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ABSTRACT OF THE DISSERTATION 

 

Human Genetic-Epidemiologic Association Analysis via Allelic 

Composition and DNA Sequence Similarity Methods: Applications to 

Blood-Based Gene Expression Biomarkers of Disease. 

 

by 

 

Jennifer Wessel 

Doctor of Philosophy in Public Health (Epidemiology) 

University of California, San Diego, 2006 

San Diego State University, 2006 

Professor Nicholas J Schork, Chair 

 

The Human Genome Project, and related DNA sequence variation 

projects, has provided researchers with both the motivation and raw material for 

considering large-scale genetic association studies seeking to identify genetic 

variations that contribute to disease susceptibility. Association studies are 

plagued by many problems, including inappropriate data analysis methodologies 

and the potential for false positive results due to the testing of hundreds-of-

thousands, of polymorphic loci for association with a disease. Most association 

analysis methodologies ignore biological realities mediating gene-phenotype 

relationships, such as the possibility that genes and genetic variations work in 
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concert or in combination to influence a disease and/or phenotypic expression. I 

describe a statistical analysis methodology for association studies which 

considers the genetic variation within a gene (chapter 2), across the entire 

genome (chapter 3), or a series of genes in pathways (chapter 4), as “wholes” 

rather than as individual isolated entities that are to be assessed independently 

of each other. I showcase the methodology by applying it to publicly available 

genotype and gene expression data from the HapMap Project on 57 CEPH 

individuals.  I provide biological motivation for this type of analysis approach and 

consider measures that assess the “genomic similarity” of individuals with 

respect to the variations they possess across a number of loci. I, describe a 

weighted distance-based regression method that exploits this similarity measure 

in association analyses. In chapter 2, I develop and apply the method to an 

analysis of the CHI3L2 gene and document the utility and flexibility of the 

method. In chapter 3, I apply the method developed in chapter 2 to a whole 

genome analysis of 811,886 phased genetic variations typed on the CEPH 

subjects. In chapter 4, I extend the method to the analysis of biochemical 

pathways involved in diseases, functions, and drug targets that are affected by 

multiple SNPs. I ultimately argue that my work has the potential to not only open 

up a new area of research in genetic epidemiology and statistical genetic 

methodology, but also to shed light on the genetic basis of complex, multifactorial 

diseases and phenotypes. 



 

 1

CHAPTER 1 

Introduction and Background 
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INTRODUCTION AND BACKGROUND 

The Emergence of Genetic Epidemiology 

The research disciplines of genetic and molecular epidemiology have 

grown considerably in the last few decades as a result of the Human Genome 

Project 1, 2, the International HapMap Project 3, and related initiatives in human 

genetics, as well as the very recent development of technologies such as 

multiplex, microarray assays and other high-throughput molecular phenotyping 

technologies 4-8. A few recent reviews have provided overviews of the 

motivations and goals of the field of genetic epidemiology arguing that genetic 

epidemiology deals with the etiology, distribution, and control of disease in 

groups of relatives and/or with respect to the inherited causes of disease in 

population in the population at large 9-11. In fact, many very recent efforts have 

been made to incorporate the increasingly sophisticated understanding of the 

human genome into public health and epidemiology research and practice.  For 

example, the National Office of Public Health Genomics at the Centers for 

Disease Control disseminates information on how genomic discoveries can be 

used to improve health and prevent disease 

(http://www.cdc.gov/genomics/default.htm).   

With current technologies it is now possible to collect massive amounts of 

genetic information on individuals sampled for very large-scale epidemiologic 

studies. Making sense of this information in order to, e.g., identify inherited 

variations that contribute to disease susceptibility, or identify molecular 

biomarkers of disease progression, is complicated given the number of variables 
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that might need to be considered in relevant statistical analyses of the data. In 

addition, sorting out the biological meaningfulness of the results of the statistical 

analyses is itself enormously complicated. 

My thesis research has focused on the development of data analysis 

techniques appropriate for relating genetic variation to phenotypic variation that 

are applicable to large-scale genetic epidemiologic studies 12, 13. I have applied 

these analysis techniques to blood and immortalized lymphocyte-based gene 

expression data obtained on individuals that have been genotyped on a large 

panel of genetic markers. Gene expression “fingerprints” obtained from 

accessible tissues such as blood are growing in popularity as providing 

diagnostic and prognostic biomarkers for clinical and epidemiologic studies of 

disease 14-16. Thus, my research encompasses issues in genetic and molecular 

epidemiology, epidemiologic biomarker analysis, data analysis, and integrated 

approaches to understanding the biological basis of human disease from 

population-level, epidemiologic analysis perspectives. 

 

Modern Genomics and Association Studies 

The search for genetic variations that contribute to complex, multifactorial 

traits and diseases, such as hypertension or cancer, has been problematic12. The 

reasons for this are somewhat obvious, in that the influence and identification of 

each particular gene or environmental factor that impacts the expression of such 

traits and diseases are often obscured or confounded by the effects of the other 

factors. As a result, studies that test the association of a particular mutation or 
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genetic variant to a trait or disease with the hope of identifying a factor 

contributing to the expression of that trait or disease do not often yield 

compelling, replicable results 12. To overcome this problem, at least in part, The 

International HapMap Project (IHP) 17 – considered the “second generation” 

Human Genome Project – was initiated, seeking to identify the smallest set of 

genome-wide genetic markers that is likely to yield the greatest probability of 

identifying a gene in studies designed to test each and everyone of those 

markers for association with a trait or disease. The initiation of the IHP has led to 

developments in high throughput sequencing and genotyping (e.g. “SNP chips” 

where 500,000 Single Nucleotide Polymorphisms (SNPs) can be interrogated on 

s ingle individual in a single assay are available and soon will be capable of 

interrogating 1,000,000 SNPs), to facilitate the massive amounts of genotyping 

that might be necessary to implement genome-wide association studies of the 

type envisioned by the IHP. In fact, recent multi-million dollar research initiatives 

announced by the National Institutes of Health, such as the Genetic Association 

Information Network (GAIN) initiative 

(http://www.fnih.org/GAIN/GAIN_home.shtml) and the Gene x Environment 

Interaction (GEI) initiative (http://www.genome.gov/17516707) attest to the 

emphasis being placed on large-scale association studies in biomedical and 

epidemiologic research. 

A number of very recent scientific articles and study reviews have 

appeared in the last few years that discuss the design and analysis of data 

generated by genome-wide studies, including those  that make use of IHP 
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data18,19. While the IHP seeks to minimize the number of marker loci one needs 

to effectively interrogate the whole genome for association with a trait or disease, 

its basic design, which is rooted in the belief that one can effectively capture 

important “functionally significant” variants through evolutionary and/or historical 

linkage disequilibrium (LD) relationships with neighboring loci captured by 

haplotype analyses ignores five fundamental facts about the human genome and 

human physiology: 1. Humans are diploid; 2. Genetic variation within genes is 

not likely to act in isolation but rather manifests more “holistic” phenotypic effects 

such that studying individual loci might not capture the effect of the variations; 3. 

The evolutionary history of genes may not match the biological functions of those 

genes, nor the variations within them, such that determining what an individual 

inherited from each parent (i.e., haplotyping) might not be as important an issue 

as determining, in great detail, simply what set of variants an individual 

possesses in his or her genome; 4. At the sequence level, each individual may 

have a unique set of variations if a large enough region is studied; 5. Studies 

investigating the in vitro and in silico functional significance of genes and genetic 

variations are being pursued on a large-scale. Each of these items is discussed 

in more detail in Chapter 2. 

The reason these five factors are important to consider in association 

studies is rooted in the way individual genomes are constructed during meiosis 

and how their construction from parental genomes dictates the unique 

phenotypic expression pattern exhibited by every individual. Roughly 10 million 

sites within the human genome have been shown to be “polymorphic” (i.e., vary 
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from person to person). Most of these variations are single nucleotide 

polymorphisms or “SNPs,” of which at least  5 million have been described in 

public databases 20, 21, 22. SNPs that are closely linked (i.e., physically close to 

each other) are not inherited independently from each other due to the fact that 

recombination during meiosis does not occur so frequently as to disrupt the 

transmission of large segments of parental chromosomes intact to offspring. 

Thus, the closer two loci are on the genome, the less likely a recombination 

event is to occur between them, thus allowing variations at those loci to be 

transmitted together on a single chromosomal segment. This phenomena creates 

associations between variations at neighboring genomic positions in the 

population at large and is the phenomena that the IHP is trying to exploit in 

developing a “haplotype” or linkage disequilibrium (LD) map of the genome23, 24. 

A major challenge in the study of genetic variation – which is seen as one 

of the motivating factors for the IHP, is thus the determination of the subset of the 

10 million polymorphic sites that harbor functional variations and are thus 

associated with particular phenotypes (as opposed to variations that are merely 

in linkage disequilibrium with the functional variations), and how such functional 

variation contributes to phenotypic expression. 

In this post-human genome and post-IHP era, many thousands of SNPs 

are being tested for their association with complex, common diseases. The 

results from these studies have often been inconclusive and controversial. As a 

result, many researchers have begun to consider the reasons why such studies 

are so problematic.  Several reasons have been suggested. These include 1. the 
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enormous statistically-challenging multiple comparisons problem that arises 

when one considers thousands, if not hundreds of thousands, of markers for 

association with a trait or disease; 2. the weak effects of each gene and lack of 

statistical power in samples studied to date; 3. unexplored gene-environment 

interactions; 4. the determination of a plausible biological context within which an 

associated gene can be proven to influence phenotypic expression; 5. population 

stratification and other factors that may confound statistical tests; 6. population 

differences in linkage disequilibrium; 7. disease heterogeneity; and 8. general 

study design issues (e.g. phenotypic heterogeneity, sampling of controls, etc.) 12, 

25-35.  A very recent review examined all known genetic association studies and 

suggested that of the over 600 positive associations reported in the literature 

between a genetic variation and a trait or disease, 166 had been studied three or 

more times, and only 6 of those have been consistently replicated 12. 

 

Limitations in Contemporary Analysis Methods for Association Studies 

Of the eight or so factors that could create problems for large-scale 

genome-wide association studies described in the previous section, those that 

concern data analysis are particularly thorny. The most basic approach to the 

analysis of data generated as part of a whole-genome association study of the 

type envisioned by the IHP is to test each individual locus for association with the 

trait or disease in question independently of the other loci. This assumes that the 

effects of each locus, both within and across genes, on phenotypic expression 

are independent. Although there is some research that considers the analysis of 
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interactions between or across different genes for association studies 36, there is 

little research that considers the simultaneous effect of multiple variations within 

a gene. Thus, an alternative or complementary analysis approach to genetic 

associations would involve consideration of the actual composition of genes (i.e., 

consideration of the effects of particular combinations of variations in a gene that 

an individual possesses), and the impact that these multiple variations have on 

phenotypic expression. The primary aim of this dissertation is to develop and 

apply methods of analysis that would address questions of why one should 

consider such approaches to genetic association analysis as well as how one 

can construct relevant analytical methods to implement these approaches.  

 

Molecular Phenotyping and Biomarker Analysis 

Increasing emphasis in epidemiologic studies of disease susceptibility is 

being placed on subclinical phenotypes and/or biomarkers of disease (see 

Tables 1-3 for references). Emerging technologies such as gene expression, 

proteomic, metabolomic, and imaging technologies have revolutionized the way 

epidemiologists can consider assaying a disease and disease process. 

Accessible tissue-based microarray-oriented gene expression analysis, in 

particular, has been pursued by a number of investigators with respect to a wide-

variety of diseases (see Table 3 for references). 

 Patterns in gene expression data have been used by researchers to 

understand how an exposure or a disease process may influence, e.g., gene 

expression patterns, protein levels, interactions among gene, or the subclinical 
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physiologic state of individuals in general.  I have participated in a review of the 

literature for studies using blood to investigate the heritability (Table 1), and the 

effect of either a treatment or exposure (Table 2) or a disease (Table 3) on gene 

expression patterns.  The focus of this review was on blood since it is an easily 

accessible tissue used by many investigators.  The review identified a number of 

studies that have successfully uncovered new biomarkers for the pathogenesis of 

many diseases.  Many of these studies focused on a small set of individuals and 

a subset of the total genes in the human genome that could have been 

interrogated, most likely due to the expense of microarrays. As gene expression 

monitoring of accessible tissues in clinical and epidemiologic studies to identify 

biomarkers of disease is an emerging research area, there is still much to be 

discovered.  The expansion of concerted efforts to measure the global set of 

genes, in tissues other than blood, under different exposures and with a genomic 

set of loci, will provide a more comprehensive picture of the true underlying 

expression patterns. 
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Table 1. Example Studies Investigating Natural Variation/Heritability in Blood-
based Gene Expression Patterns 

Reference Cell Type Total Sample 
Size Technology Comments 

Yan et al. 
2002 

lymphoblastoid 
cell lines 

96 individuals 
(CEPH families) mRNA natural variation in 

gene expression 
Whitney et al. 
2003 

whole blood & 
PBMCs 75 subjects cDNA natural variation in 

gene expression 
Radich et al. 
2004 leukocytes 32 subjects cDNA natural variation in 

gene expression 
Nicholson et 
al. 2004 PBMCs 12 subjects cDNA natural variation in 

gene expression 
Morley et al. 
2004 leukocytes 122 subjects Affymetrix heritability of gene 

expression 
Schadt et al. 
2003 

lymphoblastoid 
cell lines 56 subjects Affymetrix heritability of gene 

expression 
Cheung et al. 
2003 

lymphoblastoid 
cell lines 90 subjects cDNA heritability of gene 

expression 
Monks et al. 
2004 

lymphoblastoid 
cell lines 150 subjects Affymetrix heritability of gene 

expression 
York et al. 
2005 

lymphoblastoid 
cell lines Twin pairs ? Twin analysis of 

gene expression 
Key: cDNA=complementary DNA, mRNA=messenger RNA. 
 
Table 2. Example Studies Investigating a Treatment or Exposure Blood-based 
Gene Expression “Fingerprint.” 
Reference Cell Type Total 

Sample Size Technology Comments 

Lampe et al. 
2004 leukocytes 85 cDNA smoker fingerprint 

Van Leeuwen et 
al. 2005 PBMCs 7 cDNA Smoker fingerprint 

Amundson et al. 
2004 leukocytes 8 cDNA radiation reaction 

Chon et al. 2004 leukocytes 21 Affymetrix hypertension 
treatment study 

Tang Y et al. 
2003 whole blood 24 Affymetrix epilepsy drug 

response 

Jison et al. 2004 mononuclear 
cells 40 cDNA sickle cell treatment 

study 
Airla et al. 2004 PBMCs 6 cDNA MS treatment study 

Wu et al. 2003 lymphocytes 72 cDNA arsenic exposure 
study 

Whistler et al. 
2005 PBMCs 21  cDNA Chronic fatigue and 

exercise 
Bittman et al. 
2005 Whole blood 32  cDNA Music and stress 

modulation 
Key: cDNA=complementary DNA. 
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Table 3. Example Studies Seeking to Identify a Blood-based Gene Expression 
“Fingerprint” for Disease Phenotypes 

 

Reference Cell Type 
Total 
Sample 
Size 

Technology Comments 

Vernon et al. 
2006 PBMCs 13 MWG-A  Symptoms of Infectious 

mononucleosis. 

