Formally, incrementing the phase of each



86

1-quantum frame n-quantum frame
AZ AZ

Aw

Aw
////f1
— C Ko
Y Y

X/ | x/

Figure 3.4. An n-quantum coherence between |Mi) and |M3> oscillates
at n times the frequency offset, Aw, rather than the actual offset Aw.



87

pulse by A¢ corresponds to an overall phase shift of the propagator
U(t). If the phase of the pulse was I¢, now it is I¢+A¢, where

= exp(-iA¢Iz) I exp(iA¢Iz) . (3.15)

Lo+ns b

The propagator for the pulse is

L
exp(-in I,, ) = e ig(exp( 1A¢Iz)1¢exp(iA¢Iz))
3 o*Ae
-5 (3.16)
= exp(-iA¢Iz) e "27¢ exp(iA¢Iz)
as a result of the relationship
A -1 vay”" (3.17)
Ue U = e .
The preparation period propagator becomes
n * i1
UA¢(T) = exp(-i§I¢+A¢) exp(-inzt) exp(i§I¢+A¢)
(3.18)

- exp(-iA¢Iz) U(t) exp(iA¢Iz)

since [IZ, sz] = 0, Therefore, the initial propagator is phase
shifted by A¢ around Iz; because it is phase shifted proportionally

to t1. 8o that
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Ap = Auw't ’ (3.19)

the density operator after t, is
. -1
p(1, t1) = exp( 1szt1) UA¢(T) p(0) UA¢(1) exp(inzt1)(3.20)

Substituting Equations (3.18) and (3.19) into the above, the density

operator becomes

p(r,t1)- exp(-inzt1)exp(-iAw'Izt1) p(1) exp(iAm'Izt1) exp(inzt1)

(3.21)
which is equivalent to Equation (3.14). Now the different multiple-
quantum coherences oscillate at nAw' and are readily separated by

Fourier transformation.

3. Mixing Period

Multiple quantum coherences are converted to detectable single
quantum coherences during the mixing period. There exists a basic
symmetry between the preparation and mixing periods,vcollectively
called excitation periods. Similarly to the preparation period, two
approaches can be used to examine the effects of the mixing period.
Either one pulse is applied to the system and then single quantum

coherences evolve under the dipolar Hamiltonian, for a time t', into
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observable signal proportional to I,; this approach is similar to the
step-by-step analysis of the preparation period. Or else the multiple
quantum experiment is considered to be a four pulse experiment with
the detected operator now proportional to Iz. The latter is more con-
venient formally, since the mixing period propagator V(t') can now be

written as

V(t') = exp(iglx) exp(-inzt') exp(-iglx). (3.22)

V(1') is very similar in form to U(t), the preparation period propaga-

tor.

4, Detection Period

The multiple quantum signal for a preparation time t and a fixed

eVolution time t1 can be detected at this point. The signal is

S(t) = Tr {Izp(t)} (3.23)

1(r')]

. » )
= 1 -

Trl}zv(r ) exp( inztl) UA¢(T)D(O)UA¢(T)exp(inzt1)V

The trace is invariant to cyclic permutation, and when p(0) = I,

-1, . . ~ -1 :
S(t) = Tr[y (1 )IzV(r Yexp( 1szt1) UA¢(T)IZUA¢(T)eXp(lezt1 ](3.2&)

Expanding the trace in the eigenbasis of H,, results in the expression
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S(8) = T ay, (=1) (1) eTlop 4ty Gindu't, (3.25)

1,59

- = =1 ?
where a, ( 1) <Mj| VoI v M

-1
and (1) =< | U(0) IU (1) IMJ> .

pij

By repetition of the experiment for different values .of t1, a multi-
ple-quantum free induction decay is mapped out. The signal of a
multiple quantum coherence between lMi> and |Mj> is characterized by:
1) a complex amplitude, qji(-t)pij(r), with magnitude and phase.
2) a transition frequency: Wy
3) an order dependent offset terh: nAw.

The final step is to Fourier transform the signal with respect to t,4.

C. Multiple-Quantum Intensities

1. Statistical Model for Line Intensities

A simple estimate for line intensities assumes that each symmetry
allowed coherence will have the same magnitude but random phase.18
Therefore, in this statistical limit, all symmetry-allowed transitions
are excited equally.19 The integrated spectral intensity per order is
the intensity per transition times the number of allowed transitions.
The number of allowed transitions are calculated from the energy
levels as follows. N coupled spins-1/2 produce ZN energy levels char-

acterized by their total Zeeman quantum number M as shown in Figure

(3.5). The energy levels are divided into N+1 Zeeman manifolds with
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Figure 3.5. Energy level diagram resulting from 4 coupled spins-1/2.
The Zeeman manifolds are characterized by their total Zeeman quantum
number M. The number of states within each manifold is given by
Equation (3.26) which describes the number of ways of choosing p out
of N spins to be "up" instead of "down", where p = N/2 + Mi' The
number of multiple quantum transitions of order AM = n is given by the
sum over the products in Equation (3.27). As an example, for y
coupled spins, there is one 4-quantum transition and 28 two-quantum
transitions. Clearly the number of n-quantum transitions decreases

with increasing order.
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splittings due to dipolar couplings or chemical shifts occurring

within each manifold. The number of states is given by

N - N! t3 26)
p (N/2 + Mi)!(N/Z-Mi)! .

within each manifold. 1In this equation p is defined as the number of
spins pointing "up", consistent with the value of Mi' Ignoring
symmetry, the number of multiple quantum transitions of order n is

given by a sum over the prodUcts,zo

N-n '
N N )
pe0 ( P)(mp) o o 32D

which is equivalent to

2N
(N-n) _ ny0 (3.28)

The number of zero-quantum transitions is equal to

% [(2:) - 2”] . (3.29)

Using Stirling's approximation, the number of n-quantum transitions is

T£§—1/2. ex (-nZ/N) when nz0 (3.30)
N.n,) p 7‘ .

for large N and n<<N. The number of transitions drops off in a

Gaussian manner and the statistical model predicts that the integr-

ated intensities will therefore decrease rapidly with increasing

order. In Chapter IV, this model is used to account for the multiple-
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quantum intensities.

2. Time-Reversed Excitation in Solids

The intensity of a multiple quantum coherence between |Mi> and
le> is characterized by the product of the two complex numbers,
aji('T)pij(T)' of Equation (3.25). Figure (3.6) shows the multiple-
quantum spectrum of benzene oriented in a liquid crystal. Within each
order n, the phases of the individual transitions differ relative to
one another. But, as long as the individual transitions do not
overlap, a magnitude spectrum can be used to calculate the integrated
intensities.

However, in a solid, essentially an infinite spin system, the
number of multiple quantum transitions within a particular order is
very high. This is readily calculated'from Equation (3.28) - for
example, already for the six spin system of Figure (3.6), the number
of single-quantum transitions is 972. Therefore, in a solid, where
the size of the system is essentially unlimited, the numerous multi-
ple-quantum transitions will overlap and destructive interference will
drastically reduce the integrated multiple-quantum intensities within
an order n. As a result, high multiple-quantum orders, although
present, will not be visible. To overcome this problem, all lines
within an order should be generated in phase.z'12 This condition is
attained by using a time-reversed mixing period, which imposes the
condition U = V+; i.e. the preparation period propagator must be equal
to the hermitian conjugate of ﬁhe mixing period propagator. When U =

V*, the intensity of an individual transition becomes:
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Figure 3.6. Multiple-quantum spectrum of oriented benzene (14 wt % in
Eastman nematic liquid crystal # 15320 at 24.0°) obtained by Warren
WarrenEB When individual transitions within each order can be re-
solved, as here, the wide range of phases apparent in part (a) does
not affect the integrated intensity of each order. A magnitude
spectrum (b) can be obtained and shows only slight broadening.
However, in a solid, where the number of transitions 1is essentially
continuous, overlapping lines with different phases will drastically
reduce the integrated n-quantum intensities. To overcome this
problem, all lines within an order are generated in phase by using

time reversal excitation.
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The Hamiltonians acting during the preparation and mixing periods

will be denoted Hp and Hy» respectively. The propagators are

1) U(r) = e~iHpT

2) V(1) = e”iHyT
When U(t) = V(1) = v (1), then Hp = -Hy. Time reversal, in this
context, means reversing the sign of the preparation periodv
Hamiltonian to create the mixing period Hamiltonian. Now the in--
tensity of a multiple quantum transition will be characterized by
Ipij(r)|2, a real number, rather than Pij(T)aji('T)’ a complex number.
Therefore, within an order, different multiple quantum transitions
will have different magnitudes but the same phase. We have obtained
very high multiple quantum coherences in a solid by using a time re-
versed mixing period. The multiple quantum spectrum of adamantane in
Figure (3.2) is an example of a system in which 64 orders and beyond

have been excited.21
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D. Pulse Sequence Design

Experimentally, a very convenient Hamiltonian that can be used to

create multiple~-quantum coherence in solids 1522

B9 2l -n (3.32)

where

This Hamiltonian contains only double-quantum operators, as opposed to
Hyy, which contains both zero and double quantum operators. To create
the time-reversed mixing period, i.e. change the sign of the

Hamiltonian, a simple phase shift of /2 about the z-axis is needed:

exp(-im Iz)(Hy

: -, Jexp(ix I) = H_-H (3.33)

y 2 XX vy

Note that a w/2 phase shift appied to Hyy does not create (-Hyy)_
because the zero-quantum operators existing in this Hamiltonian
(Equation 3.9) are invariant to z rotations. A variety of pulse
sequences can be used in order to create the -average Hamiltonian of
Equation (3.32) under which coherences of even order can develop. 1In

solids, the §-pulse limit, where Hint is assumed to be much less than

Hrf' is not a good approximation. Therefore, evolution during the
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pulse and finite pulse widths will be assumed for the design of these
pulse sequences.

A simple semi-windowless sequence which can be constructed is
shown in Figure (3.3b). Here eight pulses of length tp separated by
delays tp, as shown, result in the average dipolar Hamiltonian of
Equation (3.32). 1In fact, only four pulses are really needed to
create the desired average Hemiltonian but eight are used for purposes
of symmetrization. In the toggling frame, Iz moves through the

sequence
(zY) (YZ) (ZY) (Y2) (2Y) (¥YZ) (ZY) (Y2) (3.34)

with delays tp as indicated. AAvery brief description of average
Hamiltonian theory and the notation used here is given in Chapter I,
Section E. The sequence is symmetrized about the midpoint of the
cycle with respect to both the resonance offset and dipolar

Hamiltonians. The resulting average Hamiltonians and higher order

correction terms are

0 (3.35)
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=(1) _ =(3) _ _ m(en-1) _
Hopp = Hopp = =+ = Hopp 0
=(0)

Hoe' =0 .

The third pulse sequence shown in Figure (3.3) is very similar to
the first but now delays, denoted by A and A', have been included in
order to provide more control to the experimentalist. The delay A'

still includes the delay t., from Figure (3.3b). Therefore, when A' =

P

24 + t., the average dipolar Hamiltonian is once again 1/3(Hyy = Hyy)-

p!
The odd order correction terms, average resonance offset and rf in-
homogeneity Hamiltonians are still identical to those of Equation
(3.35).

A third variation of the pulse sequence is shown in Figure

(3.3d).22 Now, in the toggling frame, Iz moves through the sequence
(zY) (YZ) (ZY) (YZ) (2Y) (¥Z) (ZY) (Y2) (3.36)

with delays A and A' as indicated. Although

(3.37)

g
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=(0)

OFF 0 and

=(0)
Hrf = 0

now the sequence is no longer symmetrized for resonance offset and the
odd order correction terms to the average resonance offset Hamiltonian
are no longer zero. But the sequence is symmetrized for rf inhomo-

geneity resulting in

=(1) =(3) z(2n-1)
Hr_f - Hrf - Hrf = 0. (3.38)

In summary, for all three sequences (b,d)ﬁn(o) = 1/3(Hyy = Hyy)
and the odd order correction terms to HD vanish; the resonance offset
and rf inhomogeneity average Hamiltonians are both zero. The differe-
nces between the sequences arise from the correction terms to these
average Hamiltonians: invsequences (b) and (c¢) all odd order correc-
tion terms to the offset Hamiltonian are zero whereas in sequence (d),
the odd order correction terms to the rf inhomogeneity Hamiltonian are
zero. We designed sequences (b) and (c¢) to overcome resonance offset
effects which are particularly important in multiple-quantum imaging
experiments in solids described in Chapter V. Here, coherences must
be prepared in the presence of large offsets created by the imposition
of an external field gradient. In the experiments described in the
next chapter, sequence (¢), rather than sequence (b), was used as it

was found to be more convenient experimentally. Sequence {(d) was also
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-employed in a few instances and is more appropriate when rf inhomo-

geneity is a serious problem.

E. Experimental Implementation

1. Preparation Period

Although the density operator prepared at time t contains
predominantly even-order éoherences, pulse imperfections can lead to
the creation of unwanted odd-order coherences. These can be reduced
by cycling the phases of all pulses in the preparation period between
0° and 180° in alternate experiments, and co-adding the resulting
signals appropriately.23 In addition, it is necessary to label the
orders of coherence by using the method of TPPI discussed in Section

801000

2. Evolution period

During the evolution period, the system responds to the internal

Hamiltonian,

int ¥4 vAA

where H, formally contains an order-dependent offset term resulting
from TPPI. The interferogram is mapped out point-by-point for succes-
sive values of ti. The spectral width_of the multiple-quantum
spectrum is given by 1/At1, and the number of orders detected, (tnmax

+ 1), is determined by the phase increment, A¢ = 2n/(2n ., + 1). Both
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At1 and A¢ must be chosen so that all signals from different coherence
orders fit into the available bandwidth without aliasing and without
overlapping. .The actual values of Aty and A¢ will be given along with

the multiple-quantum spectra shown in the next chapter.

3. Mixing Period

The time-reversed mixing period is implemented by phase shifting
all of the preparation period pulses by 90°. The mixing period then
contains pulses with phases y and ¥. As a result, the average mixing
period Hamiltonian is the negative of the average preparation period
Hamiltonian of Equation (3.32). The 90° phase shift in the mixing
period is chosen relative to the phase of the preparation period at t1
= 0. In other words, it is independent of the incremented phases in
the preparation period due to TPPI. As seen in Equation (3.21), the
effect of the phasé increment can be formally removed from the
preparation period and placed in the evolution period. As a result,
these phase 1ncremeﬁts do not affect the phase shift needed for the
mixing period. |

Ir, at tq = 0, the mixing period is not 90° phase shifted from
the preparation period, then U # V+, but v* is still related to U by a

rotation around z:

t . e-ielz U eiBIz . (3.39)

By substituting Equation (3.39) into Equation (3.24), the multiple-

quantum signal takes the form
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S(t) = Tr [ e_iBIz UIZU+ elBIz e_inzt1 UIZU+ einzt1] . (3.40)

Expanding the trace in the eigenbasis of H,, results in

S(t) = ¢ lpij(t)|2 e 1nBg=tuy 4ty . (3.41)

1,3

J

Now there exists a phase term, ng, which determines the overall phase
of each order. For instance, when g8 = 90°, in other words when the
preparation and mixing periods appear to have the same phase, then all
even orders will be 180° out of phase. It is important to note that
within each order,.ﬁhe.phases of the individual transitions are all
the same due to Ipij(r)lz. a real number. When TPPI is included, the

signal becomes

S(t) = 1 (1)|2e71nB g iuyyty gmindu’t, (3.42)

|o
1,3 M

The multiple-quantum orders, n, are separated by Aw' and their phases

relative to one another are determined by 8.

4, Detection Period

After mixing, a 2 ms delay is inserted, during which spurious
transverse magnetization is allowed to decay. The desired signal is

stored as population information along the z-axis. At this point, the
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signal can be detected in many ways. Three schemes are preéented in
Figure (3.7). The first is just a simple m/2 pulse. In solids, where
the FID decays very rapidly, receiver ringing and pulse breakthrough
may distort the signal. A better detection scheme is shown in Figure
(3.70) where a_(1r/2)x detection pulse is followed by a 100us spin-
locking pulse along y. Now spin temperature inversion, achieved by a
180° phase alternation of the detection pulse, can be used to reduqe
artifacts arising from receiver ringing. A single point in ts, in then
sampled for each value of t1s with the width of the single-quantum
spectrum determining the optimum receiver bandwidth.

The third detection scheme shown in Figure (3.7c), a pulsed spin

24

locking sequence of the form

WM E

x’ (ey)n ’

results in a large increase in signal to noise over the earlier
ﬁethods. The pulsed spin-locking is useful for signal enhancement in
samples containing low 1H concentrations. To obtain the maximum
signal, the optimal value-of 8 is roughly 45° and the delay between
pulses 40 usec. One point is sampled after the first pulse and after
each ey pulse: usually 512 or 768 spin locked points were acquired,
subject to the constraints of the‘T1p of the material.zs All these
points are then averaged together to give a final ampl;tude for a par-
ticular value of ty. Again, 180° phase alternation of the detection
pulse is used to reduce reviever ringing artifacts. The entire

sequence is repeated for different values of t1 to obtain the multiple
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Figure 3.7. Detection schemes used to monitor the final z magnetiza-
tion in the multiple-quantum experiment in solids. Figure 3.4.
describes the pulse sequences up to this point. a) single 90x pulse
used in experiments of Chapter IV, Section B.3. D) a 90x detection
pulse followed by a 100 usec¢ spin locking pulse along y. This
sequence is preferable to (a) as now 180° phase alternation of the
detection pulse can be used to reduce artifacts from receiver ringing.
For each value of tys the magnetization is sampled twice: once with a
90x detection pulse and once with a 902 detection pulse, both followed
by the spin locking pulse along y. These two points are then sub-
"tracted from one another to produce a final point for the ty value.

