- Main
Local control of defects and switching properties in ferroelectric thin films
Published Web Location
https://doi.org/10.1103/physrevmaterials.2.084414Abstract
Electric-field switching of polarization is the building block of a wide variety of ferroelectric devices. In turn, understanding the factors affecting ferroelectric switching and developing routes to control it are of great technological significance. This work provides systematic experimental evidence of the role of defects in affecting ferroelectric-polarization switching and utilizes the ability to deterministically create and spatially locate point defects in PbZr0.2Ti0.8O3 thin films via focused-helium-ion bombardment and the subsequent defect-polarization coupling as a knob for on-demand control of ferroelectric switching (e.g., coercivity and imprint). At intermediate ion doses (0.22-2.2×1014ionscm-2), the dominant defects (isolated point defects and small clusters) show a weak interaction with domain walls (pinning potentials from 200-500KMVcm-1), resulting in small and symmetric changes in the coercive field. At high doses (0.22-1×1015ionscm-2), on the other hand, the dominant defects (larger defect complexes and clusters) strongly pin domain-wall motion (pinning potentials from 500 to 1600KMVcm-1), resulting in a large increase in the coercivity and imprint, and a reduction in the polarization. This local control of ferroelectric switching provides a route to produce novel functions; namely, tunable multiple polarization states, rewritable pre-determined 180° domain patterns, and multiple zero-field piezoresponse and permittivity states. Such an approach opens up pathways to achieve multilevel data storage and logic, nonvolatile self-sensing shape-memory devices, and nonvolatile ferroelectric field-effect transistors.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-