Aune et al. 
2004 PBMCs 13 

cDNA 
Research 
Genetics GF-
211 

Autoimmune diseases 
(RA, SLR, IDDM, MS) 

Tang, et al. 
2004 PBMCs 51 Affymetrix Genetic diseases (TSC 

2, NFT1, DS) 
Ma et al. 
2003 whole blood 8  cDNA CAD study 

Twine et al. 
2003 PBMCs 45  Affymetrix genes associated with 

RCC 
Xu et al. 
2004 PBMCs ? cDNA melanoma fingerprint 

Bull et al. 
2004 

mononuclear 
cells 29  Affymetrix pulmonary hypertension 

study 
Preston et al. 
2004 leukocytes 22  Affymetrix IgA nephropathy 

Mandel et al. 
2004 PBMCs 36  Affymetrix lupus study 

Rus et al. 
2003 PBMCs 33  cDNA lupus study 

Baechler et 
al. 2003 PBMCs 90  Affymetrix lupus study 

Han et al. 
2003 PBMCs 18  cDNA lupus study 

Maas et al. 
2002 PBMCs 36  cDNA autoimmune study 

Bennett et al. 
2003 PBMCs 51  Affymetrix autoimmune study 

Crow et al. 
2002 PBMCs 54  cDNA autoimmune study 

Olson et al. 
2004 PBMCs 19  cDNA rheumatoid arthritis 

onset 
Tang et al. 
2004 PBMCs 108  cDNA neurofibromatosis 

Satoh et al. 
2004 PBMCs 94  cDNA multiple sclerosis 

Pellagatti et 
al. 2004 neutrophils 21  cDNA MDS study 

Vawter et al. 
2004 lymphocytes 14  cDNA schizophrenia study 
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Table 3. Continued. 
 

Reference Cell Type 
Total 
Sample 
Size 

Technology Comments 

Tsaung et al. 
2005 leukocytes 74  Affymetrix schizophrenia/bipolar 

Segman et al. 
2005 PBMCs 24  Affymetrix PTSD repeated measure 

study 
Kalman et al. 
2005 lymphocytes 24  cDNA Alzheimer’s disease 

Tang et al. 2005 whole blood 129  Affymetrix multiple neuropsychiatric 
diseases 

Motomura et al. 
2004 PBMCs 21  cDNA HIV infection study 

Reghunathan et 
al. 2005 PBMCs 19  Affymetrix SARS infection study 

Key: cDNA=complementary DNA, PBMCs=peripheral blood mononuclear cells, 
RA=rheumatoid arthritis, SLR=systemic lupus erythematosus, IDDM=insulin-dependent 
diabetes mellitus, MS=multiple sclerosis, TSC2=Tuberous sclerosis complex 2, 
NFT1=neurofibromatosis type 1, DS=Down’s syndrome 
 
 
 

The interest in the use of blood and other accessible tissues also involves 

the use of transformed cells and cell lines in biomarker assays. The use of 

transformed cells has a long history in the analysis of potential biomarkers for 

disease that have been tested in epidemiologic studies. No where is the more 

apparent than in the use of DNA repair assays and their use in predicting cancer-

related disease outcomes in the population at large 37, 38.  Table 4 lists studies 

that have examined gene expression patterns in transformed cells from human 

cohorts. 
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Table 4. Example Studies Using Transformed Cells. 
 

Reference Cell Type Total 
Sample Size Technology Comments 

Yan et al. 
2002 

lymphoblastoid 
cell lines 

96 individuals 
(CEPH 
families) 

mRNA 
natural variation 
in gene 
expression 

Schadt et 
al. 2003 

lymphoblastoid 
cell lines 56 subjects Affymetrix heritability of 

gene expression 
Cheung et 
al. 2003 

lymphoblastoid 
cell lines 90 subjects cDNA heritability of 

gene expression 
Monks et al. 
2004 

lymphoblastoid 
cell lines 150 subjects Affymetrix heritability of 

gene expression 
York et al. 
2005 

lymphoblastoid 
cell lines Twin pairs ? Twin analysis of 

gene expression 
Vawter et 
al. 2004 

lymphocytes 14 subjects cDNA schizophrenia 
study 

Kalman et 
al. 2005 

lymphocytes 24 subjects cDNA Alzheimer’s 
disease 

 

 

The Future of Association Studies 

Future genetic association studies will take advantage of strategies that 

will both exploit available biological knowledge about the functions of genes as 

well as analytical methods that do not treat each variation independently. In 

addition, future genetic association studies will also consider phenotypic 

endpoints that are truly subclinical in nature, such as those derived from imaging 

protocols, multiplexed circulating factor (e.g., proteomic or metabolomic) 

analyses, or gene expression pattern analysis.  To overcome problems 

associated with the fact that, by studying multiple variations within and across 

genes, as well as multiple phenotypes collected on each subject, one may have 

to consider the relationships between a large number of, e.g., haplotypes, 
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multilocus genotypes, and diplotypes, and a large number of phenotypes – which 

could create power and interpretation issues – the procedure I have been 

developing may help overcome some of these issues. This dissertation considers 

analytical methods for association studies that exploit functional and biological 

data on genetic variations and that facilitates the grouping of individuals into 

more homogenous categories in ways that do not rely explicitly on reconstructing 

the ancestry of chromosomes or haplotypes. 

I apply the proposed analysis method to publicly available gene 

expression data 5, and genotype data from the HapMap 3.  As emphasized, the 

method exploits the analysis of multiple loci simultaneously to capture their 

“holistic effects” by considering measures of genetic similarity, or dissimilarity (or 

“distances”), and a regression-like method of testing hypotheses between the 

genomic dissimilarity and gene expression levels (Chapter 2).  I also apply the 

method to a whole genome association study using haplotype data obtained from 

the IHP (Chapter 3).  I also extend the analysis technique to consider the 

biological coherence of gene expression biomarkers of disease across many 

genetic variations that may contribute to these biomarkers and their patterns in a 

set of individuals (Chapter 4).     
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Online Tables. 
 
Table 5. Effect on the Association Strength of Omitting Each CHI3L2 SNP. 
SNP(s) Removed Pseudo-F Permutation P Variation (%) 
ALL 26 SNPs 14.35 0.00008 21 
rs755467 13.36 0.00019 20 
rs2147790 15.93 0.00007 22 
rs2255089 15.40 0.00008 22 
rs2274232 15.56 0.00007 22 
rs2147789 15.13 0.00008 22 
rs2182115 15.52 0.00007 22 
rs1325284 14.50 0.00008 21 
rs2251715 15.40 0.00008 22 
rs961364 13.57 0.00017 20 
rs2764543 14.62 0.00007 21 
rs7366568 14.99 0.00007 21 
rs2820087 14.58 0.00008 21 
rs6685226 15.54 0.00007 22 
rs11583210 16.44 0.00007 23 
rs12032329 15.42 0.00008 22 
rs2477578 14.50 0.00008 21 
rs2494006 14.55 0.00008 21 
rs7542034 15.30 0.00007 22 
rs942694 14.61 0.00008 21 
rs942693 14.50 0.00008 21 
rs2182114 14.50 0.00008 21 
rs5003369 14.50 0.00008 21 
rs11102221 16.50 0.00007 23 
rs3934922 13.46 0.00018 20 
rs3934923 14.50 0.00008 21 
rs8535 13.36 0.00019 20 
Correlated SNPsa 9.82 0.00026 15 

a Correlated SNPs were removed, and preference was given to functional SNPs (correlation or 
D’=1; deleted SNPs 2, 3, 4, 9, 10, 11, 16, 17, 19, 20, 21, 22, 25, and 26). 
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Table 6. Standard Regression Analysis-Based Single-Locus Results Involving 
the Data Generated with Interacting Loci  
 

 P for Setting 
  1 2 3 

SNP exact  corrected exact  corrected exact  corrected
1 0.1806 0.8636 0.1443 0.7895 0.1511 0.8057 
2 0.6351 1.0000 0.6355 1.0000 0.6648 1.0000 
3 0.4791 0.9985 0.6972 1.0000 0.9260 1.0000 
4 0.2211 0.9178 0.4190 0.9956 0.6914 1.0000 
5 0.6838 1.0000 0.9807 1.0000 0.7683 1.0000 
6 0.0298 0.2611 0.1273 0.7438 0.3883 0.9927 
7 0.3276 0.9811 0.3488 0.9863 0.4107 0.9949 
8 0.9239 1.0000 0.8635 1.0000 0.8254 1.0000 
9 0.3952 0.9935 0.3996 0.9939 0.4447 0.9972 
10 0.1948 0.8854 0.8968 1.0000 0.3980 0.9937 

 
NOTE.--Raw data used in the analyses are available from the authors. 
Corrections are based on the Sidak correction for multiple comparisons. 
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Online Figures. 

 

Figure 2. Tree representation of the similarity in the allelic profiles of 57 unrelated CEPH individuals based on 
variations in the CHI3L2 gene with use of a standard IBS allele-sharing measure. The proximity of the branches 
associated with individuals corresponds to greater similarity. Individual branches are coded such that, the larger the 
number, the greater the CHI3L2-expression value an individual has. It can be seen that individuals with similar 
number codes (i.e., individuals with similar CHI3L2-expression values) are on branches near each other (in 
general), which is indicative of the association between greater CHI3L2 allelic–composition similarity and CHI3L2 
gene–expression level. 
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Figure 4. The effect of including known nonassociated SNPs in the construction of the similarity matrix (IBS 
similarity measure used).  
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ABSTRACT 

Emerging high-throughput genotyping technologies and the extensive 

characterization of variation in the human genome has made genome wide 

association studies a reality.  However, a number of very complex issues 

surround the analysis of, e.g., >500,000 Single Nucleotide Polymorphisms 

(SNPs) in such studies. We describe the utility of an analysis approach, termed 

Multivariate Distance Matrix Regression (MDMR), in such studies. The MDMR 

has previously been shown to possess some very desirable properties for 

candidate gene studies, such as its very comprehensive and flexible nature.  We 

apply the MDMR approach to publicly available CHI3L2 gene expression data as 

well as 811,886 phased SNPs from the International HapMap Project to 

showcase the utility of the method.  We implement the MDMR analysis approach 

in a “moving windows” analysis strategy, where the window sizes included 1, 2, 

5, 10, 20 and 50 SNPs across all 22 autosomes.  We identified a number of 

potentially interesting loci in our analysis and describe the genes within the 

associated regions. These genes are known to be involved in a wide variety of 

biological functions, most notably DNA binding and transcription. We also 

describe limitations of the proposed approach as well as areas for future 

research. 

 



42 

 

INTRODUCTION 

With the completion of the International HapMap Project 1, and increasing 

efficiencies in genotyping technologies that can accommodate a large number of 

polymorphic loci (e.g., Single Nucleotide Polymorphisms or SNPs) in single chip-

based assays, genome-wide association (GWA) studies are now a reality for 

researchers 2-4. GWA studies essentially involve testing a large enough number 

of genotyped polymorphic sites for association with a trait or disease information 

on an appropriate sample of individuals. The ultimate goal is to genotype enough 

markers to cover the genome in its entirety. The 300,000–1,000,000 SNPs that 

can be interrogated on current SNP genotyping chips that will be used in GWA 

studies, however, pose many difficult analysis problems for researchers, not the 

least of which is controlling for the very large number of multiple comparisons 

and statistical tests performed in such studies. One of the most widely used 

approaches to GWA analysis involves testing each SNP individually for 

association with a phenotype. This approach is problematic for many reasons, as 

it ignores the perhaps weak linkage disequilibrium (LD) that may exist between 

any genotyped locus and a trait-relevant locus at an adjacent locus and the fact 

that many loci in a given genomic region may work in tandem to influence the 

expression of the trait. 

There are other issues that will inevitably arise in WGA studies that have 

been known to plague simple candidate gene association studies as well, such 

as population stratification, phenotypic heterogeneity, and biological 

meaningfulness of the association results 5-11. Other issues that create unique 
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problems in WGA studies, for example, involve the coverage of the genome 

associated with any standardized SNP genotyping sets of the type represented 

on available genotyping chips 12.  

One of most vexing and difficult problems with WGA studies involves the 

models and statistical methods used to relate genotype and/or haplotype 

information to the phenotype of interest.  Although a number of analysis methods 

are being developed for WGA studies, such as Bayesian graphical models and 

likelihood weighting schemes 13, 14, and methods to improve power using prior 

linkage information 15, that may perform better than standard single locus-

oriented analyses, there is as of yet no real consensus on the best way to 

approach WGA study analysis.  

We previously developed a regression method that involves the 

consideration of multiple loci in an association analysis through the derivation of 

measures of genomic similarity. These measures of genomic similarity can 

incorporate weighting schemes based on prior knowledge about the biological 

effects of the SNPs tested, prior association results, haplotype phylogeny 

information, and a host of other factors. In addition, the method can be used to 

explicitly account for the diploid nature of the human genome. We considered 

appropriate test statistics for relating the measures of genomic similarity to a 

phenotype as well as the repeated use of these statistics in genetic mapping 

studies 16. This method can be termed the ‘Multivariate Distance Matrix 

Regression’ or ‘MDMR’ analysis approach for genetic association studies. 
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To showcase the MDMR method in WGA settings, we pursued an 

analysis of over 800,000 SNPs collected on CEPH individuals in the HapMap 

database (www.hapmap.org) who had been assayed for CHI3L2 gene 

expression phenotypes (as well as many other gene expression phenotypes) 

obtained from immortalized lymphocytes collected from them. We chose to 

consider CHI3L2 gene expression because this gene’s expression levels were 

found to be influenced significantly by a single SNP within an intronic region of 

the gene itself (Cheung et al. 2005), and we have considered a more detailed 

analysis of this gene in a prior publication 16. We also note that molecular 

phenotypes, such as gene expression levels, are becoming important diagnostic 

tools for treatment and disease outcome, which raises questions about their 

relationships to naturally occurring DNA sequence variation 17. To implement the 

MDMR procedure in WGA analysis settings we consider a moving window based 

strategy in which some number, k, of adjacent SNPs are used in the computation 

of a similarity matrix, the matrix is then tested for an association between 

variations at the k loci and the phenotype, and then the window is moved one 

SNP away and the analysis is repeated.  The choice of the window size is 

arbitrary, but can be varied in order to identify SNP effects that appear to work in 

aggregate or in isolation, thus allowing for flexibility in the analysis.   
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METHODS 

Phenotype and Genotype Data  

We obtained SNP data collected on 57 unrelated CEPH individuals from 

the International HapMap Project database (www.hapmap.org). These 

individuals were chosen by HapMap researchers for massive, genome-wide 

genotyping studies 1 and also used to assess gene expression patterns obtained 

from immortalized lymphocytes 2. We downloaded the gene expression data as it 

is publicly available (via GEO accession number: GSE2552; 

http://www.ncbi.nlm.nih.gov/geo/). Our analyses excluded the individual labeled 

NA06993 in the gene expression studies because detailed analysis of HapMap 

data suggested that the sample associated with this person is likely to have 

derived from an unreported relative. We also added data associated with 

individual labeled NA12056 since gene expression data for this individual is now 

available. We ultimately downloaded phased, haplotype data on the 22 

autosomal chromosomes from the HapMap (phase 1) database that were 

genotyped on the 57 CEPH individuals. We focused on the CHI3L2 gene 

expression phenotype, since, as mentioned previously, Cheung et al. (2005) 

found linkage and cis-acting variations influencing this gene’s expression and 

also demonstrated functional evidence for an intronic SNP in CHI3L2 2. 