. c) pulsed spin locking sequence useful for signal enhancement in
samples containing low 'H concentrations. Again, as for (b), 180°
phase alternation of the detection pulse is used to reduce artifacts

from receiver ringing.
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quantum free induction decay.

5. Tune-up Procedure

Usually the sequence of events whiﬁh leads to the multiple-
quantum experiment are the following.

a) Pulse amplitudes and phase are set carefully on a small water
sample (either a capillary tube or a spherical bulb) with standard
tune-up sequences.26’27

b) The preparation and mixing periods of the multiple quantum
pulse sequence are placed "back-to-back" by setting t1 = 0 and At1 = 0
for a fixed preparation time t. The experiment is then reduced to a
simple time reversal procedure. (learly, if the sequence was working
perfectly, then the sigﬁal obtained by applying a #/2 pulse after the
"back to back" sequence would be the same as the signal obtained from
only a single m/2 pulse. 1In order to improve the overall performance
of the time-reversal sequence on a solid sample, the amplitude of the
rf pulses are adjusted, either on the amplifier itself or with é
variable attenuator placed in the rack, to obtain maximum signal..

¢) In addition, an optimum cycle time tc must be found for the
sample being studied. The best tc is selected by varying the delays A
and A' between pulses to optimize the signal for a fixed value of rt.
In other words, if 1 is chosen arbitrarily at 600 usec for instance,
then two cycles times that may be compared are a 60 usec cycle applied
10 times or a 40 usec cycle time applied 15 times. The one resulting

in the largest signal at 600 usec is considered to be the better cycle

time. Generally, the longer cycle time applied fewer times appears to
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work better. At long 1, signal losses occur because the time reversal
sequence begins to fail: pulse imperfections and effects due to
higher-order correction terms accumulate over many cycles, and the
subsequent degradation in performance ultimately reduces the S/N in

the multiple quantum spectra.

6. Spectrometer Implementation

Experiments were performed on two home-built spectrometers oper-
ating at 'H Larmor frequencies of 360 MHz and 180 MHz.28329 Both
spectrometers are equipped with quadrature phase generation circuits
that produce rf pulses with relative phases of 0°, 90°, 180°, and 270°
at 30 MHz intermediate frequency. Additional phase shifts needed for
TPPI are generated by a 30 MHz B-bit digital phase shifter in ser;es
with the quadrature generation network.

The pulse programmer for each spectrometer is governed by a 10
MHz clock, which limits the minimum increment in t; to 100 nsec. When.
additional bandwidth is needed to accommodate the multiple-quantum
sepctrum, we use a home-built delayed clock generator to shift the
phase of the clock pulses by one, two, or three quarter-cycles. In-
crements of 25, 50, 75 nsec thus become available, increasing the
bandwidth to 40 MHz. Ultimately, the performance of the experiment is

limited by the accuracy of the phase shifter.3o

a. Phase Shifter

The key element in the multiple-quantum experiments is the

digitally controlled phase shifter. It is described in detail in
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references 28 and 29. Here, the actual steps occurring in the
experiment are described, with aid of the schematic diagram of Figure
(3.8). At the top of the figure, the phases of the pulses as they
must ultimately appear in the pulse sequence are shown. For each
value of t1, the experiment is repeated twice: once the version of
part (a) is used and then, for purposes of eliminating the odd
multiple quantum orders and artifacts due to receiver ringing,
sequence (b) is used. (b) is subtracted from (a) to obtain the final
signal amplitude for the value of t;. The differences between (a) and
(b) are that the phase of the preparation period pulses have been
shifted by 180° as well as the phase of the detection pulse.

To implement pulse sequences (a) and (b), the quadrature gates
and phase shifter are set up as shown at the bottom of Figure (3.8).
The quadrature phases for sequences (a) and (b) always remain the same
and the phase shifter is used to make the appropriate changes. When
the phase shifter is set in increment mode, then the output phase is
the sum of the value on the increment counter plus the value loaded in
the RAM. Init;ally the RAM phase 1is set to 0°. The increment counter
can be increased by the amount shown on the thumbwheel switches each
time the backpanel INC is strobed. This feature is .used to regularly
increment the phases of the preparation period pulses for TPPI. To
switch between th; phase shifted preparation period and the fixed
phase mixing period the control word can be toggled, by strobing the
TOGGLE gate during the evolution period, between the sum mentioned
above and the value indicated on the‘manual thumbwheel switches. 1In

these experiments, the value on the manual side is set to 100 (= 90°)
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Figure 3.8.

Schematic diagram of the time-reversal multiple-quantum

pulse sequences. For each value of t1, the exf:er‘iment is repeated

amplitude.

the output of the quadrature

shifter are set up as shown.

the quadrature phases remain

make appropriate phase shifts.

E.6.

-twice, and sequence (b) subtracted from (a) to obtain the final signal
To implement the experiment, the phases of the pulses at

gates and the digitally controlled phase
For parts (a) and (b) of the experiment,
the same and the phase shifter is used to

The details are described in Section

IR
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in order to implement the time-reversed mixing period. The phases of
the pulses, which were x and X at the output of the quadrature box,
are now y and ¥ at the output of the phase box. A settling time of
roughly 2.5 usec is needed after toggling between increment and
manual. For detection, a fixed phase is still needed, therefore the
phase shifter remains on manual. The detection pulse appears as Xx
followed by spin-locking pulses along y. Now part (a) of the
experiment has been performed. To execute part (b), the control word
is toggled back to increment and the phase in the RAM is incremented
by 180° by applying a logic pulse to the backpanel RAM BNC. This
ocecurs during the recycle delay period of part (a). Now the phase of
the preparation pefiod is again the sum of the increment counter plus
the value loaded in the RAM, which is 180°: the phases which were
{XxxxxXXXX) are now (fiiixxx). Again the control word is switched,
during the evolution period, to the Manual side. The detection pulse
which is § (X after the manual phase shift) is changed by a loop
counter in the pulse program. The same sequence of events is then
repeated for different values of t1f During the recycle delay of part
(b) the RAM phase is reset to o° by applying a pulse to the RAC INIT

and the control word is toggled to the increment mode.

b. Split Ram

When the spin locked detection sequence was used, then both the
repetition of the basic pulse cycle and the acquisition of the data
points had to take place in the RAM of the pulse programmeb.

Therefore, in order to be able to address the RAM contents at two dif-
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ferent locations, a "split" RAM was used. Both spectrometers have a
128-128 split in the RAM; this can be changed fairly easily if
desired. The most important points fo recall in using the split RAM
are that it is merely a means of addressing the RAM counter in two
different places, and thai the contents of the RAM are loaded sequen-
tially. Therefore, to access that RAM at line 0, a "PA 01 00" state-
ment should be used in the "FIFO" part of the pulse program; a "PA 03
00" statement should be used to address line 128. Even though diffe-
rent places in the RAM are being accessed, physically there is still
only one RAM, labelled as 01 to the microprocessor. Therefore, the
output statements in the RAM should all be labelled as 01. The last
point in using the split RAM is the following: the RAM is loaded
sequeﬁtially; therefore, if the first part.of the RAM loader contains
k output statements, then the second part will begin at line k + 1.
If (k + 1) is less than 128, then the address line (which is 128) and

the beginning of the second part of the program will not coincide.
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IV. MULTIPLE-QUANTUM NMR STUDIES OF CLUSTERING IN SOLIDS

A. Introduction

In this chapter, we describe the application of nuclear magnetic
resonance to the question of clustering in materials lacking long-range
order. In such materials, standard methods of structural characteriza-
tion, such as x-ray crystallography, are not useful. Examples of such
disordered materials range from minerals, semiconductors, polymers and
liquid crystals, to species adsorbed on surfaces and in zeolites.

These materials often display important physical or electrical proper-
ties; for example, a critical level of hydrogen incorporation into
amorphous silicon renders it a semiconductor used in many industrial
applications.1

As an example of the type of problem we face in these disordered
solids, Figure (4.1) illustrates two extreme, possible, atomic con-
figurations: in the first, the atomé are distributed randomly but uni-
formly within the sample, and in the second they are grouped together,
forming clusters. Usually, an NMR spectrum of a solid will not reveal
the basic difference between these two situations. 1In both cases, the
spectrum will normally be broad and featureless; the linewidth, due
primarily to the dipolar couplings between spins, does not confain
sufficient information to establish any statistical information on the
atomic distribution as seen in Figure (4.2).

In contrast, by capitalizing on the dipolar couplings in a diffe-

rent manner, a time-resolved multiple-quantum NMR experiment can be
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Figure 4.1. Possible atomic distributions in solids.

XBL 8511-12717

Uniform and

clustered distributions can be distinguished by time-resolved solid-

state multiple-quantum NMR.

SRR
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Figure 4.2. 180 MHz 1H NMR spectrum of the liquid crystal with chemi-
cal formula (C19H21N) in the nematic phase. The distribution of 1H in
the sample can not be determined from this broad and essentially fea-

tureless spectrum.
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used to address the question of atomic distribution in such
materials.2’3'u For example, if the uniformly distributed material is
irradiated with rf quanta in an NMR experiment, it might be expected to
absorb them continuously; whereas isolated clusters will absorb only a
finite number.5 We show that indeed a time resolved multiple-quantum
experiment, whose statistics are very sensitive to atomic distribu-
tions, can be used to probe the nature and extent of clustering in
solids.

We begin in Section IV.B, by examining multiple-quantum dynamics
in solid-state NMR. The development of multiple-quantum coherence in a
solid is followed experimentally and explained by the emergence with
time of a widening network of multiple-spin correlations throughout the
‘system. 'This phenomenon leads to the notion of an instantaneous effec-
tive size for the system, which can be calculated directly from the
multiple-quantum spectral intensities. The rate of growth of this
time-dependent parameter is determined entirely by the distr;bution of

atoms in the sample.

1H clustering is determin-

In Section IV.C, the size and extent of
ed in a variety of systems from this point of view. More particularly,
model experiments are demonstrated on uniform distributions, totally
isolated clusters, and various concentrations of clusters ranging from
dilute to fairly dense. For concentrations of clusters, a second time-
dependent parameter is introduced in Section IV.C.4 to ascertain the
size of the clusters independently of the size of the system,.which may

include inter-cluster correlations. Emphasis is placed on illustrating

how the different distributions affect the multiple-quantum dynamics
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and how the tendency to clustering and information on cluster sizes can
be determined from the time-dependence of the multiple-quantum intensi-
ties. In Section IV.D, we use this technique to study hydrogen

clustering in hydrogenated amorphous silicon. Extensions of the exper-

iment and a summary are presented in Section IV.E.

B. Multiple-Quantum Dynamics in Solid State NMR

1. Multiple-Spin Processes and Time Development of the Dipolar

Coupling Network.

In multiple quantum NMR individual spins become correlated with

6 In this way,

one another over time, through their dipolar c¢ouplings.
the usual Zeeman selection rule can be overcome and "forbidden transi-
tions", where the difference in magnetic quantum number AM is equal to
0,%*1,%2,..,N, can be excited. When AM=N, N spins "flip" collectively
from the ground state to the highest excited state. Experimentally,
such multiple quantum coherences are formed in solids by applying a

radio-frequency pulse sequence to the system for a time t, thereby cre-

ating the non-secular Hamiltonian,

of Equation (3.32), which induces the spins to act collectively or in a
group.7 The density operator at the end of the preparation period

takes the form

s



119

p(t) = I, + iT[Iz,H] - 52 [[IZ,H],H] e (4.1)

Evaluation of the nested commutators resﬁlts in produects of
single-spin operators such as I T4 I+3 I,y; each product of opera-
tors is associéted with powers of DiJT. As a result, when Dij1<<1, the
associated operator term will not be significant. Symbolically, these
products of operators can be visualized as the development of many-body
correlations through the pairwise dipolar couplings. A schematic
drawing of the time development of spin correlations is shown in Figure

(4.3). For short times Equation (4.1) reduces to the first few terms:

p(1) = I, + it [I_,H] - % [C1,,H],H] . (4.2)

Now, only low multiple quantum orders will develop and only spins with
large dipolar couplipgs Dij will effectively interact. As the prepara-
tion period t becomes longer, p(t) will contain longer products of spin
operators, indicating that more spins are becoming correlated with one
another. In addition, spins with smaller dipole couplings will now be
able to interact as well. Inlorder for spins to become correlated, the
Hamiltonian must act fog a time t roughly proportional to the inverse
of the pairwise dipolar interactions. As a regult, the preparation
time t can be short if spins are near one another, and must be longer
if spins further apart are to communicate with one another. Therefore
the rate at which multiple quantum coherences develop is determined by

the dipolar coupling distributions present in the system.
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Figure 4.3. In multiple quantum NMR, spins, symbolically represented
here by hatched circles, become correlated with one another over time,
through paifwise dipolar interactions: the closer the spins, the
shorter the time needed for interactions to develop. For uniformly
distributed spins (a), correlations will be expected to develop
monotonically with time. In a clustered material (b), however, the
magnitudes of the.inter versus intra-cluster dipolar couplings are -
quite different. At short times, the number of correlated spins will
be limited to the number of atoms in the cluster whereas at long times
intercluster interactions will develop and all the spins will become
correlated with one another. The difference between clustered and
uniform distributions should be observable in the time-dependence of
the n-quantum absorption.
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Because the spatial arrangements of atoms are reflected by the
magnitude of the dipolar couplings, a time dependent multiple quantum
experiment can yield information concerning the distribution of spins
in a material. If a solid is composed of a uniform distribution of
atoms, where the dipolar couplings between spins may be roughly compar-
able, then the time development will be expected to look like the one
depicted in Figure (4.3a). As the uniformly distributed spins absord
more and more quanta of radiation, the spins become correlated with one
another in a continuous manner. Over time, the number of communicating
spins is essentially unbounded. And, the effective "size"™ of the
system grows monotonically. However, if a solid contains isolated
clusters, then the variation between inter and intra cluster dipolar
coupiings is large enough to preclude inter-cluster correlations on the
experimental time scale. One can imagine clusters as independent
groups of size N able to absorb only up to N quanta of radiation. Con-
sequently, as shown in Figure (4.3b) after an initial induction period,
during which multiple quantum coherences develop between spins with
large dipolar couplings, the number of correlated spins will be ex-
pected to remdin roughly constant over time and will reflect the size
of the isolated cluster. If this group is truly independent of any
other groups, then no additional interactions can build up on the ex-
perimental time scale. On the other hand, if small but non-negligible
dipolar couplings do exist between spins of different groups, then with
time, the groups will communicate with one another. If the concentra-
tion of clusters is high, less time will be needed for intergroup com-

munication to occur. Ultimately, for very long times, a large network
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of correlated spins will develop. Clearly, the difference between a
uniform and clustered environment will be reflected directly in both
the rate of development, and distribution, of mutliple quantum cohere-

nce.

2. Time Development of Multiple-Quantum Coherences

Figure (4.5) contains a set of 'y multiple-quantum spectra obtained
from hexamethylbenzene (using sequence (4.4)) with preparation times
ranging from 66 usec to 792 usec. The most frequently used pulse
sequence is adapted from Figures (3.3) and (3.7) and reproduced here
for convenience in Figure (4.4). All experimental details are
presented in Chapter 3, Section E. The plots of Figure (4.5) illustr-
ate the distribution of spectral intensity over the coherence orders at
the specified preparation times. Separation of the different orders
has been accomplished by TPPI so that the subspectrum of each order n
occupies 156.25 kHz. As coherences of +n and -n are equally probable,
the full spectra are naturally symmetric about n = 0, Consequently,
only one half of each spectrum is needed to obtain all the information
available,

A general tendency for coherence of higher order to develop with
time 1s clearly evident in the spectra shown in Figure (4.5); the
results are particularly striking for 1 = 792 usec, where there are
strong signals extending out to, and apparently beyond, n = 64, Sub-
spectral structure and iinewidths are determined by the reéponse of the
prepared system to the local field of all the other spins during the

subsequent evolution period. Here, a spectrum of broad featureless
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Figure 4.4. Two-dimensional multiple-quantum pulse sequence for
solids. The preparation and mixing periods are composed of 8 =/2
pulses of length tp separated by delays A and A'. The total
preparation/mixing time t is achieved by repeating the basic cycle m
times. When the phases of the pulses are x and X, the Hamiltonian is
equal to 1/3 (Hyy =Hy,); during the mixing period, when the phases of
the pulses are y and ¥, the Hamiltonian becomes - 1/3 (Hyy - Hxx)'
i.e. the negative of the preparation period Hamiltonian. To separate
the mutliple-quantum orders, the preparation period pulses are
incremented by a phase ¢ for each value of ty. During the detection
period, a pulsed spin locking sequence is used for signal enhancement
in samples containing low 1H concentrations.
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Figure 4.5. 360 MHz 1H multiple—quantum spectra of hexamethylbenzene
for T = 66 to T = 792 usec recorded with the sequence of Figure (4.4).
The basic cycle time used for this spectrum is 66 usec'(tp = 3 usec,

A = 2.5 usec, and A' = 8usec). For 1 = 66 to 462 usec, the t, incre-
ment is 100 ns and the phase increment is 2n/64; this separates each
order by 156.25 kHz. For t > 528 usec, the t1 and phase increments are
50 ns and 2u/128, respectively. The distribution of spectral in-
tensity over the coherence orders broadens continously as the prepara-
tion time increases. The lowermost trace, an expanded view of the
spectrum obtained for t = 792 usec, emphasizes the highest orders of

coherence observed.
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lines arises from the almost continqous distribution of
eigenfrequencies in a sample containing virtually an infinite number of
spins.

