UC Irvine ## **UC Irvine Previously Published Works** ### **Title** In vivo imaging of cell-cycle phase of individual cancer cells throughout growing tumors in live mice ## **Permalink** https://escholarship.org/uc/item/8r79v2gn ### **Authors** Yano, S Tome, Y Digman, MA et al. ### **Publication Date** 2013 ## **Copyright Information** This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/ Peer reviewed In vivo imaging of cell-cycle phase of individual cancer cells throughout growing tumors in live mice. S. Yano¹, Y. Tome¹, M.A. Digman², M. Momiyama¹, A. Suetsugu¹, H. Kishimoto³, H. Tazawa⁴, T. Fujiwara³, E. Gratton², R.M. Hoffman¹; ¹AntiCancer Inc., San Diego, CA, ²Department of Biomedical Engineering, Physics, and College of Medicine, University of California, Irvine, CA, ³Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharma Sci, Okayama, Japan, ⁴Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan The phase of the cell cycle can determine whether a cancer cell can respond to a given drug. This report presents imaging methodology to obtain realtime cell cycle information on cancer cells throughout tumors in live mice using a fluorescence ubiquitination cell cycle indicator (FUCCI). In nascent tumors in nude mice, approximately 30% of the cells in the center of the tumor were in G_0/G_1 and 70% in $S/G_2/M$. In contrast, approximately 90% of cancer cells in the center of an established tumor were in G_0/G_1 phase. Similarly, approximately 75% of cancer cells far from (>100 µm) tumor vessels were in G_0/G_1 . Although 60–70% of cancer cells near the surface in an established tumor (< 100 μm) or near blood vessels were in S/G₂/M, these cells are a small minority of an established tumor. Moreover, static tumors in mice consisted of mostly G_0/G_1 cells, suggesting they are dormant. Real-time imaging of the cancer cell cycle has profound implications for cancer therapy, since most drugs currently in use target cells in S/G₂/M, which are a minor fraction in an established tumor. With the imaging method developments reported here, drugs that target non-dividing cancer cells can be readily identified.