Monomorphic SNPs were eliminated from analyses leaving 811,886 SNPs for 

analysis. Repeated, multiple gene expression values collected on each of the 

CEPH individuals were averaged when available. We considered use of log2-

transformed expression levels due to skewness in the expression values.   
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MDMR Analysis 

We applied the MDMR analysis method described by Wessel and Schork 

16 to SNPs across the genome and the CHI3L2 gene expression phenotype. In 

brief, the MDMR method involves the characterization and measurement of the 

similarity/dissimilarity of the allelic composition of a set of individuals’ diploid 

genomes in a region of interest. For the present study we used a simple identity-

by-state (IBS) measure of haplotype pair (or ‘diplotype’) similarity 16. The 

resulting matrix was then tested for patterns consistent with their being an 

association between the SNPs in the region of interest and the phenotype using 

an F-statistic 16. We defined a ‘region’ using a moving window strategy. In our 

initial analyses, we used a window size of 10, scrolling across each chromosome 

using 10 adjacent SNPs to calculate haplotpye similarity. We repeated the 

analyses using window sizes of 1, 2, 5, 10, 20 and 50 on chromosome 1 (i.e., the 

chromosome the CHI3L2 gene is located on).  We identified SNPs in the analysis 

within 100kb around the CHI3L2 gene so that we could determine if our analyses 

could effectively ‘recover’ the known association between variations in the 

CHI3L2 gene and CHI3L2 gene expression. 

We also pursued analyses that considered each locus in isolation using 

the proposed similarity regression procedure in a more detailed analysis of SNPs 

within 3 megabases (MB) around the CHI3L2 gene (base positions: 109,568,013 

– 112,588,629 based on the latest release of the human genome via the Golden 

Path website (http://genome.ucsc.edu/). To more accurately assess the 

significance of associations (instead of merely relying on the putative asymptotic 
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distribution of the proposed F-statistic under the null hypothesis of no 

association) we used 100,000 permutations of the data to assess the probability 

of a type I error, with the exception of our more detailed analysis of SNPs around 

the CHI3L2 gene for which we used 1000 permutations. 

 

Graphical Display of Similarity Matrices 

Similarity matrices can be represented graphically in a number of ways 

that can facilitate interpretation. We consider ‘heatmaps’ which simply color code 

the elements of a similarity matrix such that higher similarity values are 

represented as ‘hotter’ or more red colors and lower similarity values are 

represented as ‘colder’ or more blue colors 18. If the matrix is ordered such that 

individuals with similar phenotype values are next to each other, then 

neighboring cells along the diagonal of the matrix (representing individuals with 

similar phenotype values) will present patches of red, indicating a relationship 

between the phenotype values and genomic similarity (see Figures 1a and 1b, 

discussed in the results section). 

 

RESULTS 

Basic WGA analysis 

We analyzed SNPs on the 22 phased autosomes using 10 locus windows 

and the MDMR analysis technique. Since the CHI3L2 gene is located on 

chromosome 1, we used the peak F-statistic associated in this region as our F-

statistic threshold for exploring other chromosomal regions likely to possess 



48 

 

CHI3L2 gene expression-influencing loci (Figure 2, peak pseudo-F statistic = 

16.11; p=0.00001). Using this threshold, we identified additional peaks on 

chromosomes 2, 7, 10 and 12. We found, however, a number of peaks on each 

of these chromosomes (Table 1 and Figure 3).  We explored the genes known to 

reside in the regions of the chromosomes and found that the genes under these 

peaks are involved in a number of biological functions that make sense with 

respect to the phenotype we studied, e.g. transcription regulators, while some 

genes had unknown functions or were only hypothetical proteins whose functions 

have yet to be determined. 

In addition to the peak on chromosome 1 in the CHI3L2 gene region, 

chromosome 10 yielded the highest peak (figure 3, pseudo-F=18.80, p=0.00004).  

The SNPs located within the regions of this peak were located in or near the 

WAC gene, which contains a WW domain known to be involved in signal 

transduction. In a region of chromosome 2, SNPs showing association were in 

the FLJ16124 gene (figure 3, pseudo-F statistic = 16.69; p=0.00006), and in a 

chromosome 12 region, SNPs near the peak associated marker were in the 3’ 

UTR of the LGR5 gene.  For chromosome 7, the strongest associated SNPs 

involved a locus >480kb downstream from the ANKRD7 gene, but two other 

peaks on chromosome 7 involved SNPs that are known transcription regulators, 

NEUROD6 and CUTL1. The majority of the associations were in genic regions 

and were located in promoters, UTRS or introns, except the one >480kb away 

from a gene, ANKRD7. This result – based on the biology of the variations 

coupled with the statistical analysis – makes the results more compelling, since 
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our phenotype, the expression level of the CHI3L2 gene, is likely influenced by, 

e.g., transcription factors and associated genes. We do, however, note that the 

SNPs that appeared to be associated with CHI3L2 gene expression that were 

more than >480kb from a gene on chromosome 7 were not in LD with SNPs in 

the nearest gene, ANKRD7. Further investigation showed that the SNPs were 

between ANKRD7 and hypothetical protein, LOC646752 (NCBI Map Viewer) but 

still out of the genic region (>100kb). 

 

Variable Window Size Analyses 

Table 2 summarizes the SNPs with the largest association identified 

through the use of different window sizes across chromosome 1. We want to 

emphasize that the F-statistic used in our analysis has the same number of 

degrees of freedom no matter how many SNPs are used to construct the 

measure of genomic similarity. Thus, analyses with different window sizes are 

comparable. Many of the associations were found in the region of the CHI3L2 

gene and most were the strongest associations identified in all of our analyses. 

Each window size picked up the CHI3L2 region, based on our previously defined 

threshold and permutation analyses, with the exception of the window size of 50, 

suggesting that this window size was likely containing too many variations that 

did not have potential biological effects on CHI3L2 expression and hence were 

saturating or reducing the signals provided by the SNPs with biological effects. 

We did find some associations that appeared only to be significant only 

when a particular window size was used. These included SNPs in PEX14 and 
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ACP6 genes (window size of 1), and the LMX1A gene, a transcription factor 

(window size of 2). Many associations were picked up in multiple window sizes, 

however, such as associations involving SNPs in the DEGS1 gene, where the 

SNP from window size 1 is contained in the other window sizes that appeared 

significant, as well as the PAP2D gene. It is also of interest to note that 

associations in SNPs in the CHI3L2 gene itself appeared to be strongest in 

different regions in the gene based on the window size used; e.g. the 2 SNPs 

with window size of 1 that happen to be in separate LD blocks based on the 

HapMap data, as well as the two associations involving the RAP1A gene.  Some 

of these associations, however, were not identified in our initial 10 locus window 

analysis because they did not meet our pseudo-F threshold of 16.11.  We 

examined single-locus associations involving SNPs 3 MB around the CHI3L2 

gene using the haplotype similarity measure (Figure 4).  For the 953 SNPs that 

were in this region, 90 (9.4%) SNPs were significant at p<0.05 (based on 1000 

permutations) of which 17 (18.9%) were in the actual defined CHI3L2 region.  

Another peak association was in the RAP1A gene, involved in GTPase activity, 

an association observed using windows of size 1 and 2. 

In general, we found that as the window size is increased, such as with 

window size of 50, the results become more unpredictable, since the SNPs within 

these windows may span different genes that do not appear to have an obvious 

function associated with CHI3l2 expression.  In general, the larger the window 

size, the smaller the F-statistic values. However, in theory, the use of a large 

window size may help identify regulatory blocks that do indeed involve many 
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genes or regulatory factors (e.g., enhancers, silencers, microRNA genes, etc.). 

Thus, a window-size of 1 may provide greater potential for false-positive results, 

while a large window size, such as 50, may provide greater potential for false-

negative results, but this may not be the case in certain settings. 

 

Assessing Association Signal Strength 

Because of the observation that greater window sizes appeared to 

produce less strong association signals, most likely because non-associated 

SNPs in large windows deplete the signal associated with SNPs within those 

windows, we considered the effects of the inclusion of known non-associated 

SNPs in an analysis through the use of SNPs in regions throughout the genome 

that were not found to be associated with CHI3L2 gene expression. We simply 

included these SNPs along with SNPs in regions that did show association with 

CHI3L2 gene expression in MDMR analyses to assess the effect of their 

inclusion in an analysis. Thus, we constructed haplotype similarity matrices with 

the original CHI3L2 SNPs plus these non-associated SNPs. We found that the 

addition of as many as 90% non-associated SNPs was needed before the 

association was not significant (i.e., produced a p>0.05 in the present analyses). 

We note that the association signal steadily decreased when we added more and 

more non-associated SNPs, suggesting that association strength can be used to 

identify sets of adjacent SNPs in a genomic region that influence phenotypic 

expression (see Figure 5). Had we confined attention to only the non-associated 

SNPs, no association would have been found. 
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DISCUSSION 

We have identified a number of potential genomic sites involved in the 

expression of the CHI3L2 gene using a moving window-based MDMR analysis 

strategy. Many of these sites have logical biological functions, such as 

transcription.  The ability to compare and contrast results obtained with analyses 

involving different window sizes provides flexibility in the analysis. Based on our 

analyses, however, it would appear that it may be best to use a medium window 

size (such as 10 or 20) – although this may be dependent on sample size, 

something we did not investigate – to identify regions of interest initially, and then 

pursue analyses for the regions that emerge as most significant using smaller 

window sizes or single-locus analyses. Merely using single locus analyses in a 

WGA analysis and not considering the biological basis of the putative association 

is likely going to lead to false positive results 13. 

There are some limitations to our proposed analysis strategy. For 

example, we confined attention to the use of phase 1 SNPs, which does not 

represent all of the SNPs that could have been studied now that some 

10,000,000 polymorphic sites have been identified in the genome.  Some of 

these SNPs – although not genotyped on the individuals in our study – may be of 

direct relevance to CHI3L2 gene expression. In addition, some regions of 

chromosomes were not well genotyped by the HapMap researchers for various 

reasons, so that key genomic regions may not have been interrogated in our 

analyses. Also, some associations were found to involve SNPs that reside 

outside of a gene region. Although these SNPs could be in strong LD with other 
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SNPs in important genes this requires further work.  Using the NCBI MapViewer 

(http://www.ncbi.nlm.nih.gov/mapview/), we were able to identify genes that were 

not viewable or available on the HapMap website, suggesting that there is more 

information that one could work with if additional genotyping was to be pursued 

with the CEPH subjects to explore CHI3L2 gene expression.  

In terms of the MDMR analysis procedure itself, we want to emphasize 

that other groups are beginning to employ multiple locus analyses in an effort to 

capture effects not likely detectable in single-locus association analyses 13. It 

may be the case that the use of an allelic composition-based similarity metric in 

WGA analysis is simply not as powerful – either in total or with respect to certain 

settings – than other analysis approaches. This issue demands further attention 

and can be pursued by comparing methods to validating association analysis 

data or through the use of simulation study methods (Malo, Wessel, and Schork, 

manuscript in preparation). The measure of similarity used is also an issue with 

MDMR analyses and greater attention needs to be given to the choice of a 

metric. We chose to use the most basic method – simple IBS allele sharing 

across haplotypes – but others, for example those that use weighting schemes, 

may be the most appropriate and powerful 16. Finally, although the MDMR 

analysis procedure can explicitly account for allelic heterogeneity, we did not 

consider analyses that consider locus heterogeneity. Clearly, methods that 

leverage the combined effects of multiple genomic regions are as important in 

the analysis of complex human traits and diseases as are those that consider the 

biological reality of multiple variations with a single region. 
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Table 1. MDMR Whole Genome Association Results Based on a Moving Window Size of 10 Adjacent Loci. 
Chr pseudo-F p-value var % position rs# in a 

gene?*
gene name function location 

1 16.11 0.00001 22.7 111087506 rs3886706 Yes CHI3L2 Extracellular matrix  
protein 

3' UTR  
(3kb) 

1 16.06 0.00015 22.6 98992749 rs6701980 Yes PAP2D Hydrolase activity 5' (59kb) 
1 15.78 0.00016 22.3 111077825 rs2764543 Yes CHI3L2 Extracellular matrix  

protein 
intron 7 

1 12.01 0.00030 17.9 209493940 rs351407 Yes PPP2R5A Protein serine/threonine 
phosphatase activity 

5' UTR  
(21kb) 

2 17.00 0.00006 23.6 65638627 rs1437465 Yes FLJ16124 Integral membrane  
protein 

intron 

2 13.60 0.00015 19.8 183482837 rs10497600 Yes PDE1A Phosphoric diester 
hydrolase activity 

intron 

2 14.73 0.00022 21.1 26084886 rs3845683 Yes ASXL2 DNA binding 3' UTR  
(9kb) 

7 16.71 0.00020 23.3 117936527 rs2689740 No NA NA 3' from  
ANKRD7 
(>500KB) 

7 11.76 0.00029 17.6 31119641 rs10238918 Yes NEUROD6 Transcription regulator 
activity 

3' UTR 

7 11.80 0.00103 17.7 101419231 rs407943 Yes CUTL1 Transcription regulator 
activity 

intron 

10 18.80 0.00004 25.5 28916977 rs332184 Yes WAC Signal transduction 3'UTR  
(3kb) 

10 13.88 0.00019 20.2 50367536 rs4838566 Yes OGDHL unknown 5' (53kb) 
10 13.68 0.00086 19.9 15883447 rs7903095 Yes C10orf97 Cell cycle control intron 
12 16.21 0.00016 22.8 70270822 rs10879305 Yes LGR5 G-protein coupled  

receptor activity 
3' UTR  
(6kb) 

12 14.21 0.00022 20.5 122762601 rs7133378 Yes CCDC92 Unknown 3' UTR  
(11kb) 

12 14.45 0.00035 20.8 122823432 rs7311969 Yes ZNF664 Transcription regulator 
activity 

UTR 

Key: Chr=chromosome, var=variation, NA=not applicable.  Genomic position and rs# are for the fifth marker.  *100KB 
around the gene.
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Table 2.  MDMR Association Analysis Results According to Window Size for Chromosome 1. 
 

window 
size 

pseudo-F p-value variation position rs# in a 
gene? 

gene 
name 

location function 

1 30.71 0.00001 35.8 111069150 rs755467 Yes CHI3L2 intron 1 Extracellular matrix 
protein 

1 24.01 0.00005 30.4 111396393 rs2800901 Yes RAP1A intron GTPase activity 
1 22.93 0.00003 29.4 144655381 rs10494246 Yes ACP6 3' UTR 

(6kb) 
Acid phosphatase 

activity 
1 22.36 0.00003 28.9 111092960 rs7537675 Yes CHI3L2 3' UTR 

(8kb) 
Extracellular matrix 

protein 
1 20.05 0.00008 26.7 10382740 rs479407 Yes PEX14 intron Signal transduction 
1 19.97 0.00008 26.6 111090371 rs942696 Yes CHI3L2 3' UTR 

(6kb) 
Extracellular matrix 

protein 
1 19.59 0.00005 26.3 221350016 rs11589025 Yes DEGS1 intron Metabolisim 
2 37.61 0.00001 40.6 111084194 rs3934923 Yes CHI3L2 intron 10 Extracellular matrix 

protein 
2 19.69 0.00008 26.4 98986970 rs10747502 Yes PAP2D 5' (54kb) Hydrolase activity 
2 18.13 0.00003 24.8 111392716 rs7553961 Yes RAP1A intron GTPase activity 
2 17.95 0.00008 24.6 221348239 rs4653996 Yes DEGS1 intron Metabolisim 
2 15.18 0.00017 21.6 162441382 rs883864 Yes LMX1A intron Transcription factor 

activity 
5 26.22 0.00001 32.3 111090230 rs942697 Yes CHI3L2 3' UTR 

(5kb) 
Extracellular matrix 

protein 
5 18.26 0.00010 24.9 98983465 rs1350177 Yes PAP2D 5' (50kb) Hydrolase activity 
5 13.76 0.00026 20.0 221338001 rs6426178 Yes DEGS1 5' (8kb) Metabolisim 
5 13.50 0.00045 19.7 209493940 rs351407 Yes PPP2R5A 5' (11kb) Protein 

serine/threonine 
phosphatase 

activity  
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Table 2.  Continued. 
 