Monitoring the time development of the multiple quantum coherences
in this infinite spin system therefore reveals that correlations do
indeed develop between spins in a monotonic fashion. As time
progresses, more spins can absorb more quanta of radiation and very
high multiple quantum orders can be detected. However, if clusters of
spins exist, then the time development of the multiple quantum cohere-
nces is expected to be interrupted; the number of interacting spins
will be limited, to a large extent, by the size of the cluster. Shown
in Figure (4.6) are 'y multiple-quantum spectra for a polycrystalline
sample (shown in the inset) in which hydrogen atom clusters of diffe-
rent molecules are effectively isolated from one another owing to the
large perchlorinated cyclopentadiene’rings. For this model clustered
material, the appearance of the multiple~quantum spectra remain very
similar up to 300 usec, after which many high multiple-quantum orders
bégin to develop. Now there is a discontinuity in the development of
multiple-quantum coherence. The higher orders are at{ributed to inter-
molecular interactions. Both materials will be addressed in more

detail in a later section.

3. Monitoring of Time Reversal Via The Refocusing of Multiple

Quantum Coherence

Although it may appear to be stochastic, the time development of a

spin system according to Equation (1.28) is actually well determined,
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Figure 4.6. 180 MHz 4 multiple-quantum NMR spectra of the polycrys-
talline sample 1,2,3,4-tetrachloronaphtalene-bis(hex~
achlorocyclopentadiene)=-adduct for t = 60 to 960 usec. The basic
cycle time is 60 usec (tp = 2.5 usec, A = 2.5 usec, A' = 7.5 usec)
The t increment is 400Ons and the phase increment 2%/16; each order
is ﬁherefore separated by 78.125 kHz. The time development of the
multiple-quantum coherences over time is discontinuous in this
clustered material. The spectra change very little over the first 300
usec, indicating a limited spin system on this time scale. At longer
times, when intermolecular interactions develop, the system is no
longer bounded and higher multiple-quantum orders arise in the

spectrum.
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and can be reversed if the sign of the effective internal Hamiltonian
is changed. That coherent averaging methods can reverse supposedly
irreversible dipolar dephasing has already been amply demonstrated by
"magic echo” experiments.9 However, we can gain added insight into
such dephasing and rephasing by visualizing the time reversal process
explicitly through multiple-quantum spectroscopy. The novelty here is
that we can show how time reversal is effective even for very high-
order, multiple-spin processes.

Part (a) of Figure (4.7), shows a pulse sequence designed to
reverse the formation of the network-of spin correlations occurring in
multiple-quantum excitation. The plan is to allow coupling to develop
normally for a rather long, fixed time 10 and then to refocus the
multihle-quantum coherences over the interval t'. The refochsing
during 1' is accomplished by phase shifting the excitation pulses by
90° to change the sign of the average Hamiltonién. The mixing period
is altered symmetrically to fulfill the requirément for overall time
reversal relative to the preparation period.

The reversibility of multiple-quantum excitation is illustrated ex-

4

perimentally in Figure (4.7b). Shown at the left are three 180 MHz
spectra of adamantane obtained in the usual fashion with sequence
(3.d) and t = 462, 330 and 66 usec. Directly opposite are the equiv-
~alent refocused spectra, recorded with 15 = 528 usec and t' = 66, 198
and U462 useé. In each case, the net forward preparation times are
identical, since 1. = 0 < 1'. To the extent that the time reversal

works perfectly, the development of all the multiple-quantum coherences

during L0 will be retraced during the 1' interval, during which the
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Figure 4.7. a) Experiment designed to refocus multiple-quantum

coherence in solids. High-order coherences created during ty evolve

backwards in time during t' to return to low-order coherences. Phase

cycling and spin temperature inversion have not been implemented in

this experiment. _

b) 180 MHz 'H spectra of adamantane illustrating the feasibility of

refocusing multiple-quantum coherence via time reversal.

Left: Spectra obtained with sequence d of Figure (3.4) for t = 66,

33b, and 462 usec. High-order coherences develop normally with

§(0) . 1/3(Hyy - Hyy) during the preparation period. .

Right: Spectra obtained with the sequence in part (a) of this figure -
for 1y = 528 usec and t' = 462, 198, and 66 usec. In each case, the
reversal of the time development during t' leaves the net forward pre-
paration time equivalent to that used for the corresponding spectrum
at the left. The observed spectral distribution arises as the system

evolves backwards in time from high-order to low-order coherences.
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clock governing the dipolar Hamiltonian appears to run backwards.
Indeed, the spectra to be compared in Figure (4.7) are reasonably
similar. In particular, note that for 1 = 66 usec, only two-quantum
coherence is observed after normal excitation by the sequence of Figure
(33d). For the comparable spectrum produced by the sequence in Figure
(4.7a) the system generates coherences up to n = 32 during the initial
development period of 528 usec, and then reverses the process for t' =
462 usec to leave primariiy two-quantum coherence.

This demonstration of time reversal complements similar single-
quantum approaches. For example, in the magic echo experiment, a pulse
sequenée applied to the system after the free induction signal has
decayed can restore the signal to its initial intensity under ideal
conditions. However, in_the magic echo expe%iment there is no direct
evidence that the time reversal is proceeding through mutliple-spin
events. By following the development of multiple—quantpm coherence, we
have shown here that time reversal can turn back the clock for coherent

evolution involving large numbers of nuclear spins.

4, Measurement of an Effective System Size in Solids

The number of correlated spins at a particular preparation time
dictates the intensity distribution of the signal over the multiple
quantum orders. For a finite N spin system, ignoring symmetry, we
showed, in Chapter III, Section C.1 that the integrated spectral in-
tensity per order can be approximated by the intensity per transition
times the number of allowed transitions. 1If all possible coherences

have been excited with equal probability, then the integrated intensity
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per order can be related to the number of allowed n-quantum transi-

10, 11 -

tions'~; 1in an N spin system, the number of n-quantum transitions is -
2N 2N!
(N—n)= (N-n)! (N+n)! ° (4.3) -

This expression can be approximated by a Gaussian distribution, for
large N and n<<N. As a result, the integrated multiple-quantum

intensities fall off in a Gaussian manner,

2
I(n) = exp :%— ’ (3.4)

and are indeed dictated by the size of the system.

In a solid, the exact calculation of the time development of the
multiple quantum coherences is impossible owing to the need for prior
knowledge of an enormous number of spin-spin couplings. Therefore, for
simplicity, we assume that the infinite spin system can be subdivided
into finite spin systems which grow iﬁ the time-dependent fashion

portrayed in Figure (4.3). Then for each preparation time, we can

represent the number of spins that have become correlated up to that

time by an effective system size N(1). This time-dependent parameter

is calculated in the manner of Figure (4.8) by fitting the integrated
intensities to a Gaussian distribution and associating the standard

deviation, ¢, of the Gaussian with (N(T)/2)1/2

. The pattern and rate
of growth of N(1) over time will reflect the distribution of atoms in

the sample. Its change with time is determined by the structure of the E
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Figure 4.8. Top: 180 MHz 4 multiple quantum spectrum of the liquid
crystal p-~hexyl-p'-cyanobiphenyl in the nematic phase for a prepara-
tion time t = 660 usec. In this spectrum, the basic cycle time is 60
usec, the bandwith 2.5 MHz and the separation between orders 78.125%
kHz.

Bottom: The data points are measured from the spectrum above by in-
tegrating each peak corresponding to each multiple quantum order. The
resulting intensities are then fit to a gaussian distribution whose
standard deviation, o, is associated with (N/Z)”2

is the plot of the best fit value for N. N, the effective system size

. The solid curve

characterizes the number of correlated spins, in this case 20, at each
preparation time.

e
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solid, and is influenced by factors such as spin topology and the rel-
ative magnitudes of intramolecular and intermolecular dipolar interac-
tions. In the following sections, the time-dependent multiple-quantum
behavior of uniform distr;butions, concentrations of clusters and
isolated clusters is studied from this point of view. 1In addition, the
degree of clustering in hydrogenated amorphous silicon is determined.

\

C. Studies of Clustering in Solids

1. Uniform Distributions

a. Adamantane (C,4Hig; polycrystalline)

Adamantane forms a plastic crystal in which the nearly spherical
molecules tumble rapidly and isotropically in the soiid phase. The
motion averages all intramolecular dipolar couplings to zero, but does
not eliminate intermolecular couplings. However, the motion leaves
only one distinct coupling between every pair of .molecules, thereby re-
ducing the adamantane molecule to a point dipole source containing 16
spins. The molecules pack into a face-centered-cubic lattice, with
each adamantane molecule surrounded by 12 neighbors at a distance of
6.60 A, 6 more at 9.34 A and an additional 16 at 11.48.'2

In Figure (4.9a), we examine the time development of the n-quantum
transitions by plotting the integrated intensity of each order, normal-
ized to the total spectral intensity, versus preparation time. The
different orders appear to grow in monotonically with time and very
high multiple-quantum orders are attained. Values of N(t) versus t are

plotted in Figure (4.9b). The intensity of each order was normalized
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Figure 4.9. a) Intensity versus preparation time for n =
2,&,6,8,10,12,14,16 in adamantane. In future plots, the same symbols
will be used for the same multiple-quantum orders. The intensity for
each order has been normalized relative to the total spectral in-

~ tensity, and smooth curves have been drawn through the data points to
aid the eye. Very high multiple-quantum coherences develop over time
in a monotonic fashion.

b) Number of correlated spins versus preparation time for adamantane.
The smooth curve through the points emphasizes the continuous expan-
sion of the effective size of the unbounded spin systems.

b4
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relative to n = 2 for each preparation time. In this manner reasonable
estimates for N(t) can be obtained even when the very highest orders
possible cannot be observed experimentally. Deviations from strictly
statistical behavior are most pronounced in the. tail of the distribu-
tion, whére the combinatorial method consistently underestimates the

10 The effective size of the system,

intensities of the highest orders.
N(t), increases monotonically with time, indicating that the number of
correlated spins is steadily growing larger. Based on the discussion

in Section B.1, this type of multiple-quantum behavior is expected for

a uniform distribution of atoms.

b. Squaric Acid (CyOyHs; single crystal)

Squaric acid is monoélinic but pseudo-body-centered-tetragonal at
room temperéture. It is a layered two-dimehéional structure consisting
of hydrogen-bonded "squaric" subunits of Cuou. The hydrogens form
chains perpendicular to'the a-c plane, with the hydrogens in different ~
sheets separated by b/2 = 2.6 A.13 During the experiment the crystal
was oriented with the b axis perpendicular to the static magnetic
field. The crystal was doped with chromium ions to reduce the 1H spin-
lattice.relaxation time. The time development of the n-quantum in-
tensities for squaric acid, shown in Figure (4.10a), appear very
similar to those of adamantane. The chains of hydrogen atoms form an
infinite spin system where the number of correlated spins, shown in

Figure (4.10b), also increase continually with time.
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Figure 4.10. a) n-quéntum intensity versus preparation time for

squaric acid. The numbers of orders increase continuously over time.

b) Number of correlated spins versus preparation time. As is char-

acteristic of an infinite spin system, the effective size of the

system grows rapidly and uninterruptedly with time.

138



2. Isolated Clusters: Liquid crystal 139

In a nematic liquid crystal sample, owing to restricted motion of
individual molecules about their long axes, intermolecular dipolar cou-
plings are averaged to zero while intramolecular couplings remain but

14 The nematic phase of the 21 spin p-heptyl-p'-

are scaled down.
cynabibheﬁyl (C19H21N) liquid crystal sample was thus selected to
demonstrate an "ideal" case of truly isclated clusters on the NMR tim-
escale, in the sense that individual molecules maintain solid-like
characteristics while still being completely independent of one
another. Thus, this liquid'crystal which contains 21 protong should be
a good model for a 21 spin cluster. Figure (4.11a) shéws a plot of the
n-quantum intensity normalized to phé total intensity, versus pre-
paration time; at short times, the number of multiple quantum orders
increases, whereas for times greater than 1000 pusec the number of
orders and their relative intensities remain unchanged. Reflecting the
trends of the multiple quantum intensity plot, the effective system
size N(1), plotted in Figure (4.11b), grows for times up to 1000 psec,
after which it remains completely constant with a value of 21. The
effective system size does not grow beyond the actual size of the
molecule confirming that intermolecular couplings are zero and that
only spins within the molecule can become correlated with one another.

This type of behavior, the levelling of N{zt), is characteristic of iso-

lated clusters.

3. Concentration Effects: 1,8-Dimethylnaphtalene-d.

Solid solutions of six spin clusters were prepared to examine the

effects of different degrees of cluster concentrations on the multiple
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Figure 4.11. a) n-quantum intensity versus preparation time for the
liquid crystal p~hexyl-p' cyanobiphenyl in the nematic phase. After

roughly 1000 usec, no new multiple-quantum orders develop and their
relative intensities remain unchanged. b) N(t) versus 1 for the
liquid crystal sample. After an induction period, the effective
system size N(t) levels off at 21, indicating that the number of
interacting spins is limited to the size of the individual 1liquid

crystal molecules which contain 21 protons.
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quantum dynamics. The six spin clusters are formed by intimately
mixing 1,8-dimethylnaphtalene-dg (DMﬁ-d6) with perdeuterated DMN-d,,;
three concentration leQels, 5, 10 and 20 mole %, are considered in L
addition to the neat material. For the latter, the shortest inter-
molecular 1H-1H distance is 2.0 & along the b axis and the intra-
molecular methyl groups are separated by 2.93 A.15 The unit cell is
arranged such that the methyl groups of a pair of molecules are point-
ing toward one another. Dilution of the protonated‘DMN-d6 in a per-
deuterated lattice forces the inter-cluster disténces to increase
without affecting the intra-cluster distances. Therefore, relative
differences in the development of multiple quantum intensities can be
attributed to inter~cluster correlations.

The existence of local spin clustefs can already be discerned in'
the multiple-quantum spectra of the dilute 5 mole % DMN, showh in
Figure (U4.12) together with comparable spectra from neat DMN. The neat
spin system is essentially uhbounded, a state which is reflected in the
spectra by a steady growth of the number of orders observed. In marked
contrast, the spectra obtained from the 1:20 solid solution never
extend beyond n = 6.

Figure (4.13) shows plots of the integrated n-quantum intensity to
the total intensity for the four samples of DMN described, versus pre-
paraﬁion time. Clearly, the trend indicates a more rapid development
of multiple-quantum orders as the concentration of the clusters is
raised. In the 5 mole % solution, after an initial induction period,
the number of orders remains fixed up to roughly 500 usec¢c, after which

the intensities begin to grow slowly. By contrast, the 10 and 20 mole
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Figure 4.12. 360 MHz 4 multiple-quantum spectra of dim-
ethylnaphthalene recorded with the sequence of Figure (4.4).
Top: Neat DMN, ring positions deuterated.

Bottom: 1:20 solid solution in a perdeuterated host.

The two sets of spectra clearly demonstrate the different multiple-
quantum excitation pathways possible in bounded and unbounded spin-
distributions. Only low order coherence can develop among the six
isolated spins in the dilute system; consequently the distribution of
multiple-quantum‘intensity changes very little over the range of pre-
paration times shown. By contrast, the effective size of the neat

material increases continuously over the same range of times.
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Figure 4.13. n-quantum intensity versus preparation time for solid

solutions containing

a) neat 1,8-dimethylnaphtalene~dg (DMN-dg).

b) 20 mole % solution of DMN-dg in 1,8-dimethylnaphtalene-d,, (DMN-
dqo). ,

c) 10 mole % solution of DMN-dg in DMN-d,,.

d) 5 mole % solution of DMN-dg in DMN-d,,.

The neat compound and the 5 mole % solution are examples of unlimited
and clustered spin systems respectively. The 10 and 20 mole % samples
are examples of more concentrated clustered environments. The general
trend indicates that as the cluster concentration is lowered, the
multiple~quantum intensity distribution changes less with time.

1
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% solutions show orders growing in slowly all the time. Qualitatively,
the features and ultimate intensities of the 10 and 20 mole % samples
appear very similar, differing predominantly in the time scale of |
development. The multiple quantum intensities in the neat material in-
¢rease very rapidly.

