Skip to main content
eScholarship
Open Access Publications from the University of California

Evolution of structure and spectroscopic properties of a new 1,3-diacetylpyrene polymorph with temperature and pressure.

Abstract

A new polymorph of 1,3-diacetylpyrene has been obtained from its melt and thoroughly characterized using single-crystal X-ray diffraction, steady-state UV-Vis spectroscopy and periodic density functional theory calculations. Experimental studies covered the temperature range from 90 to 390 K and the pressure range from atmospheric to 4.08 GPa. Optimal sample placement in a diamond anvil cell according to our previously presented methodology ensured over 80% data coverage up to 0.8 Å for a monoclinic sample. Unrestrained Hirshfeld atom refinement of the high-pressure crystal structures was successful and anharmonic behavior of carbonyl oxygen atoms was observed. Unlike the previously characterized polymorph, the structure of 2°AP-β is based on infinite π-stacks of antiparallel 2°AP molecules. 2°AP-β displays piezochromism and piezofluorochromism which are directly related to the variation in interplanar distances within the π-stacking. The importance of weak intermolecular interactions is reflected in the substantial negative thermal expansion coefficient of -55.8 (57) MK-1 in the direction of C-H...O interactions.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View