window 
size 

pseudo-F p-value variation position rs# in a 
gene? 

gene 
name 

location function 

10 16.11 0.00001 22.7 111084194 rs3934923 Yes CHI3L2 intron 10 Extracellular matrix 
protein 

10 16.06 0.00015 22.6 98983465 rs1350177 Yes PAP2D 5' (50kb) Hydrolase activity 
10 15.78 0.00016 22.3 111069150 rs755467 Yes CHI3L2 intron 1 Extracellular matrix 

protein 
10 12.01 0.00030 17.9 209482269 rs351377 Yes PPP2R5A 5' (33kb)  Protein 

serine/threonine 
phosphatase activity  

20 15.54 0.00006 22.0 111068887 rs7554451 Yes CHI3L2 promoter 
(171bp) 

Extracellular matrix 
protein 

20 11.70 0.00038 17.5 98962946 rs12091525 Yes PAP2D 5' (30kb) Hydrolase activity 
20 10.82 0.00037 16.4 209435897 rs7546833 Yes PPP2R5A 5' (79kb) Protein 

serine/threonine 
phosphatase activity  

50 4.00 0.03732 6.8 150944424 rs4073768 Yes INTS3 intron Unknown 
50 3.63 0.02633 6.2 150026996 rs6674372 Yes LCE1A 3' (10kb) Structural molecule 

activity 
50 1.45 0.23609 2.6 80081648 rs10493661 No NA >2MB 

from a 
gene 

NA 
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Figure 1. Heatmap representations of the similarity in the allelic profiles of 57 unrelated CEPH individuals based on 
variations in the WAC gene using the haplotype sharing measure (panel A; see text for details), and based on 
variations in the IL10 gene using the haplotype sharing measure (panel B). Note that individuals have been ordered in 
the matrix by increasing CHI3L2 levels. The concentration of “red” cells in the matrix along the diagonal in panel A 
suggests an association between similarity in the WAC gene composition and CHI3L2 expression. The lack of a 
pattern in panel B suggests that no association between similarity in IL10 gene composition and CHI3L2 expression 
exists. 
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Figure 2. The peak associations from each of the 22 autosomes of 57 unrelated 
CEPH individuals.  The peak association on chromosome 1, representing SNPs 
in the CHI3L2 gene, was used as the threshold for exploring other regions in the 
genome.  These regions included peaks on chromosomes 2, 7, 10 and 12. 
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Figure 3. Associations for each of the 22 autosomes using 811,886 SNPs and a moving window size of 10.  The 
chromosomes are in numerical order from left to right. 
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Figure 3. Continued. 
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Figure 3. Continued. 
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Figure 4.  Fine mapping results 3MB around the CHI3L2 region.
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Figure 5. The effect of including known non-associated SNPs in the construction of the haplotype similarity matrix.  
Essentially, the 11 SNPs in the CHI3L2 gene were initially used to construct the similarity matrix. Additional SNPs from 
non-associated regions through out the genome were added to those used to construct the similarity matrix in greater 
numbers. These matrices were then analyzed for association. The Figure suggests that the original signal provided by 
the 11 CHI3L2 SNPs was so strong that additional SNPs, comprising almost 90% of the SNPs used to construct the 
matrix, could not completely eliminate the statistical significance of the association.



66 

 

ACKNOWLEDGEMENTS 

The text of Chapter 3 has been submitted for publication as: 

Jennifer Wessel, Ondrej Libiger, and Nicholas J. Schork.  Whole Genome 
Association Studies Using Window-Based Multivariate Distance Matrix 
Regression Analysis. 

 
The dissertation author was the primary researcher and/or author and the co-

authors listed in this publication directed and supervised the research which 

forms the basis for this chapter.     



 

67 

CHAPTER 4 

Accommodating Pathway Information in Expression Quantitative  

Trait Locus (“eQTL”) Analysis  



68 

 

ABSTRACT 

The availability of high-throughput genotyping technologies and 

microarray assays has allowed researchers to consider pursuing investigations 

whose ultimate goal is the identification of genetic variations that influence the 

levels at which genes are expressed, e.g., “expression Quantitative Trait Loci” or 

“eQTL” mapping studies. However, the large number of genes whose expression 

levels can be tested for association with genetic variations can create both 

statistical and biological interpretive problems. We consider the integrated 

analysis of eQTL mapping data that incorporates pathway, functions, and 

disease process information. The goal of this analysis is to determine if 

compelling patterns emerge from the data that are consistent with the notion that 

perturbations in the physiologic environment induced by genetic variations 

implicate the expression patterns of multiple genes via genetic network 

relationships or feedback mechanisms. We apply available genetic network and 

pathway analysis software, as well as a novel regression analysis technique to 

carry out the proposed studies. We also consider extensions of the proposed 

strategies and areas of future research.   
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INTRODUCTION 

The exploration of the immediate molecular-physiologic consequences of 

DNA sequence variation has been greatly enhanced as a result of the 

introduction of high-throughout, multiplex technologies such as gene expression 

microarrays, proteomics technologies, and metabolomic assays. A number of 

studies have been pursued recently that have shown that naturally occurring 

DNA sequence variations in a wide variety of organisms influence the levels of 

the expression of particular genes 1-6. This is not surprising given that DNA 

sequence variations, such as single nucleotide polymorphisms or deletions, in 

gene regulatory regions of the genome, such as promoters, could, e.g., influence 

the ability of a transcription factor to bind and thereby affect the activity of the 

promoter in guiding transcription of the gene.  

Many studies examining the relationship of DNA sequence variations and 

gene expression levels have not actually considered the biological mechanisms 

behind such relationships, but have rather focused on the mere association 

between sequence variations and gene expression patterns in an effort to make 

broad claims about the role of likely cis-regulatory vs. trans-regulatory factors in 

mediating gene expression on a genome-wide scale. These studies, known as 

expression quantitative trait locus (“eQTL”) mapping studies or “genetical 

genomic” studies, have shed enormous light on the global role of sequence 

variation in mediating gene expression 1-8. However, the mere association of a 

particular genetic variation with the expression level of a gene – whether or not 

that sequence variation resides within the gene whose expression level is 
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influenced – ultimately raises a number of questions about the relationships of 

the associations themselves. For example, one could ask if the genes whose 

expression levels are influenced by a particular genetic variation appear to be 

involved in the same genetic network, process, or pathway. Addressing such 

questions could lead to the characterization of genetic variations that influence 

entire processes and raise the possibility that one of the genes that are 

influenced by the sequence variation in question is more upstream in the network 

or process of relevance. Thus, one could infer that a perturbation in a particular 

gene can induce a cascade of physiologic events that affects all, or many, of the 

other genes in a particular network or process. 

The reason why this type of analysis is important is obvious: it is very 

unlikely that the expression level of a single gene, when perturbed by a single 

naturally occurring DNA sequence variation, will induce an overt clinically-

identifiable or physiologically meaningful phenotype, given the fact that genes 

operate in networks replete with redundancy, feedback, and compensatory 

mechanisms. In fact, it is well known that most traits or diseases are multifactorial 

and complex genetically, whereby many genes and/or environmental factors are 

responsible for their expression.  

We have therefore considered the analysis of published eQTL mapping 

studies involving humans that takes into account the possible participation of 

genes in various networks, pathways, diseases, or drug targets, whose 

expression values appear to be influenced by particular SNPs. The goal of the 

analysis is to determine if it is possible to make sense of the collection of genes 
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whose expression patterns are influenced by a group of SNPs. In this light we 

address two related questions: 1. are the genes whose expression patterns 

appear to be associated with a particular SNP involved in a particular known 

process or network? and 2. do the genes whose expression patterns appear to 

be associated with different SNPs have any commonalities? Or rather, do some 

sets of SNPs (either working in cis or trans-acting fashions) influence the 

expression levels of genes in the same pathway or network? 

Although a number of studies have been undertaken in humans to identify 

genetic variations influencing the expression levels of genes 1-3, 9, 10, we have 

concentrated on the analysis of 28 SNPs and expression data on 8,523 genes 

obtained by Cheung et al. (2005) due to its recognition by the scientific 

community, the availability of the data, and the fact that we have considered 

these data in particular candidate gene analyses 11 as well as genome-wide 

association studies 12. To carry out the analysis, we took advantage of 

Ingenuity’s Pathway Analysis Software 13 as well as a novel multivariate analysis 

technique that can be termed ‘multivariate distance matrix regression’ (MDMR) 

analysis that has been shown to have utility in the analysis of high-dimensional 

gene expression and SNP data 11, 14, 15. 

 

METHODS 

CEPH Gene Expression and SNP Data  

 We used data from Cheung et al. 1, 16 which included gene expression 

data representing 8,523 unique genes on 57 CEPH-repository-derived individuals 
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whose DNA was studied for polymorphism as part of the International HapMap 

Project 17. We note that we actually examined the expression levels of 8672 

probes, but some of these probes interrogated the same gene. The HapMap 

research produced approximately 1.5 million genotypes on these 57 individuals. 

Cheung et al. (2005) identified strong associations between particular SNP 

variations and the expression values of particular genes for 24 SNPs (referred to 

here as ‘associated’ SNPs) as described in Table 1 of Cheung et al. (2005). In 

addition to these 24 SNPs, we included in our analyses 4 randomly chosen SNPs 

as controls, since these SNPs were not found to have strong associations with 

the expression values of any genes. The additional SNPs had RS numbers of 

rs10017431, rs10498658, rs2688692, and rs2587021. 

 

Univariate Gene Expression Analysis 

Analysis of the relationship of the expression level of each gene to each 

SNP was performed by testing the equality of expression levels across genotype 

categories using univariate analyses that included traditional t-tests and the non-

parametric Mann Whitney U-test 18. Some of the 24 SNPs had very unequal 

allele frequencies, and hence had no or only a few individuals with a particular 

homozygous genotype. Due to this fact, the rarer homozygote and the 

heterozygote were combined creating two genotypic categories that could be 

contrasted for gene expression differences.   
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Power Studies and False Discovery Rates 

 We used the techniques described in the paper and website associated 

with PowerAtlas 19-21, which describes tools designed for microarray data 

analysis power calculations. The techniques described in the paper and 

implemented on the website were used to estimate the probability of true positive 

results (PTP), the probability of true negative results (PTN) and the expected 

discovery rate (EDR) of the 8523 gene expression association studies across 

genotype categories for the 28 SNPs.  The PTP is defined as the proportion of 

genes that are declared significantly differentially expressed between two groups, 

a concept similar to the false discovery rate. The EDR is the average power for 

all genes for which the null hypothesis is false in an experiment, or in other words 

the proportion of genes that are differentially expressed that will be declared as 

such.  For each of the 28 SNPs, we report the estimated PTP and EDR at a 

significance threshold of 0.05 and 0.01. 

 

Pathway Analysis 

 We used the Ingenuity pathway analysis software package 13 to analyze 

and assess sets of functions (Gene Ontology (GO) terms), canonical pathways, 

diseases, and drug targets overrepresented in the lists of genes whose 

expression levels were influenced by each SNP. We also considered similar 

analyses that tested for overrepresentation of functions, canonical pathways, and 

diseases, among genes that were common to a set of SNPs ranked by p-value 

from Ingenuity. We used the right-tailed Fisher’s exact test, as implemented in 
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Ingenuity software, that assesses the number of genes in a particular list that 

participate in a given pathway, relative to the total number of occurrences of 

these genes in all pathways annotated by Ingenuity. In this way we could 

determine if sets of SNPs appear to influence, or contribute to, the functioning of 

particular genetic networks that may be associated with particular phenotypes. 

We identified the drug targets in the most common network for each SNP.  Since 

our purpose was to capture multiple genes in a pathway affected by a given 

SNP, we used a less conservative cut-off (p<.05) to increase the probability we 

would capture the majority of effects exhibited, which could include multiple weak 

effects.   

 

Multivariate Distance Matrix Regression Analysis 

 We took advantage of a recently introduced multivariate analysis 

procedure developed by the authors 11, 14, 15. This technique, which can be 

termed ‘multivariate distance matrix regression’ or ‘MDMR’ analysis, involves the 

construction of a distance matrix over the expression values of many genes for 

the subjects in a study. The similarities and dissimilarities among the subjects 

based on their gene expression profiles are then related to additional factors 

collected on those subjects, such as SNP genotype information. The analysis 

functions in an analogous manner to regression analysis in that the goal is to 

determine the significance of the additional factors (e.g., SNPs) in ‘explaining’ the 

variation in the similarity or dissimilarity of the subjects (based on expression 

profiles) represented in the distance matrix. We applied this analysis by 
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constructing Euclidean distance matrices for the subjects based on their 

expression profiles involving genes known to participate in particular processes 

or pathways and then testing to see if particular SNPs influenced the variation in 

the similarity/dissimilarity of the gene expression profiles. In effect, we could test 

the hypothesis that particular SNPs influence the expression profile of genes in 

an entire pathway or process. 

 

RESULTS 

Individual Gene Results  

 Univariate association analyses involved each SNP we chose to study and 

the available gene expression data resulting in 28 x 8,523 = 238,644 analysis 

results (the results of these analyses are available from the authors). We ranked 

the p-values associated with the analysis of each gene expression variable for 

each SNP. The genes whose expression values were most strongly associated 

with each SNP were then used in the pathway analysis.  We used an arbitrary p-

value cutoff of p<0.05 to identify genes whose expression values were 

“associated” with each SNP. We evaluated the utility of this p<0.05 criterion via 

power and expected discovery rate calculations, as described below. Table 1 

provides the results of the analyses for each individual SNP using the Ingenuity 

software package as described in the Methods section. Table 1 only includes, for 

the sake of space limitations, the top ten diseases, functions and canonical 

pathways (ranked by p-values) that were overrepresented in the genes whose 

expression values were associated (p<0.05) with each SNP.  The drug targets 
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listed were those represented in the top scoring network for each SNP.  The 

abbreviations used in Table 1 are listed in Appendix 1. 

 

Power Studies 

 We determined the expected discovery rates (EDR), the probability of a 

true positive (PTP) result, and the probability of a false positive (PTN) result 

based on the 8,523 univariate gene expression analyses performed for each 

SNP using the strategies described by Page et al 19 and Gadbury et al 20, as 

implemented on the ‘PowerAtlas’ website 21. This analysis provided us with 

insights as to the strength of the associations between the SNPs Cheung et al. 

(2005) identified as significantly associated with the expression levels of a 

particular gene and the expression levels of other genes.  Table 2 provides the 

results of the analyses as well as the percentage of genes whose expression 

levels were significantly associated (p<.05 and p<.01) with the SNPs.  Most of 

the 24 SNPs Cheung et al (2005) identified as highly associated with the 

expression level of a particular gene showed promising EDR or PTP estimates.  

The most consistently high PTP (>0.8) and EDR (>.4) observed were found for 

SNPs with designations rs10490570, rs10509846, rs4755741 and rs9600337. 

Many of the other ‘associated’ SNPs described by Cheung et al. (2005) had PTP 

(>0.8) (e.g.  rs10807387, rs7802273, rs80092794) or EDR (>.4) (rs3757791, 

rs788350) with moderately high values for the PTP and/or EDR.  We note that a 

few of Cheung et al’s (2005)  ‘associated’ SNPs had low PTP and EDR values 

(e.g. rs2271194 and rs227940) suggesting that either the associations those 



77 

 

SNPs had with gene expression values were literally confined to one gene, or the 

results were likely to be false positives.  Note the 4 control SNPs (i.e., SNPs not 

identified by Cheung et al (2005) as having any strong association with any 

gene’s expression values) showed either an EDR or PTP = 0.  Figure 1 provides 

a graphical display of the PTP, EDR, and PTN as a function of sample size 

based on one of Cheung et al’s (2005) associated SNPs (rs10490570) and one 

control SNP (rs10017431). 