Plots of N(t) versus t are drawn for the 100, 20, 10 and 5 mole %
solutions of DMN-dg, in Figure (4.14). The values of N(1) are repres-
ented by the smooth solid line. Two extreme behaviors are illustrated
in this figure: in the 5 mole % solution, N(t) grows very little up to
500 usec and then begins to increase slowly at longer times, whereas in
neat DMN-dg, N(t) increases very rapidly. 1In the first case, the con-
ceﬁtration of clusters is dilute enough to localize the interacting
spins to the clusters only, for the duration of 500 usec; 1in the
second case, the unbounded spin system allows an increasing number of
atoms to interact with one another, over time, in a monotonic fashion.
In neat DMN—d6, even though the ring positions are deuterated, the
density of spins is high enough and the inter and intra-molecular cou-
plings comparable enough to blur the distinction between a clustered
distribution and a uniform environment of hydrogen atoms. In the
intermediate cases of 10 and 20 mole % solutions, where the concentra-
tion of clusters is raised, but where well-defined groups still exist,
N(t) grows continuously although more slowly than‘for neat DMN. On the
time scale of the experiment, spins from different groups are close
enough together to influence the multiple quantum dynamics to the point
where inter-cluster separations are too small to produce a discernible

plateau in N(t) versus t. Higher cluster concentration levels result
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Figure 4.14, Number of correlated spins versus preparation time for
the four solutions of DMN-dg described in Figure (4.13). The filled
circles represent values for the effective system size N(t), and the

open ones values for the effective cluster size N(c(T). The size and
extent of clustering can be determined from the pattern and rate of
growth of N(t) and N,(1).

a) both parameters grow uninterruptedly, indicating an unbounded spin
system. ‘

b) and ¢) In both samples, Nc(r) remains constant over time, indicat-
ing clusters of six atoms; the more rapid growth of N(t) in the 20
versus 10 mole % solution reflects the fact that the six spin clusters
of DMN-dg become closer to one another as the 1H concentration is
raised. |

d) After an initial induction period, N(t) remains essentially con-
stant up to approximately 500 usec, indicating a bounded system of six
atoms. At longer times when clusters interact, N,(t) remains level at

six.
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in more rapid inter-cluster communication, as demonstrated by the

steeper growth of N(t) for the 20 versus the 10 mole % solution.

4, Two-Gaussian model

In the intermediate cases, where clusters exist but are not suffi-
ciently isolated to preclude small interactions between them, a second
time dependent parameter is introduced to ascribe a size to the
clusters independently of inter-cluster events. A schematic drawing of
a two Gaussian model is presented in Figure (4.15). The simplest
approximation is to attribute the multiple quantum intensities to two
independent events: the intra-cluster correlations which have already
matured, and the inter-cluster correlations that continue to develop
between spins of different groups. The multiple quantum intensities
due to the subgroup of clustered spins are approximated by a Gaussian
whose variance is associated with Nc/2, while the remaining intensity
is approximated by a second Gaussian of variance N2/2. The total in-

tensity is the sum of both contributions and is written as:

2 2
I(AM) = m e n /Nc + mye n /N2 . (4.5)

A least squares iterative program using the Newton-Raphson method is
_employed to fit the multiple-quantum intensities to the above equation.
Now two time-dependent effective sizes can be extracted from the multi-
ple quantum spectral intensities: a cluster size Nc(r) arising from
the two-Gaussian model, and a system size N(t) whose value may in-

corporate spins from numerous groups. Recall that N(t1) is calculated

1
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Figure 4.15. Schematic drawing of the two-Gaussian model. The inset

represents clusters interacting with one another on the experimental
time scale. 1In order to determine the cluster size, a parameter No is
introduced to describe events occurring within a cluster, indepen-
dently of those occuring between clusters. The multiple quantum in-
tensities (filled circles) are the sum of intra and inter-cluster
correlations both of which are associated, independently, with a
Gaussian of standard deviation (Nc/Z)”2 and (N2/2)1/2, respectively.
Only when most of the multiple quantum intensity is due to intra-
cluster correlations is this approximation valid.
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by fitting the integrated‘intensities to a single Gaussian. The
pattern of growth of both parameters will be used to establish the size
and extent of clustering in solid samples. In the same spirit as for
N(t), absence of chance in Nc(T) over time is evidence that clusters
exist, although they may be near one another. The magnitudes of Mg, My
and N2 will change to account for the increasing number of communicat-
ing clusters over time until finally m, will become larger than My and
the approximation will no longer be valid. Only when the correlations
due to clusters dominate the multiple quantum intensities, or when mg, >
m,, can the inter versus intra-cluster interactions be addressed separ-
ately.

Returning to Figure (4.14), the values of No(1) for the 4 con-
centrations of DMN are now plotted along with the values of N(t1) dis-
cussed earlier. Considering the two extremes once again, we note tﬁat
Nc(r) is not necessary to determine the cluster size in the 5 mole %
solution, as here N(1) remains fixed for a sizeable duration of time.
Nc(r) caﬁ be calculated at longer times and results in values close to
six. By céntrast, NC(T) and N(t) both increase in the 100 % DMN
sample, confirming that the density of spins i1s too high to assign a
cluster size to this material. For the intermediate concentrations of
10 and 20 mole % where N(1) grew uninterruptedly, N,(1) now remains
constant over time with values hovering about six. These data confirm
that DMN contains predominantly clusters of six atoms which become in-

creasingly close to one another as the 1H concentration is raised.
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5. More Dilute Spin Systems and Clusters

a. 1,8-Dimethylnaphtalene-d,,

1,8—dimethy1naphtalene—d10 (DMN-d1O) is very similar to 1,8-DMN-d6,
but here, in addition to ring deuteration, the methyl groups are par-
tially deuterated as well, leaving only two hydrogen atoms on the

1H- 1H distances are

entire molecule. The inter and intra-molecular
not affected by the additional methyl deuteration. Two solid solutions
of DMN-d;4, 5 and 10 mole %, were prepafed in the same manner as those
of DMN-d6. Plots of the integrated n-quantum intensities appear in the
upper portions of Figures (4.16a) and (4.16b). 1In the 5 mole % solu-
tion, where the 2-quantum intensity is essentially dominant at all
times, the effective system size N(t) is calculated direétly from the
binomial formula of Equation (4.3). For the 10 mole % solution, the
combinatorial formula is used up to 600 psec, after which the intensi-
ties can be approximated by a Gaussian as usual.

A comparison of the six spin and two spin model clusters at compar-
able 'H concentrations reveal similar trends for N(1) and N.(1); in
both 5 % cases, N(t1) remains level up to approximately 500 upsec after
which it increases slowly, whereas in the 10 % cases N(1) rises more
steeply. What distinguishes the two materials from one another are the
actual values of the effective system and cluster sizes. In DMN-d1o,
contrary to DMN-dG, N(t) remains close to two; in the 10 % solution,
Nc(t) can be calculated at long times and lies between three and four.
These results demonstrate that the multiple quantum dynamics are sensi-
tive enough to distinguish clearly between two spin and six spin

clusters of very similar compounds.



n-quantum intensity

Number of Correlated Spins-

Figure 4.16.

v- v - v ——
CD,H CD,H @)
0.80f D D
D @@ D
I DD
. 5 mole %
0.40+
0 O 1 O 'M
10
6r N (7)
2
0 N | L ] . 1
1200 1800

600

Preparation time t (usec)

n-quantum intensity (top) and number of correlated spins

(bottom) versus preparation time for two solid solutions:
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b) 10 mole ’ DMN'd1O in DMN-d12.

For the 5 mole % solution N(t) remains close-to 2. In the 10 mole %

solution, N(t) grows with time but No(1) remains essentially constant

hovering between 3 and 4. The cluster size in these samples is very

small.
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b. Hexamethylbenzene (C6(CH3)6; polyerystalline)

Hexamethylbenzene (HMB) exists in a triclinic unit cell with the
planar benzene rings forming a nearly hexagonal net.16 Two varieties .
of anisotropic molecular motion determine the dipolar properties of
this system. First, each methyl group rapidly reorients about its C3
axis, rendering the three 1H nuclei equivalent. Second, the entire
molecule undergoes fast-limit six-fold hopping about the C6 axis of the
benzene ring,17 which reduces the intramolecular dipolar couplings
between ortho, meta, and para methyls. Intermolecular couplings remain
but, as in adamantane, interacting molecules behave as point sources.
Within a molecule, average distances between protons on different
methyl groupsirange from 3.3 A (ortho) to 6.6 & (para), and between
molecules, C-C distances range upwards from 3.7A. Sheets of molecules
in the a-b plane are separated by 5.3R. The specific systems to be
considered here are (1) a solid solution of HMB in perdeuterated HMB
with a molar ratio of 1:10, (2) a sample of HMB randomly deuterated to
a level of 80-90%, (3) neat sample of HMB, and (4) a 1:20 solid
solution as well. All the samples are polycrystalline, the mixtures
having been obtained by evaporation of solvent.

Plots of the integrated n-quantum intensity, for neat, randomly
deuterated, and the 9 mole % HMB, sample versus preparation time, are
presented in Figure (4.17). Measured values of N(t) for the two -
deuterated hexamethylbenzenes and for neat HMB are plotted in Figure
(4.18). It is evident that the same series of spectra is eventually

obtained in each case, but that the preparation time fequired to -
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Figure 4.17. n-quantum intensity versus preparation time for solid

solutions of hexamethylbenzene (HMB)

a) neat bexamethylbenzene.

b) 80~-90% randomly deuterated hexamethylbenzene.

c) 9 mole % HMB-h,g in HMB-d,g.

The growth of the multiple-quantum orders in the neat material is very
similar to that of adamantane (Figure 4.9) and squaric acid (Figure
4,10) as expected. The randomly deuterated material is intermediate
between the neat and dilute sample, where few orders grow in slowly
over time.
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Figure 4,18. N versus t/t, for neat hexamethylbenzene (squares), a

1:10 solid solution of HMB-h,g in HMB-d;g (open circles), and randomly
deuterated HMB (shaded circles). The basic cycle time was 66 upsec in
these experiments. The rates of increase of the effective size are

slower in the two dilute systems.
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realize a particular distribution dépends strongly on the in-
dividualdipolar characteristics. Consequently, we can replace the in-
dependent variable, 1, by a scaled variable, at, to define a common
time dependence for N. It is apparent from the data that a = 1 for
neat HMB, a = 1.651 0.10 for the randomly deuterated material, and

a = 3.1% 0.3 for the 1:10 mixtufe.

Intramolecular dipolar couplings, presumably large, strongly in-
fluence multiple quantum spectra at short preparation times. Since the
dilution of HMB in a deuterated lattice does not affect these cou-
plings, we might expect to see no changes in the initial development of
coherence in the mixture. However, the straightforward scaling of the
time dependence for t > 250 usec clearly indicates that the strongest
dintramolecular couplings have matured much earlier, apparently before.
50 - 100 usec have elapsed. This is consistent'with the crystal and
molecular structure of HMB, which forces the longest intramolecular
1H - 1Hdistances ;o be comparable to, and sometimes greater than the
shortest intermolecular distances. It is interesting to note here that
the observed scaling factor of ~3 for N(t) is close to the predicted
scaling of the intermolecular second moment by the square root of the
concentration of protonated molecules in the dilute mixture. This
prediction follows from treating all distant molecules as point dipole
sources, with each reproducing a local field averaged to one distinct
value by the rapid six-fold molecular reorientation.

Random deuteration of HMB affects both intramolecular and inter-
molecular dipolar couplings to some exteht. Analysis of this material

by multiple-quantum spectroscopy enables us to distinguish it both from
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neat HMB and from the other dilute system with approximately the same
‘total number of 'H nuclei. The érowth of N(t) with t for the randomly
deuterated molecules is intermediate between the two extremes, a dif-
ference more striking than the subtler changes observable in the
single—quantum.1H spectra. We can account for the more rapid formation
of spin correlations in the randomly deuterated sample, as compared to
the 1:10 mixture, by noting that the distribution of 1H nuclei is both
higher and more uniform throughout the randomly_deuterated material.
More spins are in a position to communicate with each other at any
given time.

For neat and randomly deuterated HMB, the two-Gaussian model is not
a good approximation as the values of m, are usually much larger than
the values of ms. For v = 132 useé however, m, is still less than My,
and here N, is equal to 18. For both the 9 and 5 mole % éolutions
however, the two Gaussian model can be used over longer preparation
times; results for the 5 mole % solution are plotted in Figure (4.19b)
along with the Qalues of N(t). As expected, N(1) increases too rapidly
to resolve the individual cluster size. On the other hand, Fhe values
of Nc(r) remain constant, over time, at roughly 15, indicating that
fairly large clusters do exist in the dilute sample. The values of
N,(1) for the 9 mole % sample are very similar go those of the 5 %
Sample as can be ascertained from the similar intensity plots of Figure

(4.19a) and (4.17c).

C. 1,2,3,4-tetrachloronaphtalene-bis(hexachlorocyclopentadiene)~

adduct (polycrystalline)
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Figure 4.19. a) n-quantum intensity versus preparation time for a 5

mole % solution of HMB-h,g in HMB-d,g. b) Number of correlated spins
versus preparation time for this sample. In the 5 mole % solution,
N(1) grows steadily whereas N (1) remains level at roughly 15 indicat-

ing fairly large clusters.
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This polycrystalline sample encompasses the characteris;ics of a
clustered material as well as a neat sample. On the oné hand, the
bulky hexachlorocyclopentadiené groups isolate hydrogen atoms of
different molecules from one another, creating a sharp variation of
inter versus intra—molecular dipolar coupling étrengths: on the other
hand, the "cluster concentration", or cluster to solvent-atom ratio, is
high. No crystal structure is available for this material. The 1H NMR
spectrum is very broad, on the order 50 kHz, and structureless. A zero
field NMR spectrum was obtained and computer simulations were perfofmed
to determine the positions of the Y4 hydrogen atoms. With an assumed C2
axis of symmetry, only four distances are needed to characterize the
hydrogen spectrum:‘r11=2.83 R, ri5=2.22 &, ryor= 4,34 A, and rsoso= 5,01
a'8, |

The integrated multiple quantum intensities in Figure (4.20a) show
a discontinuity in the development of the multiple quantum coherence.
Up to 300 usec, only two and a small amount of four quantum coherence
have grown; thereafter, many high ordérs appear rapidly. It is
interesting to note the difference between the time development of
these intensities relative to tﬁose of the liquid crystal sample shown
in Figure (4.11a). The plot of N(t) versus t in Figure (4.20b) reflects
the trends of the multiple quantum intensities; the effective size of.
the system remains at fohr for times ranging up to 300 usec and then
shoots up rather rapidly. From these trends it is clear that
correlations develop very quickly for hydrogen atoms within the
molecule; at longer times, the smaller dipole couplings become more

important and communication occurs between spins on different molecules
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Figure 4,20. a) n-quantum intensity versus preparation time for the
polycrystalline sample 1,2,3,4-tetrachloronaphtalene-bis(hex-
achlorocyclopentadiene)-adduct. The 2-quantum intensity is not
plotted so that higher multiple-quantum orders can be seen more
clearly. The time development of the multiple-quantum intensities is

discontinuous.
b) Number of correlated spins versus preparation time for this sample.

The effective system size N(1) remains at 4 for times up to 300 usec,
indicating that only the 4 hydrogen atoms within the molecule have
become correlated thus far. At long times, because of the high
density of clusters, a large number of intercluster interactions can
develop. As a result, N(t) grows rapidly with time, and Nc(r) increa-

ses as well.
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as well. Due to the high density of spins once intermolecular
interactions are allowed, Nc(t) grows slowly rather than levelling off
at four, thus confirming the two-fold character of this material. The
plateau in N(t) at short times is evidence of a clustered material of
four atoms and the increase in N,(t) and N(1) at long times is

indicative of a large network of hydrogen atoms.

D. Application to Hydrogen Clustering in Hydrogenated Amorphous

Silicon

1. Background

Hydrogen incorporation into amorphous silicon thin films has
improved their electrical and optical properties to a point where . they
now play a significant role in the electronics industry. In.additign
to passivating "dangling bond" defects, the hydrogen modifies the
electronic structure of these materials. Films containing between 8
and 20 atém % hydrogen are "device quality" and have roughly 1015
defects/cm3; films with higher hydrogen content can also be prepared
but usually have higher defect densities than device films. In recent
years, a number of researchers have characterized amorphous
hydrogenated silicon (a=Si:H) by numerous techniques and have furnished

information on the relationship between the structure of a-Si:H and its

pr‘operties.1

Structural information gained from electron microscopy indicates
that device films can differ from one another to the extent that some

show no features down to 10 A while others show structures on the order
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of 100 A. 1In contrast, nondevice and polymeric films (>50 atom % 1H)
show columinar growth islands and other structural features.
Information on the different types of silicon-hydrogen bonds have been
obtained by infrared spectroscopy; predominantly monohydride (Si-H)
silic&n-hydrogan bonds are observed in device films whereas dihydride
(Si;Hz),_trihydride (Si-H3) and polymeric ((Si-H,),) species are
observed in the higher hydrogen containing fiims. From proton nuclear
magnetic resonance it has been ascertained that the hydrogen is
inhomogeneously distributed in device materials.19’20 Approximately U4
atom % hydrogen is present as spatially isolated monohydrides and
molecular H2, and gives rise to a narrow (3-4 kHz) resonance line. The
remaining hydrogen résults in a broad (25 kHz) resonance line
indicating clusters of monohydrides. While the magnetic resonance
linewidths and magnitude of the narrow component remain constant, the
magnitude of the broad component grows with increasing hydrogen
content. Heating the material to 600 K causes the hydrogen associated
with the broad component to evolve, 1eaving only a narrow resonance
line in the NMR spectrum.

Many questions concerning the distribution of hydrogen in a-Si:H
films still remain unanswered. A drawing of local hydrogen structure
shown in Figure (4.21) serves to illustrate the issues raised in this
Section: What is the nature of the hydrogen distribution responsibie
for the broad resonance line? How does the dense hydrogen coexist with
the dilute hydrogen? On the atomic level, what are the differences
between device and nondevice quality films? By using multiple quantum

NMR, a technique inherently sensitive to spatial arrangements of atoms,



165

XBL 8510-4450

Figure 4.21. Schematic 3-dimensional drawing of clustered
monohydrides in hydrogenated amorphous silicon (a-Si:H). The silicon
atoms are in a tetrahedral bonding configuration. Silicon atoms,
hydrogen atoms and covalent bonds are represented by open circles,
filled circles and solid lines, respectively. The drawing is intended
to motivate questions concerning the distribution of hydrogen in a-
Si:H thin films.
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we present the first study in which the size and extent of hydrogen
clustering, in selected a-Si:H thin films, has been determined.