 

Individual SNP Pathway Analysis 

 We report up to ten of the significantly overrepresented functions, 

diseases, canonical pathways, and drug targets for each of the 28 SNPs in Table 

1.  There are 611 unique ‘networks’ involved in canonical pathways, functions or 

disease processes queried in the Ingenuity software. For the functions and 

diseases, there were usually more than ten significantly overrepresented 

networks for the SNPs, but for the canonical pathways 14.3% of the SNPs had 

less than ten that were significantly overrepresented.  The most significantly 

overrepresented networks for the SNPs were associated with diseases or 

particular biological functions (p=0.00002), and these were associated with SNPs 

rs2139512, rs2762 and rs6928482.  We determined if these overrepresented 

networks included those expression levels that were identified as the most 

strongly associated with a SNP. As an example, we considered genes whose 

expression levels were associated with rs6928482. For the 628 genes associated 

with rs6928482, based on univariate statistical tests, the Ingenuity database 
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identified six genes involved in cellular hematological disorders (univariate p’s= 

0.003 – 0.04), and the most significantly associated gene, HAMP, was in the top 

1% of the most strongly associated gene expression levels. Conversely, eight 

genes were the most significantly associated (p’s<.00001) in univariate tests of 

rs6928482 out of the 8523 expression levels.  These eight genes were different 

from those involved in the cellular hematological disorders, and four of these 

genes were not involved in any of the functions or diseases identified, while the 

other four were not involved in any of the top 10 functions or diseases.  

 

Combined SNP Analysis 

 We identified two pathways that were the most frequently represented 

among the 28 SNPs we analyzed. These were the Wnt/Beta-catenin signaling 

pathway (common to 4 of the 28 SNPs) and the serotonin receptor (SR) signaling 

pathway (also common to 4 SNPs). The Wnt/Beta-catenin signaling pathway was 

the most significantly associated canonical pathway for three of the SNPs. Of the 

genes in the Wnt/Beta-catenin signaling pathway, between 8–25 of them were 

significantly associated with the 4 SNPs (p’s<0.05) for which this pathway was 

overrepresented. Some of these genes overlapped across these 4 SNPs while 

some were unique to a particular SNP. We then identified 50 Wnt/Beta-catenin 

signaling pathway genes whose expression levels were influenced by at least 

one of these four SNPs and used them to form a Euclidean-distance/similarity 

matrix for the MDMR analysis (see Methods). The MDMR analysis suggested 

that one of the four SNPs was strongly associated with expression levels of these 
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50 genes when these genes were considered as providing multivariate gene 

expression profiles (i.e., when they were considered jointly and not as single 

gene expression levels assessed individually; Table 3; p=0.0008). This SNP 

explained 5.0% of the variation in the similarity/dissimilarity of the expression 

profiles of these 50 genes across the subjects (Table 3). In individual univariate 

analyses involving genotype categories for this SNP (i.e., rs10807387) and each 

of the 50 gene expression levels, the p-values ranged from 0.0007 – 0.99, with 

the expression levels of the WNT2 gene being the most significantly associated 

with this SNP.  

 When the similarity analysis was constructed with only those genes whose 

expression values were significantly associated with an individual SNP based on 

univariate analyses, the results improved (only significant results shown, Table 

4). Two SNPs were actually found to be associated with the similarity of the 

expression profiles of these genes (Table 4), however only one gene (LRP5) was 

associated with both SNPs from univariate analyses.  For the SR signaling 

pathway, 3 SNPs were identified as being associated with this pathway and 

involved the expression levels of 4–8 genes (14 in total). Two SNPs were 

associated with the expression levels of the 14 genes involved in the SR 

signaling in univariate and multivariate tests, and explained 8.8% of the variation 

(Table 3). 
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DISCUSSION 

 We have shown that a comprehensive, pathway-oriented analysis of eQTL 

mapping data can lead to more compelling insights about the relationships of 

DNA sequence variations and gene expression levels. It is well-known that genes 

participate in networks and do not function in isolation. It is therefore important to 

consider this fact when evaluating the ultimate significance of the impact of 

sequence variation on the expression levels of multiple genes. We find that many 

of the SNPs shown to be strongly associated with the expression levels of 

particular genes by Cheung et al. 1 are also associated with the expression levels 

of many other genes, and that the reason the SNP might be associated with 

these other genes’ expression levels is due to the fact that those genes 

participate in common sets of biological processes or pathways.  

 We also find that many SNPs, some of which were identified as 

significantly associated with particular gene expression levels by Cheung et al. 

2005, do not appear to be associated with the expression levels of genes 

participating in common pathways. This suggests that either the SNP affects the 

expression level of a gene whose influence is non-essential for a particular 

process (i.e., it is compensated for easily or is peripheral to the activities of that 

process) or the original association is likely to be a false positive result.  

 Our assessment of the likely ‘expected discovery rates’ and ‘probability of 

a true positive’ result for each SNP also sheds light on the utility of pathway 

analyses in eQTL analysis. We find that many of the SNPs found to be 

significantly associated with the level of expression of a particular gene by 
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Cheung et al. (2005) did not yield strong associations with other genes and 

hence had very low expected discovery rates and probabilities of true positive 

results. Examples include SNPs rs2271194 and rs2762 which Cheung et al. 

(2005) found to be highly associated with the expression levels of the RPS26 

(p=7.94x10-12) and LRAP (p=1.98x10-19) genes, respectively, but had very low 

EDR and PTP values (EDR=0.01 for both and PTP=0.02 and 0.18, respectively). 

This analysis calls into question the actual influence of these SNPs on gene 

expression patterns despite their strong association with the expression levels of 

a single gene. We want to emphasize that our use of a common p-value (i.e., 

p<0.05) for declaring significance of an association between each SNP and the 

8,523 gene expression levels may not have been ideal. Rather, it might be 

advantageous in analyses like the one we have pursued to use different 

thresholds for each gene based on, e.g., EDR and PTP analysis, to generate the 

list of genes to be interrogated in the pathway and common process analysis. 

Our analysis of the influence of a SNP on an entire pathway via the MDMR 

analysis also shows promise in this regard, in that we were able to show that 

particular SNPs appeared to influence the entire expression profile of a group of 

genes known (or at least likely) to participate in a particular process or pathway. 

 Our analysis of processes, diseases, and pathways demonstrate the 

heterogeneity of functions and diseases that a polymorphic locus can influence.  

We did find, however, some loci that appear to influence a limited number of 

networks, for example rs6060535, which may be tightly regulated pathways or 

pathways with fewer genes involved.  The functions we considered generally 
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produced smaller p-values than the disease categories, possibly due to the 

number of genes involved in either. This could reflect limitations in the Ingenuity 

knowledgebase regarding disease processes.   

 There are a number of important issues and directions for future research 

that should receive special attention. For example, our analysis is entirely 

dependent on the veracity and/or completeness of the available knowledge-

base(s) of biochemical processes and gene interactions (in our case, the 

knowledge-base developed by Ingenuity). In addition, it is unclear if our analysis 

of expression patterns observed in immortalized lymphocytes truly correlates with 

activities and functions in vivo, as it is well-known that the expression levels of 

genes are tissue specific and possibly influenced by transformation 22, 23.  Despite 

these caveats, our analysis has promise. It may be possible that in the future, as 

more and more eQTL mapping studies are pursued and knowledge of the 

interaction of genes grows, one could work out – using purely computational 

methods – the  regulatory machinery associated with not just individual genes, 

but entire networks, pathways, or processes, mechanisms likely involved in 

pathway events. 
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APPENDIX 

Abbreviations of canonical pathways, functions, diseases and drug targets used 

in Table 1. 

Description Abbreviation
alanine and aspartate metabolism AAM 
accumulation of adipose tissue AAT 
activation of Atf-1 binding site AAtf1BS 
adhesion of blastomeres AB 
attachment of breast cancer cell lines ABCCL 
aggregation of B lymphocytes ABL 
adhesion of cell-associated matrix ACAM 
adhesion of cumulus cells ACC 
autophagy of colorectal cancer cell lines ACCCL 
arrest in cell cycle progression of breast cell lines ACCPCL 
arrest in cell cycle progression of lung cell lines ACCPLCL 
arrest in cell cycle progression of brain CA cell lines ACPBCL 
arrest in development of cells ADC 
attention deficit hyperactivity disorder ADHD 
arrest in differentiation of leukocytes ADL 
adhesion of ova AdO 
autoimmune disease of primate ADP 
ADP ribosylation of amino acids ADPRAA 
arrest in development of thymocytes ADT 
arrest in development of T lymphocytes ADTL 
adhesion of embryonic cells AEC 
apoptosis of ectodermal cells AECC 
anoikis of epithelial cell lines AECL 
aggressive fibromatosis AF 
arrest in G1 phase of thyroid tumor cell lines AG1PTTCL 
aggregation of breast cancer cell lines AgBCCL 
aggregation of epithelial cells AgEC 
aggregation of tumor cell lines AgTCL 
activation of HNF4 binding site AHNF4 
apoptosis of intestinal cell lines AICL 
arrest in interphase of skin cancer cell lines AISCCL 
arthritis of joint AJ 
attachment of kidney cells AKC 
accumulation of lung cancer cell lines ALCCL 
acidification of leukemia cell lines ALCL 
allodynia of rodents AlR 
ataxia of mice AM 
adhesion of muscle cells AMC 
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attachment of microtubules AMt 
activation of nerves AN 
apoptosis of neuroblasts ANB 
apoptosis of natural killer T lymphocytes ANKTL 
angiogenesis of tumor AnT 
atherogenesis of organism AO 
abdominal obesity-metabolic syndrome AOMS 
amyloid Processing AP 
acute pancreatitis APC 
adhesion of pancreatic cancer cell lines APCCL 
apoptosis of endothelial cells ApEC 
adiposis of mice ApM 
apoptosis of myoblasts ApMb 
apoptosis of mast cells ApMC 
activation of plasma membrane projections APMP 
apoptosis of osteoblasts ApO 
assembly of protein-protein complex APPC 
apoptosis of splenocytes ApSc 
apoptosis of thymoma cell lines ApTCL 
activation of permeability transition pores APTP 
anorexia of rodents AR 
anisocytosis of red blood cells ARBS 
antiviral response of melanoma cell lines ARMCL 
accumulation of RNA ARNA 
arrhythmogenic right ventricular dysplasia ARVD 
Alport's syndrome AS 
aggregation of squamous cell carcinoma cell lines ASCCCL 
aggregation of stomach cancer cell lines ASCCL 
activation of steroidogenic factor-1 response element ASF1RE 
apoptosis of spiral ganglion cells ASGC 
aminosugars metabolism ASM 
apoptosis of skeletal muscle cells ASMC 
activation of STAT response element ASTATRE 
astrocytosis of tissue AT 
accumulation of tumor cell lines ATCL 
angiogenesis of tissue ATI 
activation of T lymphocytes ATL 
arthritis of rats AtR 
aminoacyl-tRNA biosynthesis AtRNAB 
attachment of tumor cell lines AtTCL 
atrial ventricular block AVB 
accumulation of white adipose tissue AWAT 
anxiety of mice AxM 
anxiety of rodents AxR 
bronchial asthma BA 
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binding of adenocarcinoma cells BAC 
beta-alanine metabolism BAM 
bile acid biosynthesis BAS 
binding of AT rich element BATRE 
binding of bone cell lines BBCL 
branching of breast cell lines BBrCL 
basal-cell carcinoma BCC 
binding of CD28RE/AP response element BCD28R 
B cell receptor signaling BCRS 
bundling of filaments BF 
blood group glycolipid biosynthesis-neolactoseries BGGBN 
binding of hormone BH 
binding of leukocyte cell lines BLCL 
blistering of mice BM 
binding of mRNA BmRNA 
bundling of microtubules BMt 
beta-oxidation of lignoceric acid BOLA 
biosynthesis of protein BP 
binding of T lymphocytes BTL 
butanoate metabolism ButM 
chylomicronemia C 
conversion of adenosine CA 
cerebral amyloid angiopathy of mice CAAM 
contraction of actin cytoskeleton CAC 
chemoattraction of monocytes CaMo 
cAMP-mediated signaling cAMPMS 
cancer signaling CaS 
coagulation of blood CB 
cardiac beta-adrenergic signaling CBAS 
coagulation of bodily fluid CBF 
contraction of blood vessel CBV 
citrate cycle CC 
chemotaxis of cancer cells CCaC 
complement and coagulation cascades CCC 
cell cycle: G1/S checkpoint regulation CCG1/S 
cell cycle: G2/M DNA damage checkpoint regulation CCG2/M 
cardiac contractility of heart CCH 
communication of cell lines CCL 
cell cycle progression of breast cell lines CCPBCL 
cell cycle progression of muscle cell lines CCPMCL 
cell division of germ cells CDGC 
cell death of lung cell lines CDLCL 
cleavage of DNA CDNA 
contact dermatitis of organ CDO 
cell death of spinal cord cells CDSCC 
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conversion of embryonic cells CEC 
communication of endothelial cell lines CECL 
chemotaxis of eukaryotic cells CEkC 
colony formation of colony forming unit-megakaryocytes CFCFUM 
cytolysis of fibroblast cell lines CFCL 
colony formation of pre-B lymphocytes CFPBL 
contact growth inhibition of breast cell lines CGIBCL 
contact growth inhibition of colon cancer cell lines CGICCCL 
contact growth inhibition of cervical cancer cell lines CGICvC 
contact growth inhibition of epithelial cell lines CGIECL 
communication of gap junctions CGJ 
congenital heart block CHB 
cytostasis of hepatoma cell lines CHCL 
chemokinesis of cell lines CkCL 
compartmentalization of leukocytes CL 
cytostasis of lung cancer cell lines CLCCL 
chemotaxis of lymphoma cell lines CLCL 
cross-linkage of DNA CLDNA 
chemotaxis of leukemia cell lines CLkCL 
convulsion of mice CM 
chemotaxis of memory B lymphocytes CMBL 
chemotaxis of monocytes CMc 
cell movement of carcinoma cells CMCC 
cancer of mammary gland CMG 
cell movement of germ cells CMGC 
cell movement of kidney cell lines CMKCL 
cell movement of lymphoma cell lines CMLCL 
cell movement of mammary tumor cells CMMTC 
chemotaxis of macrophages CMp 
cell movement of peripheral blood leukocytes CMPBL 
capping of mRNA CmRNA 
chemotaxis of memory T lymphocytes CMTL 
chemotaxis of natural killer cells CNKC 
chemotaxis of natural killer T lymphocytes CNKTL 
communication of nervous tissue cell lines CNTCL 
chemotaxis of peripheral blood monocytes CPBM 
cognition of rodents CR 
cytosis of red blood cells CRBC 
cell rounding of pheochromocytoma cell lines CRPCL 
chemokine signaling CS 
contraction of stellate cells CSC 
compaction of stomach cancer cell lines CSCCL 
congenital stationary night blindness, type 1 CSNB1 
chemotaxis Ct 
chemotaxis of Th2 lymphocytes CTh2L 
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clustering of telomeres CTm 
cell viability of colon cancer cell lines CVCCCL 
cell viability of colorectal cancer cell lines CVCRCCL 
cardiovascular disorder CVD 
cell viability of embryonic stem cells CVESC 
cysteine metabolism CysM 
dysmyelination of axons DA 
development of adenocarcinoma Dac 
deposition of amyloid fibrils DAF 
delay in apoptosis of neurons DAN 
depletion of ATP DATP 
disruption of blood-brain barrier DBBB 
degranulation of bone cell lines DBCL 
diabetes of mice DbM 
differentiation of bone-marrow-derived 
monocyte/macrophage precursor cells DBMD 
damage of colon DC 
depletion of Ca DCa 
differentiation of carcinoma cell lines DCCL 
damage of cardiovascular tissue DCVT 
development of digit DD 
delay in differentiation of epithelial cells DDEP 
deval disorder of gonad DDG 
deval disorder of heart ventricle DDHV 
delay in development of lymphatic system cells DDLSC 
deval disorder of mammary duct DDMD 
delay in differentiation of sensory epithelium DDSE 
dysgenesis of eye DE 
deformation of mandible DfM 
depolarization of ganglion cells DGC 
D-glutamine and D-glutamate metabolism DGDGM 
development of genitourinary tract DGT 
development of head DH 
damage of heart cell lines DHCL 
development of hypothalamic nucleus DHN 
development of heart tube DHT 
differentiation of myelomonocytic cells DMC 
density of microtubules DMt 
degeneration of neurites DN 
differentiation of neuroblastoma cell lines DNCL 
delay in neurological disorder of mammalia DNDM 
dysgenesis of outflow pathway DOP 
depolarization of cells DpC 
development of prostate gland DPG 
detachment of retina DR 
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development of renal glomerulus DRG 
differentiation of spermatids DS 
differentiation of Sertoli cells DSC 
depolarization of superior cervical ganglion neurons DSCGN 
development of skeletomuscular system DSS 
damage of seminiferous tubules DST 
damage of tumor cell lines DTCL 
damage of tumor cell lines DTCL 
development of skin DvS 
edema E 
ERK/MAPK signaling E/M 
extension of actin cytoskeleton EAC 
experimental allergic encephalomyelitis (chronic 
relapsing) of mice EAEM 
epidermolysis bullosa EB 
epidermolysis bullosa simplex EBS 
exposure of Ca2+ ECa 
engulfment of cell lines ECL 
expression of cytokine response element ECRE 
expansion of dendritic cells EDC 
epidermal hyperplasia EdH 
enlargement of endosomes EE 
erythropoiesis of embryonic stem cells EESC 
EGF signaling EGFS 
endocrine gland tumor EGT 
exocytosis of histamine EH 
ejaculation Ej 
ejaculation of mice EjM 
epilepsy El 
exudation of lung pleura ELP 
enchondromatosis EM 
endometrial hyperplasia EmH 
elongation of mRNA EmRNA 
ectopia of neurons EN 
early-onset morbid obesity EOMO 
erythropoietic protoporphyria EP 
ER signaling ERS 
endoplasmic reticulum stress pathway ERSP 
eicosanoid signaling ES 
engulfment of tumor cell lines ETCL 
fibrosis F 
farnesylation of amino acids FAA 
fatty acid biosynthesis (Path 1) FAB1 
fatty acid biosynthesis (Path 2) FAB2 
fatty acid metabolism FAM 
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formation of carcinoma FC 
function of liver FcL 
formation of T-cell non-Hodgkin lymphoma FCNHL 
function of tissue FcT 
fibrosis of dermis FD 
formation of elastic fibers FEF 
FGF signaling FGFS 
formation of hepatocellular carcinoma FHC 
familial hemiplegic migraines FHM 
fibrosis of interstitial tissue FIT 
fibrosis of liver FL 
fibrillogenesis of tissue FlT 
fibrosis of organ FO 
folding of protein FP 
formation of pseudopodia FPp 
formation of superoxide radical FSR 
fibrosis of tissue FT 
fusion of tumor cell lines FTCL 
formation of tectorial membrane FTM 
fusion of lysosome FuL 
fusion of phagosomes FuP 
flux of chlorine FxCl 
glycogenesis G 
G0/S phase transition of cell lines G0/SPT 
G2/M phase of colorectal cancer cell lines G2/MP 
growth of adenoma GA 
GABA receptor signaling GABARS 
generalized atrophic benign epidermolysis bullosa GABEB 
ganglioside biosynthesis GB 
growth of breast carcinoma GBC 
growth of carcinoma GC 
glycosaminoglycan degradation GD 
growth of lung cancer cell lines GLCCL 
glutamate metabolism GluM 
growth of mast cells GMC 
GM-CSF signaling GMCSFS 
growth of malignant tumor GMT 
glomerulonephritis of mice GnM 
growth of ovarian cells GOC 
growth of papilloma GP 
GPCR signaling GPCRS 
glycerophospholipid metabolism GPM 
G-protein signaling, coupled to cyclic nucleotide second 
messenger GPSC 
growth of primary tumor GPT 
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glutamate receptor signaling GRS 
glomerulosclerosis GS 
glomerulosclerosis of mice GsM 
glycine, serine and threonine metabolism GSTM 
growth of ureteric bud cells GUBC 
hemangioma H 
hyperalgesia Ha 
hemolytic anemia of mice HAM 
hemorrhage of brain HB 
hyperproliferation of breast cell lines HBCL 
hyperplasia of bone marrow cells HBMC 
hypercholesterolemia Hc 
hemorrhage of cerebrum HCb 
hematologic cancer of humans HCH 
homing of cell lines HCL 
hematological disorder of cells HDC 
hematological disorder of eukaryotic cells HDEC 
hematological disorder of heart HDH 
hematological disorder of rats HDR 
homing of eukaryotic cells HEC 
hyperplasia of exocrine gland HEG 
heart failure HF 
hyperplasia of follicular cells HFC 
hypogonadism Hg 
hyperplasia of gonadal cells HGC 
hydrolysis of GDP HGDP 
hypoinsulinemia of mice HiM 
hypertrophy of left ventricle HLV 
hepatomegaly Hm 
hepatitis Hp 
hepatitis C HpC 
hyperproliferation of cell lines HpCL 
hydrolysis of phosphatidylethanolamine HPd 
hypalgesia of rodents HR 
homologous recombination of DNA HRDNA 
hemorrhagic shock HS 
homing of stem cells HSC 
hypoplasia of secretory structure HSS 
hyperthyroidism Ht 
healing of tibia HTb 
hypertriglyceridemia HTg 
hypertriglyceridemia of rodents HTgR 
hypothermia of mice HtM 
hypertension HTN 
induction of B lymphocytes IBL 
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intraductal carcinoma IC 
islet-cell carcinoma ICC 
interphase of cervical cancer cell lines ICCCL 
islet cell tumor ICT 
induction of cytotoxic T lymphocytes ICTL 
insulin-dependent diabetes mellitus of mice IDDMM 
interaction of DNA IDNA 
inflammatory disorder of skin IDS 
infiltration of eosinophils IE 
inflammation of eukaryotic cells IEC 
infiltration of fibroblasts IF 
infection of fibroblast cell lines IFCL 
interferon signaling IFS 
infiltration of granulocytes IG 
IGF-1 signaling IGF1S 
infection of human immunodeficiency virus type 1 IHIV1 
immortalization of hematopoietic progenitor cells IHPC 
invasion of intestinal cell lines IICL 
inflammation of knee IK 
induction of lymphocytes IL 
IL-10 signaling IL10S 
IL-2 signaling IL2S 
IL-4 signaling IL4S 
IL-6 signaling IL6S 
infection of lymphoma cell lines ILCL 
inositol metabolism IM 
innervation of neurons IN 
inflammation of skin InfS 
inflammation of organ IO 
inflammatory response of mice IRM 
insulin receptor signaling IRS 
integrin signaling IS 
insulitis of mice IsM 
induction of serum response element ISRE 
invasion of tissue IT 
induction of T lymphocytes ITL 
initiation of translation of protein ITP 
invasion of lung cell lines IvLCL 
invasion of T lymphocytes IvTL 
joining of DNA fragment JDNAF 
juvenile rheumatoid arthritis JRA 
kindling K 
killing of fibroblasts KF 
leakage of blood LB 
leakage of blood-brain barrier LBBB 
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lysis of blood clot LBC 
lysine degradation LD 
leukemogenesis of humans LH 
lipolysis of lipid LL 
leakage of lysosome LLs 
loss of neurons LN 
loss of oocytes LO 
loss of brain cells LoBC 
learning of rodents LR 
lifespan of T lymphocytes LTL 
memory M 
modification of anion MA 
mobilization of antigen presenting cells MAPC 
modification of adenosine Mas 
modification of chromatin MC 
mobilization of Ca Mca 
modification of chromosome components MCC 
mitosis of carcinoma cell lines MCCL 
morphology of cardiomyocytes MCm 
metabolism of dopamine MD 
macular dystrophy, vitelliform MDV 
morphology of fur MF 
morphology of fibroblasts MFb 
morphology of fibrosarcoma cell lines MFCL 
migration of glioblastoma cells MGC 
morphology of hepatoma cell lines MHCL 
mass of intestine MI 
morphology of liver cells MLC 
morphology of lung cancer cell lines MLCCL 
mitogenesis of leukemia cell lines MLCL 
methane metabolism MM 
metaplasia of mammary gland tissue MMGT 
migration of mammary tumor cells MMTC 
maturation of neurons MN 
modification of polyols MP 
myeloproliferative syndrome of mice MSM 
mitosis of smooth muscle cells MSMC 
morphology of thyroid tumor cell lines MTTCL 
neuroblastoma N 
neurotrophin/Trk signaling N/TrkS 
necrosis of cardiomyocytes NC 
nucleotide excision repair pathway NERP 
N-glycan biosynthesis NGB 
nitrogen metabolism NgM 
natural killer cell signaling NKCS 
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neutropenia of mice NM 
necrosis of muscle cells NMC 
nitrogen oxide signaling in the cardiovascular system NOSCVS 
necrosis of parenchymal cells NPC 
neurodegeneration of retinal ganglion cells NRGC 
neuregulin signaling NS 
non-small-cell lung carcinoma NSCLC 
osteolysis of bone OB 
one carbon pool by folate OCPF 
O-glycan biosynthesis OGB 
O-glycosylation of protein OGP 
overflow of norepinephrine ON 
organization of plasma membrane projections OPMP 
osmotic water permeability of oocytes OWPO 
plasmacytosis P 
p38 MAPK signaling p38MAPKS 
pathfinding of axons PA 
phagocytosis of blood cells PBC 
proliferation of bladder cancer cell lines PBCCL 
prostate cancer PC 
pancreatic carcinoma PcC 
proliferation of colon cell lines PCCL 
phagocytosis of cell lines PCL 
prostatic carcinoma PCn 
phagocytosis of phagocytes PcP 
pancreatitis of rodents PcR 
phospholipid degradation PD 
PDGF signaling PDGFS 
polydactyly of limb PdL 
paralysis of hindlimb PH 
phenylalanine metabolism PheM 
proliferation of helper inducer T lymphocytes PHITL 
PI3K/AKT signaling PI3K 
prostatic intraepithelial neoplasia PIN 
prostatic intraepithelial neoplasia of mice PINM 
perturbation of lipid PL 
propanoate metabolism PM 
progressive motor neuropathy of mice PMNM 
polarization of podosomes PP 
PPAR signaling PPARS 
proliferation of pancreatic cancer cell lines PPCCL 
phosphorylation of protein fragment PPF 
paralysis of rats PR 
Parkinson's signaling PS 
proliferation of somatic cells PSC 
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primary systemic carnitine deficiency PSCD 
pancreatic tumor PT 
PTEN signaling PTENS 
phenylalanine, tyrosine and tryptophan biosynthesis PTTB 
proliferation of thyroid tumor cell lines PTTCL 
purine metabolism PurM 
pyruvate metabolism PyrM 
quantity of 12-hydroxyeicosatetraenoic acid Q12HA 
quantity of 12(S)-hydroxyeicosatetraenoic acid Q12SHA 
quantity of amino acids QAA 
quantity of beta-estradiol QBE 
quantity of Ca QC 
quantity of Ca2+ QC2 
quantity of colony-forming erythroid cells QCFEC 
quantity of cellular inclusion bodies QCIB 
quantity of choline-phospholipid QCP 
quantity of embryonic cells QEC 
quantity of granulocyte-macrophage progenitor cells QGMPC 
quantity of intercellular junctions QIJ 
quantity of inositol phosphate QIP 
quantity of L-triiodothyronine QLT 
quantity of mice QM 
quantity of multilineage progenitor cells QMPC 
quantity of neurites QN 
quantity of ovarian follicle QOF 
quantity of peripheral blood leukocytes QPBL 
quantity of pathological cyst QPC 
quantity of phosphatidylinositol 3,4-diphosphate QPD 
quantity of sarcoma cells QSC 
quantity of trophoblast cells QTC 
release of arachidonic acid RAA 
recruitment of cells RC 
release of cyclic AMP RCAMP 
ruffling of cervical cancer cell lines RCCCL 
repression of cDNA RcDNA 
retraction of cellular protrusions RCP 
remodeling of chromatin RCt 
recruitment of eukaryotic cells REC 
regression of carcinoma RgC 
release of glutamine family amino acid RGFAA 
regulation of tissue RgT 
release of histamine RH 
release of lipid RL 
rolling of lymphoid cells RLC 
retinol metabolism RM 
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regression of mullerian duct RMD 
recruitment of osteoclasts RO 
redistribution of phospholipid RP 
release of phosphatidic acid RPA 
replication of smooth muscle cells RSMC 
repression of synthetic promoter RSP 
regression of tissue RT 
ruffling of tumor cell lines RTCL 
release of testosterone RTt 
renal and urological disorder RUD 
renal and urological disorder of mice RUDM 
sedation S 
social anxiety disorder of mice SADM 
SAPK/JNK signaling SAPK/JNK 
sterol biosynthesis SB 
survival of bladder cancer cell lines SBCCL 
secretion of bodily fluid SBF 
stimulation of B lymphocytes SBL 
sprouting of blood vessel SBV 
shortening of cardiomyocytes SC 
shape change of axons SCA 
survival of carcinoma cell lines SCCL 
shape change of connective tissue cells SCCTC 
stilbene, coumarine and lignin biosynthesis SCLB 
small-cell lymphocytic lymphoma SCLL 
shape change of tumor cell lines SCTCL 
synthesis of D-glucose SDG 
synthesis and degradation of ketone bodies SDKB 
stimulation of eosinophils SE 
size of gonadal cells SGC 
sonic hedgehog signaling SHS 
syndactyly of limb SL 
size of late endosomes SLE 
steatohepatitis of mice SM 
stabilization of mouse X chromosome SMXC 
stimulation of neurons SN 
synthesis of protein SP 
sexual receptivity of mice SRM 
serotonin receptor signaling SRS 
synthesis of sterol SS 
survival of stomach cancer cell lines SSCCL 
stimulation of bone marrow cells StBMC 
synaptic transmission of synapse STS 
schizophrenia Sz 
transformation of antigen presenting cells TAPC 
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thickness of bone TB 
transport of bicarbonate TBc 
testicular cancer TC 
thickness of carotid artery TCA 
tumorigenesis of carcinoma cells TCC 
transcription of CD28RE/AP response element TCD28 
T cell receptor signaling TCRS 
thickness of connective tissue TCT 
thickening of epithelial tissue TET 
tumorigenesis of fibroblasts TF 
TGF-B signaling TGFBS 
transcription of IL-4 response element TIL4RE 
transformation of lung cancer cell lines TLCCL 
tryptophan metabolism TM 
transport of monocarboxylic acid TMA 
tumorigenesis of ovary TO 
transport of oleic acid TOA 
total peripheral resistance TPR 
transactivation of Runx2 binding site TRunx2 
transactivation of Sf1 binding site TSf1BS 
transcription termination of DNA TTDNA 
transport of vesicles TV 
tyrosine metabolism TyrM 
uremia U 
ubiquinone biosynthesis UB 
unfolded protein response of cells UPRC 
VEGF signaling VEGFS 
VIPoma VIP 
viral life cycle VLC 
valine, leucine and isoleucine degradation VLID 
ventricular tachycardia VT 
ventricular tachycardia of heart VTH 
weight loss of rodents WLR 
wnt/beta-catenin signaling Wnt/BCS 
X-linked mental retardation XLMR 
xenobiotic metabolism signaling XMS 
xeroderma pigmentosum, complementation group E XPCGE 
  