Five different'a-Si:H samples, prepared by plasma deposition, are -
considered: two device quality films with different hydrogen .
concentrations, one nondevice quality film, one polymeric and one
annealed sample. Sample preparation procedures, i.e. the reactant gas
composition, the substrate temperature, the power of the rf electrode

and the final atom % 1H, are listed in Table 1.

2. Experimental Results and Discussion

Multiple quantum spectra of the a-Si:H samples for two different
preparation times are shown in Figure (4.22). A comparison of the
spectra at t=180 and 360 usec was made to see whether the intensity
distribution of the multiple quantum orders ‘changes with time or
remains constant. Two extremes can be observed; the 50 atom% spectra
clearly show higher orders at longer times whergas the 8 atom% spectra
remain very similar, suggesting a bounded spin system. Although not
shown in Figure (4.22), spectra were also obtained to assess the
contribution of the isolated monohydrides and molecular H2 to the
multiple quantum experiment. After annealing the 8 atom % 1H device
sample, the remaining hydrogen (< U4 atom %) yields a spectrum with a
narrow 'H resonance line (4 xHz). No multiple quantum coherences are
created for short preparation times and only at times greater than 360 -
us can small amounts of two quantum coherence be observed. Therefore,
on the experimental time scale, the dominant contributions to the

multiple quantum spectra result from spins responsible for the broad
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Table 1: A-Si:H Sample Preparation Conditions

Sample Gas Temperature Power Atom

Composition (oC) (W) 314
Annealed® 1003 StH, 275 1 4
Device A 100% SiHy 275 1 8
Device B 5; SiHy/He 230 18 16
Nondevice  100% SiH) 75 | 1 25
Polymeric 100% SisHg 25 _1 50

*annealed 600°C, 90 minutes
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Figure 4.,22. 180 MHz 1H multiple quantum spectra of a polymeric, non-

device, and two device quality a-Si:H samples are plotted for two dif-
ferent preparation times, t = 180 and 360 usec. From top to bottom,
these samples contain 50, 25, 16 and 8 atomic % 1H, respectively.

Over time, the distribution of intensity across the multiple quantum
orders does not change in the 8 atom % sample, suggesting a bounded
spin system. As the hydrogen concentration increases, the spectra
begin to change more from one preparation time to another.
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resonance line.

In order to quantify the number of correlated spins at different
preparation times, the intensity distributions of the multiple quantum
spectra, plotted in Figure (4.23), have been characterized by the two
time-dependent parameters, N(t) and N,(t). The number of correlated
spins is plotted versus preparation time for the a-Si:H samples in
Figure (4.24). Reflecting the trends seen in both the multiple quantum
spectra and the intensity plots, N(t) remains roughly constant over
time for the 8 atom % device quality sample, confirming the hypothesis
that the spin system is limited to isolated clusters of atoms. By
contrast, N(t) grows with time for the 16 atom %, the nondevice 25 atom
% and the polymeric 50 atom % 1H samples. The behavior of NC(T) is
indicated by the dashed lines in Figure (4.24). The increase ih both
N(t1) and N, (1) for the polymeric sample indicates a uniform distribu-
tion of spins. The effective cluster'size values of the 16 and 25
atom % samples are now very similar to the values of N(t) obtained for
the 8 atom % sgmple, indicating that the 25 %, 16 %, and 8 atom %
samples all contain small clusters of four to seven atoms. The uniform
distribution of atoms in the polymeric sample is consistent with tke
fact that it was prepared differently from the others and contains
((8i-H,),) species.

Having established that the two device samples and the nondevice
saﬁple all contain clusters of roughly six atoms, we can now
distinguish features between them from the pattern of growth of the
effective system size, N(t), versus time. Depending on how close the

clusters are to one another, the increase in N(t) will be more or less -
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Figure 4.24. Number of correlated spins versus preparation time for
50(a), 25(b), 16(c), and 8(d) atom % a-Si:H samples. After an initial
induction period, N(t1) is essentially constant for the 8 atom %

sample, remains nearly level up to 250 us for 16 atom % sample, grows
continuously for the 25 atom ¥ sample, and increases very rapidly for
the 50 atom % sampie. The dashed lines which represent values of
No(1) level off a£ approximately six for both the 16 and 25 atom %
samples. The values of N(1) for the 8 atom % sample are very similar
to the values of N,(1) for the other two samples. These data indicate
that the two device samples (8 and 16 atom %), and the nondevice
sample (25 atom %) all contain clusters of approximately six atoms;

as the hydrogen concentration is increased, the clusters become closer
to one another. In contrast, the polymeric 50 atom % sample is com-
posed of a uniform distribution of spins as evidenced by the growth of
both N(1) and N,(1).
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dramatic. For the 8 at. % device sample, N(t1) is essentially constant
for all times; for the 16 at. % device sample, N(1) is nearly level for
times up to about 250 usec, after which it begins to increase and, for
the nondevice sample the growth in N(t) is continuous. Therefore, what
distinguishes one sample from another is that the concentration of
clusters increages as the hydrogen concentration is raised. The above
results are corroborated by the experiments performed on model
compounds with known concentrations of 6 spin clusters. Solid solutions
of 1,8 dimethylnaphthalene d6( ring positions deuterated) in
perdeuterated dimethylnaphthalene were prepared and the multiple
quantum experiments, done for comparable 1H concentrations, result in
plots of N(t) and Nc(r) shown in Figure (4.14), that are very similar

to those obtained for the a-Si:H samples;

c. Conclusion

In conclusion, by using a time resolved solid state multiple
quantum experiment, the extent of 1H clustering in selected a-Si:H
films has been determined:. It is found that two device quality films
with 8 and 16 atom % 'H and one nondevice quality film of 25 atom % g
all contain clusters of approximately 6 atoms. As the 1H concentration
is increased from 8 to 25 atom %, the multiple quantum experiments
indicate that these clusters become physically closer to one another.
In contrast, a polymeric sample with 50 atom %.1H was also investigated
and found to consist of a uniform distribution of spins. .The
geometrical implications of modeling the hydrogen microstructure of

a-Si:H with six spin clusters are worth considering. For samples
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containing 8, 16, and 25 atom % 1H, the concentration of cluster
defects would be approximately 0.7, 2, and 3.3 "atomic" percent,
respectively. If clusters_were distributed randomly over a silicon
lattice, their average distance from one another would be 14, 10, and 8
R respectively. This is superimposed on a "random" lattice of isolated
monohydride groups with an average spacing of approximately 8 A. Thus
the transition from device quality a-Si:H to nondevice quality (which
occurs at roughly 20 atom % 1H) is seen as increasing the concentration
of clusters until their separation roughly equals the separation of
dilute monohydride groups. This "lattice saturation" phenomenon may be

21

relevant to electronic structure models based on disorder and quantum

well localization.22

E. Conclusion

1. Extension of the Multiple-Quantum Experiment in Solids

a. Maintaining a Fixed t, Period

In the multiple~quantum experiments described here, the important
information is contained in the integrated intensities of the orders
rather than in the different spectral frequencies occurring within each
order. Therefore, the linewidth is not a necessary component of these
experiments. During the t, interval of the multiple—quantuﬁ
experiment, the collectively excited groups of spins evolve in the
local dipolar fields of all the other spins. The linewidth or
subspectral structure is thus determined during this period. If the t,

period is kept constant, then each order would appear as an infinitely
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sharp line containing the magnitude of the n-quantum coherence.23 This
version of the experiment gives better signal to nocise, as the lines
are infinitely narrow and is also much shorter, as the number of
sampled points ;s now only (2w/# of detected orders) for a particular
preparation time.

A second version of the experiment, which would not only result in
the features described above, but would also reveal the integrated
intensities versus preparation time all at once, employs the method of
parameter proportional phase incrementation.zu This method was used
earlier as a search procedure to select a preparation time which
optimizes the intensity of a particular n-quantum order. While the
evolution time t; is kept fixed, the parameter t is simultaneously
incremented with the phase of the preparation period. The resﬁlt is an
excitation function describing the magnitude of the n-quantum coherence
versus preparation time. Therefore, only one experiment would now be
needed to obtain the desired intensity information, rather than a set
of experiments for different preparation times.

Eliminating the linewidths in the multiple-quantum experiments is
reasonable in most cases, although certain materials may require
special care., For instance, in hydrogenated amorphous silicon, where
the single—~quantum linewidth can be decomposed into two resonance
lines, it may be important to investigate the multiple-quantum

lineshape as well.

b. Scaled Pulse Sequence

One of the problems noted in this chapter concerns the rapid time-
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development of the number of correlated spins under the Hamiltonian

1/3(H ). For instance, when the distribution of atoms in the

yy xx
sample is composed of a high concentration of clusters, then inter-
cluster correlations may develop too rapidly to resolve the desired
intra-cluster interactions. One means by which the size of the cluster
can still be aécertained is to approximate the multiple-quantum
intensities with the two-Gaussian model.

A second solution is to enhance the time resolution of the
experiment by scaling the non-secular Hamiltonian under which the
multiple-quantum coherences evolve. Then, the number of correlated
spins will develop more slowly and intra-cluster interactions will be
more readily distinguished from inter-cluster correlations. The idea

behind scaling (Hyy-Hxx) is to "add" a component of (H,, + Hyy + H,,)

to the average dipolar Hamiltonian:

=(0) _
H D= a(Hyy Hxx) + b(Hxx + Hyy sz) . (4.6)

Hyy = Hyy is now scaled by (a/a'+ b) and clearly nothing evolves under
(Hxx + Hyy + sz). A pulse sequence can be constructed by noting first
that

=(0)
H 5= (b + 2a) Hxx + bHyy + (b+a) sz (4.7)

using (Hyy - Hyy) = (Hy, + 2Hy,). 1In addition, we try to obtain

ﬁmg% = 0 and try to symmetrize the sequence with respect to the average
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dipolar Hamiltonian. The sequence is designed assuming finite pulse
widths.

At this point many pulse sequences can be designed and one in
particular is proposed in Figure (4.25). 1I,, in the toggling frame,

.moves between
(ZY) (¥X) (XY) (YZ) (ZY) (¥X) (XY) (Y2) (4.8)

with delays as indicated. Whgn b = 2a, the calculated average dipolar
Hamiltonian is equal to 1/3(Hyy - Hxx) as usual; ﬁog% = 0 and the odd
order correction terms to HD are zero. When b > 2a, (Hyy - Hxx) will

be scaled down.

2. Summary

Multiple quantum NMR, a technique which induces spins to act
collectively through their dipolar couplings, is used to determine the
spatial distribution of atoms in materials lacking long-range order;
in particular, the size and extent of clustering is probed. Based on.
the proximity of spins to one another, correlations between them will
develop more or less rapid;y. A time-resolved multiple quantum
experiment measures both the number of correlated spins and the rate at
which these develop. The key feature in the time-dependent experiments
is that in clustered materials, where groups are physically isolated
from one another, the number of absorbgd quanta and correlated spins is
essentially bounded, on the experimental time scale, by the size of the

cluster. In a uniform distribution, however, the interacting network
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Figure 4.25. Pulse sequence designed to scale (Hy, - Hyy) by
(a/(a + b)). When the multiple-quantum coherences are created under

this new Hamiltonian, the number of correlated spins will develop more

slowly.
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of spins ;ncreases monotonically with time. These events are displayed
in thé multiple quantum spectra by changes in the overall intensity
distribution across the mutliple quantum orders. The intensity
envelope is quantified by two time-dependent parameters, the effective
system size N(t1) and the effective cluster size N, (1). Thus.by
studying the trends in N(t) and No(1), i.e. whether they level off or
grow with time, we can ascertain the size and extent of clustering in
solids.

Model systems.containing different hydrogen env%ronments were
investigated by this technique: a liquid crystal in which inter-
cluster couplings were zero; solid solutions consisting of protonated
samples mixed with perdeuterated counterparts in which inter-cluster
distances were varied by manipulating the level of dilution; neat
protonated polycrystalline so’lids where inter and intra-cluster dipolar
couplings were roughly comparable and hydrogenated amorphous silicon
thin films containing different conceéntrations of hydrogen atoms. The
atomic distributions in these materials ranged from truly isolated
clusters to uniformly distributed arrangements, with emphasis on the
intermediate cases where concentrations of clusters were addressed.
These techniques are presently being used to study clustering of

molecules adsorbed on zeolites and trapped in silicate glasées.
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F.Appendix

To calculate the effective cluster size N, in Chapter IV, we fit

the experimental data to the sum of two gaussians (Equation 4.5)

First, we let In = experimentally measured value of the integrated

intensity of the nth quantum coherence and I; = predicted value of I,

P . Y (4.9)

We want the square error,

* 2 '
SE = }:(1‘.n - In) , (4.10)

. to be a minimum. Therefore, the derivative of the SE with respect to
all its predictors should be zero and we try to solve the following

four equations simultaneously:

9SE aSE 9SE 9SE
-33-1--0, a—az-=l0, K=O, 3T2=0 (4.11)

This can be done by Newton's method.25 More specifically if



then the four equations are

where 15jsH4,

The first

3(SE) *
T T

0=fr, =
J § n

The derivatives needed for

|~

.

Newton's method are

af aIr aIr Al
giaz (I*-I)aan*-an —
X, ' 'n n" 9x, xJ X, xJ
derivatives are
.*
T | -1z o0
F)
5
*
n ., 372 -nz/nj [ﬁ_l]
abJ 33 bm 2
The second derivatives are, for j # k,
#* * * *
BIn - B BIn c o BIn . aln o
aajaaJ aajaak _ aajabk abkabj
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*
n ., -32,0%m, 0?1 (4.16)
da b,  J i y
3 : J
a1 y
n_ L, 7572 n/b, In' 3% 3
b, 3b 2" o, '3
9 J 33 bj J

The program (written by Karen Gleason) operates as follows:

a) Make a first guess for m,, No» my, Ny and choose NMAX- the
maximum number of allowed changes in the four variables before the
program ends- and R2. The first guess is calculated by fitting the
integrated intensities of orders n=2 and 4 to a Gaussian of variance
N, with magnitude m,, and also by independently fitting the intensi-
ties of the two hiéhgst orders to a Gaussian of variance N2 with
magnitude ms.

b) Compute the square error (SE).

¢) Compare (SE/VAR) ¢ (1-R%)

or NLOOP > NMAX
d) If the compare statement is yes, then the program is done.

If not, then m Nc' mo and N2 are changed by Newton's method

e
the loop counter NLOOP is incremented by 1 and the new SEvis
calculated.

It is interesting to comment on the fit of the data to both the
single Gaussian, to obtain N, and to the two-Gaussian model to obtain

N For uniform distributions (adamantane, squaric acid) the fit to a

c-

single Gaussian was generally quite good - R2 was usually 0.99. For
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totally isolated clusters (liquid crystal) the value of‘,R2 was ex-
cellent, usually 0.999. When concentrations of clusters existed as in
1,8-dimethylnaphtalene-d6, hexamethylﬁenzene, or amorphous silicon
hydride then the fit to a single Gaussian was worse, sometimes as low
as 0.92. Here, the two-Géussian model was used and R2 was generally
0.98-0.99.

What these numbers seem to indicate is that when the size of the
cluster is well-defined at any particular preparation time, then the
data can be fit to a single Gaussian. This appears to be the case for
uniform distributions, where the size increases monotonically with
time, and for truly isolated clusters. For concentrations of clusters-
the idea was the following: when clusters interact with other
clustefs, then the intensities are approximéted by tﬁo independent
events. The first is the correlation between spins within a cluster.
For the second event the idea is to "redefine" the system by saying
that the spins within the cluster_are defiﬁed as a single spin and
that different clusters or "spins" now interact with one another.

This second set of interacting "spins" will have a size N>. Now two
sizes can be stipulated: one is the actual size of the cluster and the
other is the size of the interacting "spins", N2, which can perhags be
thought of as a fudge factor. If clusters were not interacting with
one.another, then the sum of two Gaussians could be used to determine
the distribution of clusters present in the system. 1In this case
though, the dynamics are more complicated as clusters are interacting.
But assuming that m, > mo and that the fit to the two Gaussian model
is good, then although cluster size distributions may exist, they

occur in low concentrations.
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V. APPLICATIONS OF COMPOSITE PULSES AND MULTIPLE-QUANTUM METHODS TO

SPATIAL LOCALIZATION AND IMAGING £

A. Spatially Selective NMR with Broadband Radiofrequency:Pulses

1. Introduction “

It is often useful in many areas of chemistry to be able to
obtain spectroscopic informa;ion from a localized region of a sample
noninvasively. Spatial localization is desirable in a number of
systems, ranging from heterogeneous solids such as coals, catalysts
and semiconductors to living tissues and organisms. For example, the
elucidation of the action of a catalyst may be aided considerably by
restricting-opserved signals to those originating from the surface
layer alone, eliminating the otherwise overwhelming contribhtion from
the bulk. The need for spatial localization is also felt keenly in in
vivo NMR and magnetic resonance imaging, where signal frequently must -
be obtained from a selected organ without interference from surround- —
ing tissues. Thus spatially selective excitation, which can be dire-
cted at specific sites in a heterogeneous system and which can yield
accurate chemical information from these sites, is a highly desirable
goal for spectroscopy in general and NMR in particular.