Drug Name Abbreviation
(6R)-tetrahydrobiopterin 6RT 
abatacept A 
amiloride, amiloride/hydrochlorothiazide AAH 
acetaminophen/pentazocine, levorphanol, 
buprenorphine, naltrexone, pentazocine, naloxone, 
butorphanol Ac 
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adenosine, dyphylline, aminophylline, theophylline, 
caffeine ADAT 
adalimumab, etanercept, infliximab, CDP870, 
golimumab, thalidomide AET 
antihemophilic factor, dalteparin, heparin, coagulation 
Factor VIIa, enoxaparin, coagulation factor IX, 
rivaroxaban, deligoparin, idraparinux, tifacogin AFD 
alefacept, siplizumab AS 
arofylline, tetomilast, anagrelide, cilomilast, milrinone, 
roflumilast, caffeine ATAC 
AVP, conivaptan, lypressin AVP 
AVP, lypressin AVPL 
bicalutamide, flutamide, nandrolone decanoate, 
testosterone cypionate, oxandrolone, danazol, 
stanozolol, testosterone, oxymetholone, testosterone 
propionate, testosterone enanthate BFNT 
bevacizumab, pegaptanib BP 
bexarotene, retinoic acid, 9-cis-retinoic acid BR 
clevidipine, amlodipine/benazepril, diltiazem, verapamil, 
bepridil, enalapril/felodipine, amlodipine/atorvastatin, 
nisoldipine, isradipine, felodipine, nimodipine, 
nitrendipine, amlodipine, nicardipine, nifedipine, 
trandolapril/verapamil, diltiazem/enalapril CADV 
calcitonin (salmon) CaT 
cladribine CB 
collagenase Cg 
cinacalcet CL 
cetrorelix, triptorelin, abarelix CTA 
delta-aminolevulinic acid DAA 
3,5-diiodothyropropionic acid, amiodarone, thyroxine DAAT 
dyphylline, aminophylline, cilostazol, amrinone, 
theophylline DACA 
darapladib DP 
disulfiram DS 
erythropoietin, darbepoetin alfa EDA 
elsamitrucin, irinotecan, topotecan, rubitecan, gimatecan, 
karenitecin EIT 
EMD121974 EMD 
etoposide, pixantrone, becatecarin, elsamitrucin, AQ4N, 
mitoxantrone,  tirapazamine, nemorubicin, epirubicin, 
doxorubicin, daunorubicin EPB 
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17-alpha-ethinylestradiol, fulvestrant, beta-estradiol, 
bazedoxifene, ethinyl estradiol/desogestrel, ethinyl 
estradiol/drospirenone, premarin, ethinyl 
estradiol/norelgestromin, ethinyl estradiol/norethindrone, 
ethinyl estradiol/levonorgestrel, ethinyl 
estradiol/norgestrel, ethinyl estradiol/norgestimate, 
conjugated estrogen/medroxyprogesterone acetate, 
FC1271A, toremifene, tamoxifen, raloxifene, arzoxifene, 
clomiphene, estramustine phosphate, diethylstilbestrol 
diphosphate Est 
Enzastaurin EZ 
enzastaurin, ruboxistaurin EZR 
5-fluorouracil, AG 337, capecitabine, trifluridine, 
floxuridine, LY231514 FCTF 
Forodesine FD 
Flavopiridol FP 
Gemcitabine GC 
IDN-6556 IDN 
interferon gamma-1b IG1B 
IGF1 IGF1 
Ipilimumab IM 
isoflurane, mecamylamine, succinylcholine, rocuronium, 
doxacurium, mivacurium, pipecuronium, rapacuronium, 
metocurine, atracurium, cisatracurium, acetylcholine, 
nicotine, D-tubocurarine, enflurane, pancuronium, 
vecuronium IMSR 
INO-1001 INO 
Imatinib IT 
Ketoconazole KC 
LY231514 LY 
methazolamide, acetazolamide, dorzolamide, 
dorzolamide/timolol, brinzolamide MAD 
menotropins, hCG MH 
nelarabine, clofarabine, fludarabine phosphate, 
cytarabine, trifluridine NCF 
naltrexone, naloxone NN 
Nesiritide NR 
Natalizumab NZ 
Oblimersen OM 
Octreotide OT 
prostaglandin E1 PE1 
Propylthiouracil PT 
propylthiouracil, methimazole PTR 
PXD101, vorinostat, FR 901228 PVF 
rimonabant, delta-9-tetrahydrocannabinol RDT 
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(R)-flurbiprofen RF 
rosiglitazone, GI262570, pioglitazone, tesaglitazar RGPT 
Ruboxistaurin RS 
Riluzole RZ 
sulfasalazine, balsalazide, 5-aminosalicylic acid, 
verteporfin SBAV 
sunitinib, imatinib, sorafenib, becaplermin SISB 
Sargramostim SM 
SR 48968 SR 
saxagliptin, talabostat ST 
TAK-242 TAK 
Tiagabine TG 
Thrombin TH 
tranylcypromine, phenelzine, isocarboxazid TPI 
UK-427,857, vicriviroc UV 
XR9576, valspodar XV 
YM 529 YM 
Zafirlukast ZK 
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Figure 1. Example power analysis of the SNPs rs10490570 and rs10017431 reporting the true positive, true negative 
and expected discovery rates as a function of sample size using the methods associated with the PowerAtlas website 
(www.poweratlas.org). The probability of a true positive (PTP) is reflected by the solid line, the expected discovery rate 
(EDR) is reflected by the dotted line, and the probability of a true negative result (PTN) is reflected by the dashed line. 
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Table 1. Gene Expression Analysis Results Assuming Functional, Disease, Pathway, and Drug 
Target Groupings of the Genes Whose Expression Levels were Significantly Associated with 

each SNP. 
Phenotype DDX17 VAMP8 CTBP1 ICAP-1A TM7SF3 
SNP rs# rs10490570 rs10509846 rs1060043 rs10807387 rs11822822
Functions ACCPLCL OPMP IG SS FcT 
 DMt IL SGC RAA SN 
 PSC TIL4RE OPMP HSC ApM 
 SRS ITL Mas IRM OGP 
 HtM EH RTt FxCl SCCTC 
 MFb CBF DATP RL CCPMCL 
 DpC EDC IE ECa HGDP 
 CDGC CB TV HPd QEC 
 DGC Wnt/BCS ACCPLCL SDG LL 
 EmRNA IBL RSP CMGC ASTATRE 
Diseases DTCL CLCCL CRPCL CVD ANKTL 
 EdH CLkCL IsM ABCCL AR 
 DDHV XLMR ApTCL Sz H 
 IFCL Ht IO AtTCL CDLCL 
 VLC HpCL NMC LBC APC 
 FT FO GsM S AF 
 HLV FTCL ADP WLR ANB 
 AS IT NC HF AG1PTTCL 
 EOMO AS DbM E AISCCL 
 FD EAEM ALCL AMC DfM 
Pathway PTENS CCC CCG2/M Wnt/BCS NGB 
 PI3K PPARS PPARS CCC AP 
 XMS TyrM ASM GPCRS  
 GB  NOSCVS   
 SRS  GD   
 PPARS  p38MAPKS   
 IL10S  DGDGM   
 PD     
 EGFS     
 IGF1S     
Drug 
Trgts Cg Cg None ADAT 6RT 

 NR DS  RDT PE1 
  SBAV  ST UV 
  TPI    
  ZK    

Key: Phenotype is the gene whose expression values were most significantly associated 
with the SNP listed in the second row based on the analysis by Cheung et al. (2005); 
groups that were significantly overrepresented among the genes whose expression 

values were associated with each SNP are listed with p<.05: normal font; p<.01: 
italicized; p<.001: bold, and p<.0001: bold and italicized. Drug Trgts = Drug Targets. 
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Table 1. Continued. 
Phenotype CTSH RPS26 IRF5 S100A13 CPNE1 
SNP rs# rs1369324 rs2271194 rs2280714 rs3757791 rs6060535
Functions TSf1BS ADTL QCIB MD DSCGN 
 ASF1RE ADC QC IN PA 
 CkCL ADT QAA FPp RgT 
 DCa CGIBCL GOC CMBL AAT 
 DHN CLDNA SCA CMKCL QM 
 DSC DS ACC ADL DGT 
 EjM OWPO AdO MAPC ACAM 
 MF RcDNA CNKTL STS QMPC 
 Q12SHA CGIECL CNKTL QCP FlT 
 DPG BH DDEP QLT TBc 
Diseases AOMS ICT HDR HCH EB 
 EmH ICC LO AOMS GABEB 
 GA PT DCVT IHPC ApMb 
 HDH PcC DN KF EBS 
 XPCGE VIP AJ LH LoBC 
 DAN HFC QPC LN MMGT 
 HR HEG DC CDSCC BM 
 TCC BAC DR MSM CFCL 
 IC IvTL DCCL ADHD CRBC 
 HTg HDC MTTCL CCaC DO 
Pathway IL4S ButM CaS OCPF PTTB 
 IL2S VLID PheM SRS ERSP 
 NERP BAS  PyrM  
 PDGFS FAM  LD  
  RM  GPM  
  FAB2  OGB  
  LD  CCC  
  SDKB  PS  
  PM  PM  
  TM    
Drug 
Trgts ATAC Est CTA IDN DAAT 

 EIT DAAT CADV  Cg 
 IDN BFNT   FP 
 NZ    IT 
 PVF    INO 
 RDT    OT 
          YM 

Key: See first part of the table. 
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Table 1. Continued. 
Phenotype TCEA1 IL16 SMARCB1 EIF3S8 CSTB 
SNP rs# rs6562160 rs6957902 rs7802273 rs8092794 rs880987 
Functions ISRE TCT QCFEC CPBM AMt 
 APMP BP APTP SLE QN 
 JDNAF SP RCAMP CMPBL M 
 QTC FuL CSC CMp CA 
 CCH TB TRunx2 CaMo DDSE 
 HRDNA BF BOLA MCm ECRE 
 CmRNA FuP LLs CMTL FTM 
 DRG IDNA TCA TPR MSMC 
 AWAT TET CR CMc NRGC 
 AAtf1BS BMt LR ICTL SRM 
Diseases SBCCL K HTN IHIV1 CVCCCL 
 TF CMMTC PTTCL CLCL ARMCL 
 GS MMTC HGC CMLCL ASGC 
 FIT ICCCL ABL E AT 
 RgC EN CHCL APCCL CGICCCL 
 AnT ASMC FHC ARBS MDV 
 SCCL ACCCL SSCCL CAAM Hc 
 GBC CGICvC CVD CAAM HtM 
 PPCCL DDMD DDG CSNB1 HSS 
 ApEC DA FCNHL EM LN 
Pathway CysM CysM SB GRS Wnt/BCS 
 PDGFS VEGFS CC cAMPMS UB 
 EGFS PTTB BGGBN CS  
 NOSCVS CaS BAM   
 AP CCG1/S    
 FAB2     
 VEGFS     
 E/M     
 N/TrkS     
      
Drug 
Trgts RF DACA Ac A Est 

 NCF MAD  AFD DAAT 
  NR  AVP AVPL 
  PTR  CL BFNT 
  PVF   KC 
    SISB       

Key: See first part of the table. 
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Table 1. Continued. 
Phenotype CHI3L2 PPAT PPAT LRAP HSD17B12 
SNP rs# rs755467 rs2139512 rs227940 rs2762 rs4755741 
Functions MCC Ct DPG TMA QIP 
 APPC QC BTL IL RMD 
 DHT CEkC PHITL QPBL QBE 
 FP HEC QC2 CFPBL ATI 
 MC RSMC BBrCL ITL AKC 
 AHNF4 HCL ON GOC SC 
 RCt Mca QC QPD SBF 
 RCP SE CBV FcL ATL 
 QOF RC DvS QGMPC EESC 
 DSS REC GPSC RSMC FEF 
Diseases PIN IDS HpCL DBBB RT 
 DE InfS CHB HpCL TLCCL 
 DOP PH HBCL PMNM TO 
 MCCL TAPC NSCLC HBCL HiM 
 PSCD AICL AVB PR C 
 PINM DNCL AM IF G2/MP 
 PINM AECL SADM PdL IICL 
 Hg Ha HDC SL LB 
 ApO BA N AgTCL MFCL 
 ApSc DNDM CVCRCCL AgBCCL OB 
Pathway AtRNAB GPM GPM AP CaS 
 ERS BGGBN NKCS PI3K IL6S 
 TGFBS PD  PTENS  
 PurM IRS  MM  
 GSTM GluM  ASM  
  NgM    
  SRS    
  CBAS    
  NOSCVS    
  AP    
Drug 
Trgts BP AET Est EMD FCTF 

 MH AVP AS EZ FP 
  DP CTA  IGF1 XV 
  DAA EZ TH  
     TAK IGF1     

Key: See first part of the table. 
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Table 1. Continued. 
Phenotype PSPHL HLA-DRB2 AA827892 CGI-96 
SNP rs# rs6593279 rs6928482 rs788350 rs9600337
Functions CDNA DBMD ECL BBCL 
 MI GMC PCL CCPBCL 
 MA CVESC DBCL RP 
 ADPRAA RO AB FSR 
 CL StBMC BCD28R ARNA 
 HTb UPRC DDLSC ACCPCL 
 MP MN FAA CTm 
 PL SBL LTL Q12HA 
 SMXC CFCFUM RLC BLCL 
 DAF ELP TCD28 ITP 
Diseases PC HDC PC GPT 
 ACPBCL RUD PBCCL BCC 
 QSC HTgR ETCL FC 
 PCn RUDM ASCCL GLCCL 
 EGT P CSCCL GC 
 GP FO DST ATCL 
 LBBB F ILCL GMT 
 SCLL FL HBMC ALCCL 
 TC ApMC Dac AO 
 SM HDEC DHCL MLCCL 
Pathway IRS Wnt/BCS NS FAB1 
 FAB1 ES TCRS IS 
 GSTM BAS BCRS PI3K 
 IL4S  IM SAPK/JNK 
   GMCSFS SHS 
   SM CCG1/S 
   XMS OCPF 
    BCRS 
    E/M 
    FGFS 
Drug 
Trgts EPB IMSR CaT LY 

 IDN PT EDA  
 INO  FD  
  PVF   GC   

Key: See first part of the table. 
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Table 1. Continued; Control SNPs. 
Phenotype CXCL11 RIPK1 PLSCR1 PLSCR1 
SNP rs# rs10017431 rs10498658 rs2688692 rs2587021 
Functions CCL PBC Ej DH 
 CECL CTh2L PCCL RH 
 CNTCL AEC AgEC AN 
 NPC TOA BATRE DGC 
 BmRNA CAC CEC Ej 
 MLC EAC EE TTDNA 
 QIJ G0/SPT PPF RPA 
 PcP GUBC SBV G 
 AECC PP AN DD 
 CGJ CNKC DGC RGFAA 
Diseases DMC RTCL MLCL ARVD 
 HpC ASCCCL U VTH 
 HAM IvLCL AxR El 
 IEC MHCL AxM IDDMM 
 GnM RCCCL HS AxR 
 EP HB IK AtR 
 NM HCb FHM CMG 
 PcR JRA CM CDO 
 SADM MGC CMCC Hm 
 Hp SCTCL AlR VT 
Pathway IFS AtRNAB CS GABARS 
  PTTB VEGFS AAM 
  SCLB cAMPMS cAMPMS 
  FAB2  ES 
Drug 
Trgts Est FP Ac RS 

 AAH IG1B CB SR 
 BR SM EZR TG 
 IM  NN  
 IMSR  RZ  
 OM  TH  
  RGPT       

Key: See first part of the table; Note that control SNPs were not  
significantly associated with their local genes in t-tests. 
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Table 2. Probability of True Positive and Expected Discovery Rate Analysis of 
Gene Expression Associations with Each SNP 

 
SNP RS# # p<0.05 PTP EDR # p<0.01 PTP EDR 
rs10490570 1117 (13.1) 0.80 0.80 568 (6.7) 0.94 0.70 
rs10509846 1081 (12.7) 0.84 0.65 337 (4.0) 0.95 0.44 
rs1060043 834 (9.8) 0.57 0.32 197 (2.3) 0.65 0.09 
rs10807387 1126 (13.2) 0.71 0.43 391 (4.6) 0.85 0.19 
rs11822822 724 (8.5) 0.28 0.14 150 (1.8) 0.25 0.14 
rs1369324 560 (6.6) 0.45 0.29 146 (1.7) 0.68 0.16 
rs2271194 400 (4.7) 0.02 0.01 94 (1.1) 0.01 0.00 
rs2280714 535 (6.3) 0.59 0.12 124 (1.5) 0.71 0.04 
rs3757791 553 (6.5) 0.41 0.63 187 (2.2) 0.73 0.48 
rs6060535 519 (6.1) 0.25 0.35 134 (1.6) 0.44 0.16 
rs6562160 753 (8.8) 0.46 0.22 188 (2.2) 0.50 0.05 
rs6957902 1051 (12.3) 0.51 0.19 281 (3.3) 0.52 0.04 
rs7802273 1371 (16.1) 0.77 0.38 509 (6.0) 0.87 0.14 
rs8092794 746 (8.8) 0.63 0.51 247 (2.9) 0.83 0.30 
rs880987 662 (7.8) 0.35 0.16 176 (2.1) 0.36 0.04 
rs755467 466 (5.5) 0.07 0.10 110 (1.3) 0.04 0.01 
rs2139512 799 (9.4) 0.38 0.15 208 (2.4) 0.34 0.02 
rs227940 373 (4.4) 0.04 0.01 67 (0.8) 0.01 0.00 
rs2762 319 (3.7) 0.18 0.01 56 (0.7) 0.09 0.00 
rs4755741 657 (7.7) 0.57 0.69 245 (2.9) 0.84 0.56 
rs6593279 466 (5.5) 0.17 0.06 101 (1.2) 0.16 0.01 
rs6928482 628 (7.4) 0.51 0.32 177 (2.1) 0.69 0.14 
rs788350 541 (6.3) 0.32 0.43 145 (1.7) 0.56 0.23 
rs9600337 1358 (15.9) 0.87 0.76 597 (7.0) 0.96 0.60 
rs10017431 379 (4.4) 0.00 0.00 82 (1.0) 0.00 0.00 
rs10498658 413 (4.8) 0.00 0.00 80 (0.9) 0.00 0.00 
rs2688692 322 (3.8) 1.00 0.02 51 (0.6) 1.00 0.00 
rs2587021 253 (3.0) 1.00 0.01 34 (0.4) 1.00 0.00 

 
Key: # p<x is the number of genes whose association strength with the SNP 
designated in the left most column produced a p-value less than x (numbers in 
parentheses designate the percentage of the total number of genes with p<x); 
PTP is the probability of a true positive result; EDR is the expected discovery 
rate. 
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Table 3.  Multivariate Distance Matrix Regression Analysis of SNPs Influencing 
the Serotonin Receptor and the Wnt/Beta-Catenin Signaling Pathways.  

 
   Marginal results Conditional results 
Pathway SNP p-value %variation p-value %variation  cumulative  
 Serotonin 
receptor  rs2139512 0.0109 5.0 0.0109 5.0 5.0 

 signaling rs10490570 0.0294 4.1 0.0311 3.8 8.8 
  rs3757791 0.1934 2.5 0.5421 1.4 10.2 
        
Wnt/Beta-
catenin  rs10807387 0.0008 5.0 0.0008 5.0 5.0 

 signaling rs10509846 0.1350 2.5 0.1118 2.5 7.4 
  rs880987 0.4037 1.8 0.2318 2.1 9.5 
  rs6928482 0.2185 2.2 0.4961 1.6 11.1 

 
Key: Marginal results: an analysis of each SNP tested independently; 
Conditional results: forward stepwise regression results. % variation: percentage 
of variation in the similarity matrix explained by the SNP; cumulative: cumulative 
percentage of variation explained the SNP(s). 
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Table 4.  Multivariate Distance Matrix Regression Analysis With the Subset of 
Genes Associated With Each SNP Influencing the Wnt/Beta-Catenin Signaling 
Pathway. 
 

  Marginal results Conditional results 
Subset of 

genes (SNP) SNP p-value %variation p-value %variation cumulative
rs10509846 rs10509846 0.0369 4.59 0.0321 4.54 9.26 

 rs10807387 0.0356 4.71 0.0356 4.71 4.71 
       

rs10807387 rs10807387 0.0001 6.9 0.0001 6.9 6.9 
       

rs880987 rs880987 0.0108 4.94 0.0108 4.94 4.94 
       

rs6928482 rs6928482 0.0084 5.29 0.0084 5.29 5.29 
 
Key: Note: All four SNPs were used in analyses, but only significant SNPs are 
shown. Marginal results: an analysis of each SNP tested independently; 
Conditional results: forward stepwise regression results. % variation: percentage 
of variation in the similarity matrix explained by the SNP; cumulative: cumulative 
percentage of variation explained the SNP(s). 
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The aims of the three studies described in this dissertation were to 

develop an analysis method that is appropriate for handling the massive amounts 

of genetic information that genetic epidemiologists will have at their disposal for 

large-scale association studies.  The method was inspired by an acceptance of 

many biological realities associated with the human genome, such as its diploid 

nature, the fact that genes do not work in isolation to influence a phenotype, and 

that the exploitation of linkage disequilibrium (LD) information is, although 

necessary with today’s technologies, not likely to be necessary in the future when 

complete DNA sequence data may be available on individuals in a study.  The 

proposed method has been extended and applied to scenarios of great interest in 

contemporary genetic epidemiology research; e.g., whole genome associations 

and a pathway-centric approach to genetic association analyses.  Each chapter 

in the thesis describes the merits and limitations of the studies taking advantage 

of the approach, as described in chapters 2–4.  In the following I provide an 

overview of the main findings of my research and consider its limitations and 

areas for future research. 

 

Main Findings 

The development and application of the multivariate distance matrix 

regression (MDMR) method to public data demonstrated the utility of the 

approach to genetic associations involving multilocus genotype data (Chapter 2). 

The method was shown to be able to accommodate weightings factors that 

consider ‘functional’ information about genetic loci. Such weighting schemes 
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were shown to improve the association analysis results.  The method was 

applied to the analysis of gene expression data obtained on accessible tissues 

from a sample of humans. Gene expression data of this sort are being studied 

more and more often in clinical and field epidemiologic studies of disease in 

order to identify biomarkers associated with that disease. Hence, my association 

studies using the MDMR method did not only address methodological and 

practical concerns with association studies, but also with the analysis of state-of-

the-field biomarker assay results. 

The MDMR method was also shown to have utility in whole genome 

association (WGA) studies (Chapter 3). The application of the MDMR method 

identified a number of loci potentially influencing CHI3L2 gene expression levels.  

In order to determine how these loci could be working together to influence the 

phenotype, their interactions were explored and revealed that a number of these 

genes appear to work together at the molecular level.  This led me to consider 

how SNPs in multiple genes, possibly implicated in a single pathway, could 

collectively influence a complex phenotype (Chapter 4).  I was able to show that 

individual SNPs may be associated with the expression levels of a large number 

of genes, and thus many naturally occurring genetic variations may actually 

influence the expression of many genes in known biochemical networks.  Thus I 

was able to show not only that multiple SNPs can influence a common genetic or 

biochemical pathway, but multiple pathways may be influenced by a single SNP, 

thus demonstrating the very great potential for genetic heterogeneity in the 

mediation of complex human traits and diseases.     
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Although I focused much of my research effort on the analysis of multiple 

genetic factors in different contexts, there are a number of additional 

epidemiologic issues that demand consideration in genetic epidemiologic 

association studies that often, unfortunately, are ignored.  For example, the 

influence of non-genetic factors, such as environmental or epigenetic factors or 

their combination, on the relationship between a particular genetic variation and a 

trait should be assessed and controlled for in relevant analyses and/or study 

design.  In addition, sampling biases can and often do plague genetic association 

studies, which are often based on convenience samples or sampling strategies 

that unknowingly (or knowingly) sample cases and controls from different source 

populations, which can lead to substantial false positive and false negative rates 

in genetic association studies 1-19.  Misclassification bias due to genotyping error 

from allele calls in current high-throughput methods could lead to misclassifying 

individual genotypes.  The presence of misclassification bias will more likely 

mask or reduce associations, than to cause them.  In this context the 

International HapMap Project investigators went to extensive efforts to increase 

the reliability of genotype calls to avoid bias in the study.  Using large numbers of 

polymorphisms in a genetic epidemiologic study has the added benefit of 

determining the relatedness of individuals which in many standard epidemiologic 

study designs (prospective/cohort, case-control or cross-sectional) are assumed 

to be unrelated.   

The accurate measurement of phenotypes, especially molecular 

phenotypes designed to act as biomarkers, such as gene expression levels and 
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the reliability of the type of tissue can impact effect estimates or the correct 

interpretation of the physiologic process. Different tissue types will express 

different genes due to their specialization of the according cell types in the tissue 

20, 21. Therefore, only certain pathways can be found in certain tissues. Thus it 

might be that the pathways I identified in these studies will be different from 

pathways I would identify, if we had used a different tissue source to measure the 

expression levels of genes. Even more, the expression levels of genes can 

depend on external or internal circumstances, disease or exposure respectively 

(Tables 2 and 3, Chapter 1). A few studies have identified specific genes that are 

induced by the transformation process used in this study 22-24 1-3  

Many study populations are of European descent, which can limit external 

validity, but can reduce possible confounding by population stratification. The 

CEPH individuals represent individuals of European descent and are Mormons 

from Utah, sampled for their large, multi-generational pedigrees 

http://www.cephb.fr/. In this study, to assume individuals were unrelated and 

independent for statistical tests, only the parents from the trios chosen by the 

HapMap were used.  Gender was represented equally (28 (49.1%) males and 29 

(50.9%) females)).  Age was available on 39 (68.4%) of the individuals and the 

mean age for these individuals is 73.9+9.8 years.  For those missing age data it 

is difficult to estimate their possible ages since both parents are missing, but 

since parents of adult children were chosen their ages are most likely similar to 

those with available data.  Unfortunately no other descriptive variables are 

available on this public data, most likely to assure anonymity.  
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The method is applicable to any genetic association study but the results 

may differ by study population, for example, because of known differences in 

allele frequency by ethnicity or geographic location, or by the different tissues 

used.  The MDMR method is very general and can incorporate covariates, such 

as age, often a predictor of outcomes. 

Many of these issues have been considered as a reason for inconsistent 

results in genetic associations 7, 25-35, and are starting to be addressed by the 

research community via efforts to, e.g., collect prospective data (for, e.g., gene x 

environment studies), establish initiatives such as the “Network of Investigator 

Networks” started by investigators at the CDC to share tools and methods of 

genetic epidemiology 36, criteria for journal reviews and manuscripts that 

incorporate appropriate guidelines 34. 

 

Future Research in Genetic Epidemiology 

Although I have shown that the MDMR method has great utility in modern 

genetic association analysis – especially those considering modern biomarkers – 

there are further research questions that should be considered in order to 

determine the utility of the method in other study design and biological effect 

scenarios.  My colleagues and I have been comparing the MDMR method to 

other association analysis approaches, such as haplotyping and regression 

methods (e.g., logistic regression and linear regression). See Figure 1 below 

which compares the results of two versions of the proposed MDMR procedure 

with haplotype and regression procedures on the chromosome 1 data used in 
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this dissertation. The results of the studies are being written up for publication 

(Multiple Regression Analysis in Candidate Gene and Whole Genome 

Association Studies. N Malo, J Wessel, N Schork, in preparation).  We plan to 

apply the MDMR method to larger datasets, which only recently became 

available, that consists of ~50,000 gene expression values and the recent 

release of HapMap data (October 2006). This analysis will provide a more 

complete picture of the genes involved in gene expression characterized 

biochemical pathways.  In addition, we plan on pursuing extensive simulations 

studies to completely evaluate the utility of the MDMR and related association 

analysis methodologies. 

Haplotype Analysis Standard Regression Haplotype Similarity

Agreement about Peaks: 
CHI3L2 gene locus

Genotype Similarity Logistic Regression

Figure 1. Comparison of Analysis Methods by Test-Statistic and Genomic Location on Chromosome 1.

 

 

 

Figure 1. Comparison of Analysis Methods by Test-Statistic and Genomic 
Location on Chromosome 1 
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Genetic epidemiologists have entered an exciting era for understanding 

the genetic basis of common diseases. The notion that relevant research 

questions are deemed as so important that students in the epidemiological 

sciences should consider them in their doctoral work is becoming a reality. For 

example, Nicholas Schork, my doctoral thesis advisor, wrote his own doctoral 

thesis dissertation in an epidemiology program that considered theoretical and 

applied aspects of genetic studies that used microsatellites in pedigree-based 

linkage analysis contexts 38.  Since then, many students in epidemiological 

sciences have pursued genetic analysis methodology and applications-oriented 

thesis projects.  

What is more, large-scale genetic epidemiology studies focusing on 

disease are becoming more and more popular. For example, in 2000, Jeanette 

McCarthy, a member of my thesis committee, embarked on the ‘GeneQuest’ of 

cardiovascular disease – a  study designed to genotype thousands of individuals 

on >200 SNPs in cardiovascular disease candidate genes, and was considered 

one of the largest studies of its kind at that time 39.  Now in 2006, researchers 

have already performed genome-wide association analyses with as many as ~1 

million loci 40-43.  As mentioned in the introduction, efforts at the national level are 

being undertaken to ramp such studies to a larger scale, with larger sample sizes 

(1000’s of individuals), more genetic loci, and the use of molecular phenotypes. 

These studies will begin  to ask questions beyond whether a genetic factor is 

simply associated with a disease, but precisely what mechanisms might be 

involved and what clinical and public health consequences the findings such 
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studies might have.  Complementary to these studies are efforts to basically 

understand how humans have evolved with and without disease at the genomic 

levels (see, e.g., the large study being undertaken by the National Geographic 

Society and IBM: https://www3.nationalgeographic.com/genographic/).   

Whatever the mission of these genetic studies, the need for a coherent, 

flexible, biologically-intuitive set of analysis approaches will be needed. My 

research was an overt attempt to devise such tools, implement them, and apply 

them to data whose results could be interpreted for their biological 

meaningfulness. 
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