In a recent Communication1

» Tycko and Pines introduced a
technique designed to localize NMR signals in space by combining the ,
radio-frequency (rf) gradient of a surface 00112 with an excitation

sequence narrowband in rf field strength.3'6 The excitation sequence

is a variant of a composite = pulse7 that inverts spin populations
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only within a small range of rf field amplitudes. This chapter

8 First, a

enlarges upon the earlier work ir_l three important areas.
pulse sequence is suggested that has the required narrowband proper-
ties with respect to the rf amplitude but gt the same time uniformly
excites over a‘substantial range of resonant frequencies. This allows
the tgchnique to be used in situations where the observed signals span
a large chemical shift range, without requiring unreasonably high rf
power. Second, experimental results on a phantom sample and using a
surface coil are given to demonstrate both the degree of spatial lo-
calization that may be achieved and the chemical shift range that may
be covered. Third, we present a brief discussion of the relationship
of our method to'spatial localization methods proposed by ather

authors, with the intent of pointing out the experimental conditions

under which different techniques may be preferred,.

2. Development of Pulse Sequences

a. Narrowband Localized Excitation (NOBLE).

' The first is

A NOBLE pulse sequence is comprised of two parts.
a narrowband inversion sequence P, which inverts spin populations in a
narrow range of rf amplitudes centered about a nominal value
m?(rad/sec). The second is a read sequence R, which in the simplest
case may be single pulse. The free induction decay (FID) after'apply-
ing P and R in succession is subtracted from the FID after R alone.
The remaining signal arises only from those regions in space where P

inverts spins and R excites signal. Signal contributions due to re-

sidual transverse magnetization created by P are eliminated either by
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dephasing in a delay between P and R or by phase cycling of P.

Dephasing may result from an applied pulsed static field gradient, or

from transverse relaxation if T, < Ty4. E
This method leads to very simple expressions for the signal .

amplitude and phase. Suppose that P produces an inversion w(w1,Am) at

an rf amplitude wq and a resonance offset Aw, where W is defined as

usual 1,377 to run between -1 and 1, with -1 indicating equilibrium

spin populations and 1 indicating complete population inversion. 1In

addition, suppose that R excites transverse magnetization with an

amplitude A(w1,Aw) and a phase ¢(w1,Aw). Then the signal amplitude is

proportional to S(w;,Aw), given by

S(w1,Aw) = [1 + W(m1,Aw)J A(w1,Am) . _ (5.1)

and the signal phase is ¢(w1.Aw). An additional factor of w4 would be
present in Equation (5.1), arising from the detection efficiency, if
the same surface colil were used for both excitation and detection{9

The fact that the signal phase depends only on R is significant. 1In

general, the direction of the net rotation axis of P, loosely speaking

the "phase" of P, changes considerably with wy . If the signal phase

were to depend on the phase of P, contributions to the total acquired .
signal with different values of wq and the same value of Aw could
interfere destructively.10 Thus, a loss of sensitivity would result.

NOBLE avoids this problem, since only the inversion produced by P and

not the phase plays a role.
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b. Selective Inversion Sequences

There remains considerable flexibility in the choice of specific
sequences for P ahd R, subject to the constraint that the duration of"
the sequences must be short compared to T1 and T2. Narrowband
sequences have been derived using iterative schemes by our
laboratory3’u and by Shaka and Fr'eeman.5 The iterative schemes can
generate pulse sequences with arbitrarily small bandwidths in wq -
Typically, however, the bandwidths in Aw are also small, i.e.

W(w;,0w) is a strong function of Aw as well as w;. Using fixed point
methods, some progress has been made towards the development of iter-
ative schemes for generating inversion sequences that are narrowband
with respect to w9 and broadband with réspect to Auu."I For the present
purpose, however, we programmed a computer to search for sequences
that meet given bandwidth criteria. It was found that less than nine
pulses do not meet the inversion profile requirements over both w; and
Aw. Therefore, in a typical search, the program examines all pulse
sequences composed of nine pulses with nominal flip angles of 180° and
with the individual phases in multiples of 15°. The desired values of
w(w1,Aw) are specified for 26 combinations of wy and Aw. The actual
values of W(w1,Aw) are calculated for each possible sequence. The
sequence with the smallest variance between the actual w(wl,Aw) values
and the desired W(w;,Aw) values is selected. Only sequences with
symmetric phases are considered, reducing the number of sequences that
must be tested and eliminating the need to examine both positive and
negative values of Am.11 Once a sequence is found, it can be refined

by changing the pulse phases in 5° increment. Simulations
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indicate that phase errors within 5° of the nominal phase do not

appreciably alter the inversion profiles, therefore further refinement i
of the pulse phases ils not necessary.

The sequence 180301802051802301808518001808518023018020518030,
which we denote PO. results from such a search procedure. The contour
plot in Figure (5.1.) illustrates the inversion performance. Accord- "
ing to Equation (5.1), PO allows the signal amplitude at wy = w? to be
greater than 75% of its maximum for all resonance offsets in the range
-O.3w? < Aw < 0.3w?. Significant signal at undesired values of wq can

only develop when |Aw| > 0.3w?.

c. Read Sequences.

Any sequence composed of an odd number of nominal 180° pulses
such as Po, will invert spin populations when Wy is any odd multiple
of w?. Thus large signal contributions may arise from regions in

space where wq is approximately an odd multiple of m? in addition to -

ghe desired region where wy. is approximately equal to w?. In refere- —
ncé 1, Tycko and Pines suggested using a single nominal 60° pulse for

R. A nominal 60° pulse becomes a 180° pulse at wq = 3m?, making

A(3m?.0) = (0, Bendall has demonstrated the same apbroach for suppres-

sing high flux signals with depth pulses.jz’13 In Figure (5.2a), we

show a plot of S(w1,0) for NOBLE using Po and a nominal 60° pulse for

R. Although S(3w?,0) = 0, there is substantial signal on either side .
of 3w$. Signals on opposite sides of 3w? have opposite phases so that

partial cancellation may be expected, but the suppression is not

ideal. The signal at m? is reduced from its maximum factor of /5/2,
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Contour plot of inversion performance versus resonance

offset (Am/w?) and rf field strength (w1/m?) for the composite pulse
sequence Pj: 180301802051802301808518001808518023018020518030. Each
pulse is specified by two angles, e¢. where 8 denotes the flip angle
and ¢ the phase. Py produces narrowband inversion with respect to w,

and broadband inversion with respect to Aw.
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Figure 5.2. Simulations of NOBLE signal amplitude S(w1.Aw) with the
inversion pulse Pg» as specified in Figure (5.1), and various read

sequences R:

a surface coil is included.

a) S(w,. 0) for R = w/3

b) S(w, 0.24]) for R = 7/3

An additional factor of wy arising from the detection efficiency with

The read sequence Ro of (¢) and (d)

effectively eliminates the signals from the 3w1 region while maintain-
ing almost maximum intensity in the w1 region.
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since it is excited by a 60° pulse rather than a 90° pulse. In addi-
tion, as can be seen in Figure (5.2b), a 60° pulse is not broadband
over the desired range of frequency offsets. |

A better choice for R would have the following three properties.
First, it would be a broadband inversion sequence near 3w?, inverting
spins and exciting no signal over large ranges of both wq and Aw.
Second, it would excite nearly the maximum signal at wy = m?. A
sequence that has these properties is 90180120030909027012090300,
which we denote Rg- Rg is derived from the composite w pulse

14 simply

2701803600909027027036090900 developed by Shaka and Freeman,
by dividing all pulse lengths by three. That Ro has the first proper-
ty above is a consequence of the work of Shaka and Freeman;1”‘that it
has the other two properties might be coincidental. Figures (5.2¢),
and (5.2d) are plots of S(w;,8w) for NOBLE using Py and Ry. The
selectivity with respect to wg and the useful range of Aw are illustr-
ated; the signal profile is essentially identical between Aw = 0 and
Aw = 0.2,

At this point, we stress that other choices for P and R are poss-
ible. PO and RO were selected principally to provide a large
bandwidth in Aw and to eliminate signal contributions from the 3w?
region., Other considerations may require different sequences, for
example a P with a narrower bandwidth in wq in order to produce finer
spatial resolution.1'3"5 Read sequences that do not excite signal at
higher multiples of wy, ©.8. both 3w? and 5w?, can be found.

A potentially important possibility is the use of an adiabatic

15 16-18

frequency sweep or an equivalent phase modulated pulse as the
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read sequence. Adiabatic sweeps discussed in Chapter II can invert

spins essentially completely for arbitrarily large values of wq above

17,18 t

a threshold w% that depends on the sweep rate. Below w{s the

18

conditions for adiabaticity are not satisfied and transverse

magnetization is created. Thus by placing the threshold between w?

9 could be

and 3w?, all contributions to the signal except those near o
eliminated. 1In addition, if the fine spatial resolution afforded by P
is not required, an adiabatic sweep could be used alone. This would

be an entirely new approach to spatial localization.

3. Experimental Demonstration of NOBLE

a. Experimental Design

Experiments were performed at 180 MHz on a phantom sample of
H20(2) using a three turn surface coil. The configuration of the
sample and coil is shown in Figure (5.3a). The sample consists of a
10 mm long section of delrin rod with a diame;er of 4 mm, into which
five holes have been drilled with a spacing of 2.0 mm. The holes are
filled with HZO(E) and are labelled as positions 1 through 5 in order
of increasing distance from the plane of the coil. The coil diameter
is 1.5 em. To provide a one-dimensional image of the sample, a pulsed
" field gradient of approximately 1.14 Gcm'1 is applied along the long
axis of the sample. Figure (5.3b) is a one-dimensional image of the
phantom sample obtained by giving a single pulse and Fourier trans-
forming the ensuing FID. Signals from positions 1 through'5 are
clearly distinguished. The decrease in signal intensity with increas-

ing number is a consequence of both the smaller pulse flip angle and

i 1

JEegE
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Surface (a)
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(b)
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Frequency (kHz)
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-

XBL 855-2640

Figure 5.3. Top: Surface coil and sample geometry.

The sample consists of a delrin rod (4mm diameter) containing 5 small
holes filled with H,0(%).

Bottom: 1H spectrum of the phantom sample recorded after a w/2 pulse
at position 1, A static field gradient is used to obtain the one dim-
ensional image.
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the reduced detection efficiency with increasing distance from the
surface coil. Thg value of w1/2ﬂ at each position was determined by
adjusting the pulse length so as to produceva null of the signal. In
order of increasing position number, the values are 33, 21, 12.5;, 7.9
and 4.9 kHz. The experimental timing sequence is shown is Figure
(5.4). The static field gradient serves only to allow a direct
visualization of the spatial distribution of signal contributions for
demonstration purposes and, less importantly, to cause transverse
magnetization to dephase during t in Figure (5.4). The static field
gradient is not a relevant component of the spatial selectivity of

NOBLE.

b. Experimental Results

Figure (5.5) illustrates the degree of spatial localization re-
sulting from NOBLE. Figure (5.5a) is the image resulting from excita-
tion by RO; Figure (5.5b) is the image resulting from excitation by_
Rg after inversion by PO. The pulse lengths are adjusted to the rf
amplitude at position 3, i.e. w = 12,5 kHz. Figure (5.5¢) is the
difference of Figures (5.5a) and (5.5b). Appreciable signal remains
at position 3 only.

The resonance offset range of the Po and R0 sequences is
demonstrated in Figure (5.6). NOBLE is applied with the pulse lengths
adjusted to localize the signal to position 3. Without changing the
pulse lengths, the rf carrier frequency is changed in increments of
1000 Hz. Good localization is preserved up to resonance offsets of

3000 Hz, or w/w®; = 0.24.
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| Static Field Gradient

\ N

Preparation (P,) T Read (R,

0582615

Figure 5.4. Experimental timing diagram. The selective inversion
pulse, Po. shown in Figure (5.1) is followed by a period t, during
which transverse magnetization is allowed to dephase. The free induc-
tion decay is recorded following the read pulse, RO. of Figure (5.2c).
A pulsed static field gradient along the long axis is used to provide
the one dimensional image of the phantom containing H20(2). The NOBLE
experiment is performed by subtracting the inverted signal from the
FID obtained after Ro alone. The signal that results when the pulses
are applied with a surface coil arises only from a localized region in

space.
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Figure 5.5. 1H spectra obtained according to the NOBLE method for the
phantom water sample shown. Pulse lengths were calibrated with re-
ference to the nominal rf amplitude, w? = 12.5 kHz, existing at posi-
tion 3.
a) Ry = 90,801204309(90579120gg30,. The spectrum contains
signals from all five bulbs.
b) Spectrum read by Ry following a spatially selective inversion
pulse, Py = 180301802051802301808518001808518023018020518030,
adjusted for bulb 3. ' ,
c) Difference spectrum obtajined by subtracting b) from a). Only
signal from position 3 is retained in this spatially localized
spectrum.
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BULB 3 SELECTIVITY

Frequency Offset: Aw/wl = 0 0.08 0.16 0.24

ﬂ

|- l l |
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e

XBL 855-2643

Figure 5.6. Stacked plot illustrating the broadband properties of the
composite inversion pulse with respect to resonance offset. Each peak
is a spatially localized signal from bulb 3, obtained under NOBLE with
frequency offset as marked. Spatial Sselectivity is achieved success-

fully up to a frequency offset of approximately 25% of the nominal rf
amplitude.
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4, Discussion of Spatial Localization Methods

Various methods for spatially localizing NMR signals, with the
preservation of spectral information, have been developed. Some of
19-30

these rely on static field gradients, some rely on rf field

1,5-6,12-13,31-40 ;14 some rely on a combination of the

gradients,
two.12’u1 Methods that rely on static field gradients have the

advantage that signals can in principle be localized to a well-re-

stricted sensitive volume, for example a cube. They have the dis-

advantage that pulsed gradients in three independent directions are

required for localization in three d;mensions. Methods that rely on

rf field gradients have the advantage of comparaﬁive simplicity,

1nsofarlas probe or magnet design is concerned, and can exploit the

Ssensitivity advantage and partial localization inherent in surféce

coils.‘?’“2 The major disadvantage of rf gradient methods, including

NOBLE, is the diffuse sensitive volume, as4determ1ned by the shapes of -
surfaces of constant transverse rf fields. Spatial localization
achieved by the selection of a particular value of the of the By field
is not necessarily restricted to a point on the axis of the surface
coil but will also occur along the transverse component of the rf
field. This results in a sensitive volume whose shape is defined by
the rf field profile of the surface coil. This disadvantage can be
overcome to an extent by alternative coil geometries,u3 multiple ex-
citation coils,37 separate excitation and detection coils,35 and the
combination of rf and static field gradients.’z’u1

For the present discussion, we limit ourselves to rf gradient



202

methods. In addition to NOBLE, there are two other techniques that

have been developed to date to acquire NMR signals only from a limited
spatial region in an rf gradient. One of these, that of Shaka et
al.,s'6 also makes use of narrowband inversion sequences. Signals
from outside the region of interest are eliminated in a phase cyecling

5 6 FID signals.

scheme involving the coaddition of four” or sixteen
Provided that the same inversion sequence is used, the sensitive
volumes of NOBLE and the four step version of Shaka et al. are the
same. The latter method is susceptible to destructive interference
within the sens;tive volume arising from phase variations in the in-
version sequence as discussed above. Whether this proves to be a
significant distinction in practice is determined by the choice of the
inversion sequence and by the signal distribution within the sensitive
volume. The sequence 180018027018Q180 demonstrated by‘Shaka et al.6
produces no phase variations on resonancé, a consequence of the anti-
symmetric rf phases of such sequences. |

Shaka and Freeman have also described another method designed to o
function over a large range of resonance of‘f‘sets.uO Here, composite
prepulses, broadband in both Aw and wq, are incorporated into phase

.

cycling schemes in order to achieve the desired localization. As more
prepulses are applied, the wq profile becomes progressively narrower.
The best signal profile, which covers a large range of resonance L
offsets and is narrowband in rf field strength, arises from a 24 stage
scheme containing three prepulses. The phase of the signal is well

behaved with this method.

The second technique is the dep;h pulse method of Bendall et é,
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a1.12-13,34-39 Depth pulse sequences all consist of strings of pulses
combined with specific phase cycling schemes. The pulses themselves
~do not possess narrowband properties. Rather, the sensitivity to the
" rf amplitude results from the extensive phase cycling, which cancels
signals from undesired spatial regions. Thus, the depth pulse method
is conceptually quite different from NOBLE, arising out of the phase
cycling tradition in NMR rather than the more recent composite pulse
tradition.7'

Depth pulse sequences that provide localization in the vicinity
of wy = w? similar to that in Figure (5.2) require the coaddition of
16 or more FID signals.13 Procedures for eliminating signgl from the
3m$ and Sw? regions have been suggested, and require 32 and 64 FIDS
respective}y.12 The useful reéonance offset ranges of the depth pulse
sequences_ are similar to that exhibited using PO and RO.

We expect NOBLE, when combined with a suitable inversion pulse,
to be useful under a number of relevant experimental conditions.-
First consider a situation in which the intrinsic signal to noise
ratio is high and in which time-is limited. In this case, NOBLE
offers the advantage of good time resolution. In addition to the re-
quirement of fewer FID signals, NOBLE can be repeated with an
arbitrarily short recycle delay without appreciable degradation of the
spatial selectivity. This is because the longitudinal magnetization
before each shot in the undesired spatial regions is a constant, in-
dependent of the pulse phases in the previous éhot, once a steady

state is reached. Rapid pulsing can lead to a greater signal to noise

ratio in a fixed time.
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Another important limit is an experiment with a low intrinsic
signal to noise ratio and with no time constraint. In such an experi-
ment, none of the techniques has an overriding, intrinsic advantage.

A decision is likely to be made on the basis of experimental con-

_ venience. The_use of separate excitation and detection coils,35 and
the use of multiple excitation coils to restrict the sensitive volume
have been developed for depth pulses by Bendall et al.37 Ideally,
these ingenious multiple coil experiments could be combined with the
selectivity of NOBLE.

An alternative for experiments in which considerable signal

averaging is permitted or required is to use a rotating frame chemical
shift imaging (RFCSI) technique.3'™33 Briefly, a two-dimensional RFCSI
»experiment consists of collecting a series of FIDS, écquired in the
intervals labelled by t2, following excitation by a pulse. of variable
length t1, from a surface coil or other source of an inhomogeneous rf
field. A double Fourier transform yields a two-dimensional "spectrum"
with spectral information along one axis and rf strength, i.e. dis-
tanée, information along the other axis. RFCSI clearly differs from
NOBLE and depth pulse sequences in that signal from all spatial
regions is preserved but is separated by the Fourier transformation
with respect to t;. 1In order to achieve a spatial resolution and
extent comparable to that in Figures (5.2) and (5.5), a minimum of
approximately 16 values of t1 would have to be sampled. Thus the

. minimum time for an RFCSI experiment is comparable to that of a deptﬁ
pulse experiment, but is eight times greater than that of a NOBLE ex-

periment. The signal to noise ratio in an RFCSI spectrum is expected
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to be less than that in a depth pulse or NOBLE spectrum by a factor on
the order of v2 for a fixed total number of acquired FIDS.31 waever,
spectral information from all spatial regions is acquired at once,
making for greater efficiency if such information is desired. 1In a
sense, the relationship of RFCSI to depth pulses and NOBLE is
analogous to the relationship of sensitive line methods to sensitive

point methods, as explained in discussions of NMR imaging.uu‘46

5. Conclusion

a. Composite w/2 Pulses

A composite w/2 pulse sequence narrowband in frequency and
broadband in resonance offset would eliminate the need for a differe-
nce ﬁechnique entiﬁely. Progress has been made towards developing w/2
pulse sequences which are narrowband in wq by using iterative schemes
with two fixed points.u7’u8 When the initial sequence (37.5)90.
(37.5)g (37.5)90 is iterated with the scheme [0, 15, 180, 165, 270,
165, 180; 15, 0](2), where the values in brackets indicate phase
shifts, the inversion profile becomes sharper as seen in Figure (5.7).
The iteration procedure consists of phase shifting the initial
sequence by the phases indicated above and then concatenating the
phase shifted parts. A second interation, Figure (5.70) results in an
even sharper profile; now the inversion profile is smoothed out and
has also become more narrowband.

When the z-component of the magnetization goes through 0.00, then
the transverse magnetization is at a maximum. The slope of the cross-

ing of M, from -1 to 1 essentially indicates how narrowband in w; the
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signal will be. The x-y component of the magnetization is plotted in
the bottom of Figure (5.7). After two iterations of the initial
sequence with the 9-pulse scheme two important features are observed
in the signal profile: the range of rf field strengths over which the
signal exists ;s very narrow and yet the signal is zero out to rf
field strengths which are eight times the nominal value. This is a
consequence of the properties of the initial sequence as well as the
iteration scheme. These sequences can be used as w/2 pulses from

which signal can be obtained from a very localized region in space.

b. Summary

We have presented a composite bulse sequence, narrowband in space
and brqédband in frequency, which can be used in conjunction with a
surface coil to acquire a chemically shifted NMR signal from a lo-
calized region of a sample. The 9 pulse population inversion
sequence, used in the NOBLE method, spatially localizes signals in an
rf field gradient to a region where the rf amplitude wy approximately
satisfies 0.75w? <wg < 1.é5w?,-and retains a useful resonance offset
range of -0.3w? < Aw < 0.3m$. Undesired signals arising from spatial
regions where wy is approximately Bw? are suppressed by using a read
sequence that is a broadband composite w pulse near 3m?. It is
suggested that adiabatic frequency sweeps may be used to suppress
signals from régions where wq is a higher multiple of m?. A combina-

49 may allow

tion of these selective techniques with SHARP spectroscopy
high resolution surface coil NMR in the presence of inhomogeneous

static fields.
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Initial Pulse (37.5)90 (37.5)0 (37.5)90
lterative Scheme [0, 15, 180, 165, 270, 165, 180, 15, 0]
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Figure 5.7. Top: Simulations of population inversion as a function
of the rf field strength for the sequence (3.75)90 (37.5)g (37.5)gg(a)
and its first two iterates (b) and (c) generated by [0, 15, 180, 165,
270, 165, 180, 15, 0].

Bottom: Simulations of the transverse magnetization Mxy as a function
of rf field strength for the same pulse sequences as above. In both
cases, the features of the inversion (top) and signal (bottom) profile
are smoothed out for higher iterations. 1In addition, the range of rf
field strengths over which inversion, or signal, occurs becomes
narrower. These sequences can be used as narrowband /2 pulses to

obtain signal from a very localized region in space.
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B. NMR Imaging in Solids by Multiple-Quantum Resonance

1. Introduction

NMR imaging is now a well-established technique for studying
biological sysiems50 . In its most general form, an imaging method
uses a magnetic field gradient to encode the positions of the nuclear
spins with a spatially varying Larmor frequency. Once the variations
in resonant frequency have been decoded appropriately, an image of the
nuclear spin density or, more generally, of any mix of NMR pargmeters
can be created.

In a linear magnetic field gradient, g, the spread of frequencies
across a thickness Az is gAz. 'If features on the order of Az are to
be resolved, then the externaily imposed field, gAz, must itself be
resolved relative ﬁo any background or internal field. For solids,
the dom{nant background field is usually the local dipolar field, BL'
In biological systems familiar from 1H imaging, rapid isotropic
molecular motion often averages these internal diﬁolar fields to zero.
However, in a stfongly protonated solid, where molecular motion is re-
stricted, a typical value for BL might be 5G so that a gradient
greater than 50 G/cm (0.5T/m) would be needed in order to achieve a

51-5% ¢, this problem is to reduce

resolution of 1 mm. One approach
the effective local field by a mutliple-pulse line-narrowing
sequence.55'56 The alternative approach is to leave the local field

untouched, but to impose a gradient large enough to meet the condition

g >> Bp/Az..

[ T

-

g
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2. n-Fold Increase in Gradient Strength

In this section, we demonstrate a prototype imaging experiment
for solids based in spirit on this "brute force" method of increasing
the gradient, but which relies instead on the properties of multiple-
quantum NMR transition857 to increase the effective gradient strength
by an order of magnitude.58 Specifically, we intensify the effect of
the gradient upon the evolution of the spin system by creating high-
order multiple-quantum coherences and following their development in
the static field gradient. A multible-quantum coherence of order n =
Mi - MJ' where Mi and MJ are the magnetic quantum numbers forbhigh-
field states |M1> and |M3>' evolves n.times more rapidly in an inhomo-
geneous field than the usual single-quantum cohereﬁce. That is,'if a
single-quantum transition in the presence of a field gradient appears
with resonance offset Aw, then an n-quantum transition appears at naw.
This effect was described in Chapter 1II, Section A.2.b. The line-
widths resulting from the effective local dipolar fields do increase
with order, as shown in Figure (5.8a); but an n-quantum linewidth
does not increase by as much as a factor of n. Therefore, the n-fold
increase in gradient strength will still permit rather modest
gradients to be used. This feature has been exploited previously in

NMR diffusion measurements.59

3. Experimental Design

The multiple-quantum pulse sequence, shown in Figure (5.9) is

partitioned into preparation, evolution, mixing, and detection
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Figure 5.8. a) Square of the linewidth versus n-quantum order in ada-
mantane. The different symbols indicate different preparation times:
t = 660 usec (squares); <t = 528 usec (circles); <t = 396 usec
(triangles); 1t = 264 usec (diamonds). The general trend seems to in-
dicate that the linewidth increases with order. b) n-quantum line-
width versus preparation time for dif ferent multiple orders as listed
in the figure. The linewidth within an individual order increases for
longer preparation times. The multiple-quantum spectra from which
these linewidths were calculated were obtained with the pulse sequence

shown in-Figure (5.9).
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XBL 846-2270

Figure 5.9. The multiple-quantum pulse sequence.
The preparation and mixing periods (1) comprised of cycles of eight
n/2 pulses with duration tp and rf phases x and X, produce average
glo) _ _ - -
Hamiltonians H - 1/3(Hyy Hyy) for A' = 24 + to-

muitiple quahtum orders, the relative phase ¢ between preparation and

To separate

mixing period is incremented in proportion to the evolution tide tq.
About 2 ms after the end of the mixing the z component of magnetiza-
tion is monitored with an x pulse and a 100us spinlocking pulse. The
time-domain data are Fourier transformed with respect to t, to produce
the mutliple-quantum spectra of Figure (5.11).
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periods. The basic cycle of rf pulses is (xxxxXXXX), where x and ¥

are m/2 pulses with phases of 0° and 180°, respectively. With the
pulse spacing as shown in the figure, the zeroth-order average homo- £

nuclear dipolar Hamiltonian is. -

==(H -H ) =-£D, (

), (5.2)
37y oxxt g 4

Tyilys ™ Txalxg

under which coherences of even order can develop in a strongly coupled
dipolar system6o. The coherences then evolve freely for a time t1

under the influence of the resonance offset and dipolar Hamiltonians,

I I )O (503)

H=t wl 21lzy ~ I L

- L D, (31
i 17zi 1<j ij

A phase shift of 90° in the rf pulses creates a time-reversed mixing

d6°'61, which is followed by detection of the magnetization using ’

perio
conventional methods. The detection scheme empioys spin-temperature
1nversion62 to reduce artifacts'from reveiver ringing. One point is
sampled for each value of evolution time, and the resulting signal is
Fourier transformed against t1. Separation of the multiple-quantum
orders according to n is accomplished via the method of time propor-
tional phase incrementation63 of the pulses in the preparation period.
Finally, we alternate the phases of the preparation pulses by 180° to
remove any imperfections due to odd-order multiple-quantum

64

contributions.

In imaging experiments the pulse sequence must work properly =
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under the resonance offsets created by the dc field gradient; in this

regard the pulse sequence (XxxxXXXX) is superior to the (XxXXXXxx)
cycle). The implementation and experimental considerations have been
presented in Chapter III, Section E. Though the zeroth order average
dipolar and resonance offset Hamiltonians are the same for both
cycles, the symmetrization of the first sequence guarantees that the
odd-order correction terms to the offset Hamiltonian in the Magnus ex-
pansion vanish.55'56'65 This has been described in more detail in

Chapter III, Section D.

4., Experimental Results and Discussion

The phantom used in the multiple-~quantum experiment is composed
of three parallel glass melting point tubes (1.2 mm i.d., 1.65 mm
o.d.), arranged l;nearly. The center tube is empty, while the outer
tubes are loaded with a 4 mm length of compressed adamantane. The
sample, consisting of the two cylindrical adamantane plugs (1.3 mm -
dia. x 4 mm) separated by 2.0 mm, is aligned with its cylindrical axes —
perpendicular to the z-axis field gradient, as is pictured in the
inset of Figure (5.10).

Figure (5.10) shows the 360 MHz 1H single-quantum adamantane
spectrum with and without a 48 mT/m field gradient. Although the
gradient, which amounts to 20kHz/cm, broadens the line from 12 kHz
(full width at half height) to 14.5 kHz, the signals from the two ada-
mantane plugs remain unresolved. The corresponding multiple-quantum
spectba of the adamantane phantom are in Figure (5.9). The main peaks

represent multiple quantum coherences out to n = 14, Very high-order —
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Figure 5.10. Adamantane 'H (single-quantum) spectra with (b) and

without (a) a z gradient of 20kHz/cm. Sample geometry is shown in the

inset. The applied gradient is inadequate to resolve the signals from
the two adamantane plugs. '
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coherences (n > 60) can be prepared and detected in adamantane66 but
here we have selected, somewhat arbitrarily, a preparation time (t =
396 usec) which is sufficient to excite transitions up ton = 20 with
reasonable intensity.

Figure (5.11) clearly demonstrates the attraction of imaging by
multiple-quantum resonance. Peaks from the two adamantane plugs just
begin to separate at n = 4, and are well resolved out at n = 10, where
the gradient is effectively 10 times larger than for single-quantum
coherence,

The multiple-quantum approach also possesses another interesting
advantage, which derives from the separation of the evolution and
detection periods. The spins are labelled by the static gradient
during the evolution period tys but are detected later during the to
interval. Consequently, while the bandwidth of the evolution fre-
quencies during t1Amight be very great (say 10MHz) in order to facili-
tate clear separation of the orders, no thermal noise is admitted
during this interval. Any thermal noise comes to the receiver during
the t2 interval, but the bandwidth can actually be very narrow here.
For imaging, this substantial benefit of the separation of evolution
and detection is analagous to the advantage of a pulsed gradient over
a steady gradient in diffusion measurement367. Realization of this

advantage requires that t4 noise(57b' p.199)' due to fluctuations in
the preparation and mixing periods, be minimized.
We have demonstrated here the essential feature of 1H imaging by

multiple-quantum NMR in strongly coupled solids: spatial resolution

is enhanced considerably by the increased effective magnetic gradient
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Figure 5.11. Adamantane " (multiple-quantum) spectra with (b) and
without (a) a static z gradient. The preparation and mixing times (cf

Figure 5.9) are 396us, corresponding to 6 cycles of the 8 pulse
sequence with 3us #/2 pulses. The t1 increment is 100 us and the
phase increment is 2w/32; this separates each order by 312.5 kHz.

For clarity the vertical scale has been expanded for orders 8-14.

Even with a small gradient (20 kHz/cm) the two adamantane plugs can be

resolved.
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seen by high-order coherences. Although we have displayed transitions
of many orders, in an actual imaging scheme it might be advantageous

to use only one order. Techniques of mutliple-quantum filtering68 and

60a

of selective preparation suggest themselves.
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APPENDIX: COMPUTER PROGRAMS

Computer Programs used in Chapter II are versions of CAMPUL, LOPTRAJ
and associated subroutines Rabi and RfRabi. The notation in the programs is

different from that used in the text. Here

1

J1 + (th)2

sin ¥ =

or

Swt = En Y

To simulate the inversion of the MIP over resonance offset, CAMPUL is used.

. For the linear sweeps and the CAP, the phase function is substituted by

o(t) (
w

o(t) = _(qz - (m$)2 t2)1/2’ . q

x

) (w1t)2

- N

and

respectively. For all calculations of inversion over resonance offset, sub-
routine Rabi is used. When the inversion over rf field strengths and/or re-
sonance offsgset is desired, then rf Rabi must be substituted with appropriate
changes in the program.

To calculate the composite pulse sequence from the continuously modu-

lated pulse, a version of Loptraj is used. Again to calculate the best
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pulse sequence over offset (as in Loptraj) Rabi is used. Loptraj calculates
a pulse sequence with constant phase increments. Minor changes need to be
made to calculate a pulse sequence with unrestricted phases; a search over
Swt and the cut-off tiﬁe tc must be implemented in that case.

For Chapter IV, the program SPLOCS5 was designed to find the best pulse
sequence for é specified inversion profile over resonance offset and rf

field strength.
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Frogram CAMFUL

Calculates inversion over a range of offsets using the MIF phase
function. Flip angles and pheses are found directly from MIF by
specifying the phase increment. :

DIMENSION p(3),t(200@),ph2(2088), flip2(200@)
COMMON theta,ph, flip

Pi=4.0%ATAN(1.0)
radian=186.08/pi

TYFESO
FORMAT (? $How many resonance offset values?: ")
ACCEFPTX,npt

TYFE6D
FORMAT (* $Enter dw(taw): ")
ACCEFTX,dwt

TYFE79
FORMAT ("$Enter the number of pulses: ?)
ACCEFTXynpulse

TYFE&S
FORMAT (*$Enter the increment of the phase in degs: ?)
ACCEFTX,am

TYFES®

FORMAT (*$What do you want the datas file named?: %)
ACCEFT?0, fname )
FORMAT (&)

OFEN(UNIT=3, NAME=FNAME, STATUS="NEW?)

ione=1

write(3,39),ione,npt
format(id)

TYFE9S

FORMAT (*$Enter the offset:?)
ACCEFTx,ext

divs=ext/(npt-1.8)
voff=0.90

wl=SQRRT(1.0+ (dwtkdwt))
n=(npulse/2.0)+1.0
amr=am/radian

phli=amr/2.
var=EXF(-phi/dwt)
tme=SQRT (1,0~ (varxvar))
time=tmne/var
t(1)=ATAN(time)
ph2(1)=06.0
flip2(1)=2.8xt (1)

phl=amr/2.8+amr

DO 200 J=2,n
varl=gXF(-phil/dwt)
tmel=SART (1.8~ (varlxkvarl))
timel=tmel/varl

t (D) =ATAN(timel)
ph2(J)=phl-amr/2.0

g
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flip2(D =t (D -t (J=1))

phil=phi+amr
CONTINUE

DO 4088 I=1,npt
p(1)=0.0
p(2)=0.0
p(3)=1.08

theta=(pi/2.8)~ATAN(vofT)

freqef=wl/SIN(thets)

DO S89 J=i;n
K=(n+1)-J

ph=ph2 (K)
flip=freqefXflip2(K)
CALL RAERI(p)
CONTINUE

PO 688 J=2,n
ph=ph2(J)
flip=freqefxflip2(J)
CALL RAERI(p)
CONTINUE

WRITE(3,48) -p(3)
FORMAT(E14.6)
voff=veff+divs
CONTINUE

printS54@,npulse

format(/,15x,116,1x,"FULSE STEFS")

printSS8,dwt,anm

format(/,5x,'dwtau=",f18.4,5x, 'phase increment=’,f18.4)

print36@

format(//,1@x, "FHASE? ,15x, *FLIF ANGLE",/)

ph1=0.0
voff=0.0

wl=SART(1.8+ (dwtxdwt))
theta=(pi/2.0@)~ATAN(voTf)

freqef=wl/SIN(theta)
DO 16008 Jd=1,n
K=(n+1)-J
ph1=ph2(K)Xradian

flipl=freqefxflip2(K)*radian

FRINT1Q,phl, flipl
FORMAT(2F18. 3)
CONTINUE

DO 1858 J=2,n
phi=ph2(J)Xradian

flipl=freqefxflip2(J)Xradian

FRINTZ28,ph1l, flipl
FORMAT(2F18.3)
CONTINUE )

END
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subroutine rabi(p)
written by Jim Murdoch.

226

Calculates the evolution of the magnetization vector over a resonance

offset resulting from a pulse of specified phase and

dimension r(3,3),p(3),pp(J)
common voff,ph?flip

voff2=svoffxvoff
veff2=svoff2 + 1.0
veff=sgqrtiveffd)
vt=veffxflip
cvt=cos(vt)
svt=sin(vt)
cp=cos (ph)
sp==sin(ph)

aa=(1.0 + vofflxcvt) / veffl
cec=voff x (1.8 - cvt) / veffl
ff=svt / veff
dd=-voff x ff

ccep=cc X cp
ccsp=ce X sp
ffcp=ff X cp
ffop=ff %X sp

cpl2=cp % cp
sp2=sp X sp
qq=(cvt - aa) X cp ¥ sp

r¢(i,1)=aa%kcp? + cvtXsp2
r(i,2)=qq - dd

r(i,3)=cccp + ffsp

r(2,1>=qq + dd
r(2,2)=scvtXcpl + aaxsp2
r(2,3)=-ccsp + ffcp
r(3,1)=cccp - ffsp
r(3,2)=-ccsp - ffcp
r(3,3)={voff2 + cvt) / veff2

do 20 1=1,3

sum=0.9

do 1@ j=1,3

sum=sum + r(i;j) %X p(Jj)
pp (1) =sum

do 3@ i=1,3
p(i)=pp (i)

return
end

flip angle.

g

g
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subroutine rfrabi(p)

Adapted from subroutine Rabi to allow for resonance offset
effects and different rf field strengths simultaneously.
dimension r(3,3)4p (3),pp (D)

common voff,ph,flip,rf

(AN

(EEEAE

rfl=rfirf
voffl=voffxvoff
veffl=voffl + rf2
veff=sqrtiveff2)
vt=veffxflip
cvt=ceos(vt)
svt=sin(vt)
cp=cos (ph)
sp=-sini{ph)

oy

aa={(rf2 + voff2xcvt) / veffl
cc=voffkrfx (1.8 - cvt) / veff2
ff=gswtXrf/veff

dd==-voff %X ff/rf

cccp=cc X cp
ccsp=cc X sp
ffcp=ff X cp
ffsp=ff % sp

cp2=cp X cp
sp2=sp X sp . _
qgq=(cvt ~ aa) X cp X sp

r{l1,1)=aaXcp? + cvtxsp2
r(1,2)=qq - dd
r(1,3)=cccp + ffsp
r(2,1)=qq + dd ;
r(2,2)=cvticpl + aaxspl
r(2,3)=-ccsp + ffcp
r(3,1)=cccp - ffsp
r(3,2)=-ccsp - ffcp
r(3,3)=(voff2 + cvtXxrfl) / veff2 —

do 20 i=1,3

sum=0.9

do 186 j=1,3

sum=sum + v (i, J) X p(j)
pp (i) =sum

do 3@ i=1,3
p(i)=pp (i)

return
end _

PRI
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Frogram LOFTRAJ .
Calculates a sequence of radiofrequency pulses from the
inversion trajectory of the continuocusly modulated pulse(MIF).
This program finds the best composite pulse, broadband over
resonance offset, with constant phase increments.

dimension zw(200@),p(3),x(20808),y(2000),z(2000) ,c1ifx (2006),
dify(2008>,th (2680),thp (2008 ,mlcm2x (2008) ,mlcm2y (20080),
micm2-(2000) ,wlx(2000),wly{20803),wli=(28608),dot (2800),

mult (2008), xp (2000),yp (2080) ,z=p (2008) , mp (29000),
m12dot(2088),m12n0r (2822) ,coef (20@3) ,m12f1p (200Q) , time(2006@),
bth(300),bflip (308> ,bvoff(388),bcomp (300)

common voff,ph, flip

real micm2x,micm2y,micm2z,mult,mp,y,mi2dot,miZnor,mi2flp

Enter initial parameters:

npulse: number of pulses in the sequence

ndwt: total number of dwt over which to search

dwt@: initial value of dwt

ddwt: increment in dwt

npt: number of points to calculate over a range of offsets
vmx: highest value of resonance offset

deg: value of the constant phase increment

do 2080 npulse=4,12,4
ndwt=400

dwtd=1.9

ddwt=8.1 -

npt=38

vmx=1.5

deg=30.9

bestave=-1.0
divssymx/(npt=-1,0)
dwt=dwt@
pi=4.0%ATAN(1.0)
radian=180.0/pi

Calculate the times which correspond to the chosen phase increment

do 1080 id=1,ndwt

sum=0, 0

n=npulse/2.0

g=deg/radianin

qn=g/n

do 5 K=1,n
var=eXF (-~ (Kxgn)/dwt)
tme=SART (1.0-(varkvar)) /var
time (K)=ATAN(tme)

continue

ratt9=pi/2.0
v1@=SQRT (1+ (dwt¥dwt))
dt=2.0xratt@/FLOAT (npulse)

x(1)=9.0
y(1)=0.08
=(1)=1.0

do 10 I=2,npulse
K=I-1,0
J=n-K

Y E ST

R ULE
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if(J.eg.8.8) go to 12
1f(J.1t.0.8) go to 13
tt=-1.8%time ()

go to 14

tt=0.8@

go to 14

J=-1.0%J

tt=time (J)

Calculate the on-resonance inversion for a value of dwt

val=C0S (tt)

pht=-dwtXALOG(val)
x{I)=(dwt/v1iBXvalxCOS(pht))+{(1.08/v1B%valXSIN(pht))
y(D=(dwt/v1iBxval¥SIN(pht))~-(1.08/v1@XvalXCOS{(pht))
(D) ==-8INCtY)

tt=tt+dt

continue

x(npulse+1)=0.0
y(npulse+1)=0.0
z(npulse+l)=-1.0@

Calculation of the constant phase pulse that gives the same
evolution of the magnetization between t1 and t2 as the
continuously modulated pulse.

do 20 J=2,npulse+i

difx (J=x(J)~x{(J-1)

dify (D =y (J=1)-y (D)

th (N =ATAN(difx (J) /dify (J))
thp(J)=th(D+pi

continue

do 30 I=2,npulse+l

mlem2x (D)= y (I-1)x=(I))=(2(I-1) %y (1))

mlcm2y (DD =((I-1)Xx (I))~(x (I=-1)%=(I))

mlem2z (D= (x(I-1)%Xy(I))-(y (I-1)%x(I))
wlx(I)=v1exCOS (th(I))

wly (ID=v1@xSIN(th(I))

wilz(I)=v10x0.0 .
dot{D)=(mlcm2x (D) Xwlix (D)) +(mlcm2y (IX dwly (I))+(mlcmdz (D) Xwlz(I))
IF(cdot<I).GE.B.8) go to 3¢

th(I)=thp (D)

continue

IF(th(2).9e.8.2) go to 21
th(2)=th () +pix2.0
difth=(th(2)-th(3))%kradian
IF(difth.ge.0.@) go to 22
difth=di1fth+360.8
nth=difth/45.0
mth=2x(d1fth/4%.@-nth)
lth=nth+mth
gth=1thx45.@/radian

th (2)=th (3)+gth

th (npulse+1)=th ()

do 50 J=3,npulse

do 35 I=J-1,J

mult (D)= (x (IYXCOS{th (D)) +(y (D) XkSINCth (1) ))
xp(I)=x(I)=(mult(IIXCOS{(th{(J))))

yp (D) =Y (D)= (mult (I)XSIN(th (1))
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=p (I ==L1)
mp (D =8ART((xp (1) kX2 + {yp (D) X%2) + {z=p (I) XX2))
continue . =

m12dot (N =(xp(J-1)kxp () +(yp(J=1)Xyp (J) )+ (zp (J-1)%kz=p (1))
mi2nor (J)=mp (J-1) xmp (J)

coef(J)=mi2dot () /ml2nor ()

IF(coef(J).ER.8.8) GO TO 49
IF(coef(J).GT.0.8.AMD.coef( ). LE.1.8) GO TO 48 =
mi2fip (J)=ATAN(SART(1.@-coef (J)Xcoef(J)) /coef (1)) +pi -
go to 50

m12f1p () =ATAN(SART(1.8~coef (J) ¥coef (J)) /coef (1)) n

go to 56

m12flp(J)=pi/2.0

continue

m12Ff1p (Q)=ATAN((x (2 XSINC(th (2)) =~y () XCOS(th(2))) /= (2))

m1i2flp (npulse+1)=mi2flp (D)

Calculation of the inversion of the magnetization over
resonance offsets resulting from the newly found composite
pulse.

sum=9, @
voff=0.0

do 60 J=1i,npt

p(1)=0.2

p(2)=0.0

p(3)=1.0 _

do 78 I=2,npulse+i
ph=th(I)
flip=-m12flp(I)
CALL RAEI (p)
continue

sum=sum-p (3)
voff=voff+divs ’ -
continue

ave=sumn/npt

if(ave.lt.bestave) go to 1006
bdwt=dwt .
btec=time (n)

bestave=ave

do 80 I=2,npulse+l
bth(I)=th(I)
bflip(I)=mi2flp(I)

continue

voff=8.0

divsl=0Q.1

do 85 y=1,21 N
p(1)=0.0 -
p(2)=0.0

p(3)=1.0

do 87 I=2,npulse+l "
ph=th (1)

flip=-m12flp(I)

CALL RARI (p)

continue

bvoff(J)=voff

bcomp (J)=-p (3)

voff=svoff+divsi

R L
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continue

Search through all values of dwt to find the best inversion
per formance.

duwt=dwt+ddwt

print300,npulse

format(///,* BREST AVERAGE CRITERICM FOR’,110,1x, FULSE STEFS?)
printds8,npt, vmx

format¢/,Sx,* an average over®’,i4,l1lx,’values of woff/wl from 7,
'8 to?’,fB.4)

printéd6, ndwt,dwtd,ddwt

format(/,5x,14,1x,?values of dwt?,8x,’initial value:?, f8.4,5x,
Yincrement:*,f8.4,/)

printéSe,bestave,vmx

format (/,S5x,'<¢(~-W >)=*,f9.6, from @ to’,fB8.4)

print7006,bdwt,btc

format(/," The best dwt=',fB.4,2x,? The cut off time=",f8.4)
print7@1,deg

format(/,3x,?The phase incr.in deg=?,f5.1)

print782

format(//,5x,"FLIF ANGLE®',Sx, 'FHASE")

do 98 I=2,npulse+l

print718,bth(I)Xradian,bflip (I)Xradian
format(Sx,f18.5,3x,718.5)

continue

print7@3

format(//,5x,"0FFSET?,12x,'Z-MAG.?)

do 100 J=1,21

print728,bvoff(Jd),bcomp ()

format (Sx, f16.6,3x,118.7)

continue

if(deg.eq.?@.8) go to 788 *
if(deg.eq.45.8)g0 to 760

1f(deg.eq.3@.@) go to 750

deg=45.0

go to 1

deg=90.9

go to 1

vmx=vmx-@,2

deg=306.0 )
if(vmx.LE.@.4) go teo 20€@
go to 1

cuntique

end
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Frogram SFLOCS

Frogram finde the best pulse sequence for a specified
inversion profile over resorance offset and rf field
strengths.

Dimension p(3),flipp(1@@),rf1(i8@),voffl(18®) ,bflip (10,180,

bphase(1@,109), flinc (388 ,phinc (188}, fliomin (166,
phmax (1@8) ,phmin(1@8) ,phace(1@8), flipmax(100),av(100),
desinv(108) ,deswyt (1@80)

Common voffyph,flip,rf

typeX, ’Number of pulses’

accept¥X,npulse

typeX,?All initial flip angles’

acceptx, (flipmin(Il),I=1,npulse)
typex,?Incr. of phases 1 to NF?

accept¥, (flinc{(I),I=1,npulse)
typex,'Max.flip angles 1 to WF?

accept¥, (flipmax(I),I=1,npulse)
typex,’All initial phases?

acceptX, (phmin(I),I=l,npulse)
typeX,?’Incr. of phases 1 to NF?

acceptx, (phinc(I),I=1,npulse)
typeX,"Max. phase 1 to NF?

accept¥, (phmax(I),I=1,npulse)

typeX, *Number of offset values?®
acceptx,nof

typex,'Values of offsets from min to max value’
acceptx, (voffi(I),I=1,n0f)

typex, *Number of rf values?’

acceptx,nrf

typex,'Values of rf from min to max?
accept¥, (r f1 (I I=1, ")

typeXx, ’Enter desivred inversion at each rf point?
acceptx, (desinv(Il),I=1,nrf)

typex,'Enter weighting at each rf point?®
acceptx, (deswgt(I),I=1,nrf)

set up dummy pulse sequences and variances

ipulse=(npulse/2.8)+1.0
iv=i

avil)=1@

do 20 K=1i,npulse
bflip(iv, k) =98
bphase(iv, k)=270
continue

iv=iv+l
aviivi=av(iv-1)+1@
if(iv.gt.5)go to 1
go to 3@

Initialize parameters

P1=4.8%ATAN(1.)
radian=186.8/pi

do 18 I=1,npulse
flipp(ID=flipmin(D)
phase(I)=phmin(l)
continue
rfliinrf+1)=06.0
voffl(nof+1)=0.0
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flag=0.0
npt=nofknmrf

sum=0,0

phase(ipulse)=08.0
phase(l)=phase(npulse)

I=1
phase(I+1)=phase(npulse-I)
if(l.ge.ipulse) go tc 98
I=I+1

go to 3

flipp{(1)=flipp(npulse)

I=1

flipp(I+1)=flipp (npulse-I)
if(I.ge.ipulse) go to 150
I=I+1

go to 4

Calculate inversion over specified offsets and rf values
for an N pulse sequence

voff=voffl(1)
do 100 Kf=1,nof
rf=rf1(1)

do 288 kr=1i,nrf
p(l)=0.@
p(2)=0.0
p(3)=1.8

do 3@8@ I=1,npulse
flip=flipp(I)/radian
ph=phase(I)/radian
call rfrabi(p)

- continue

var=desinv(Kr) +p (3)
var=varXvarxdeswgt (Kr)
sum=gsum+var

rf=rfl(kr+l)
voff=voffl(kf+l)

avar=sum/npt

if(avar.ge.av(S)) go to 2909

av(S)=avar
if(av(S).ge.av(4).and.av(i3).ge.av(d).and.av(D).ge.av(2).ana.
av(8).ge.av (1)) then

iv=5

go to 1600

end if
1f(av(4).ge.av(d).and.av(4).ge.av(3).and.av(4).ge.av(2).and.
av(4).ge.av(l)) then

iv=4

go to 1500

end if

iflav(3).ge.av(S).and.av(3).ge.av(4).and. av(3).ae av(2).and.
av(3).ge.av(1l)) then

iv=3

go to 15@@

end if

1flavi(d).ge.av(S).and.av(2).ge.av(4).and. av(2).ge.av(3).and.
av(2).ge.av (1)) then

iv=2
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go to 15008
end if
iv=l
1506 aver=av (3
av(S)=aviiv)
av(iv)=aver
do 1208 k=i,npulse
bflip(S,k)=bflip(iv, k)
bphase (5, k)=bphase(iv, k)
i20@ continue
1600 do 1800 k=1,npulse
bflip{ivyk)=flipp (k)
bphase (iv, k) =phase (k)

104¢ continue

c

(= Increment values of phases

c

2000 if=ipulse

2500 flipp(if)=flipp(if)+flinc(if)

if(flipp(if).le.flipmax(if)) go to 2
flipptif)=flipmin(if)

if=if+1 .
if(if.le.npulse) go to 2508

c
ip=ipulse+i

3200 phase(ip)=phase(ip)+phinc (ip)
if(phase(ip).le.phmax(ip)) go to 2
phase(ip)=phmin(ip)
ip=ip+1.9
if(ip.le.npulse) go to 3089

c
printx,*flag=",flag :
print¥,*Five best flip angles and phases’
do 4000 iv=1,5
printX, (bflip(iv,I),I=1,npulse)
printX, (bphase(iv,),I=1,npulse)
printx,?variance=',av(iv)
printx,’? ?
printx,? '

4900 continue

end
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