- Main
Large Negative-Thermal-Quenching Effect in Phonon-Induced Light Emissions in Mn4+-Activated Fluoride Phosphor for Warm-White Light-Emitting Diodes
Abstract
Currently, hunting for anti-temperature-degradation high-efficiency phosphors has become crucially significant for fabricating high-brightness phosphor-converted white light-emitting diodes (pc-WLEDs). Herein, we show that photoluminescence in a kind of full-solution-processed K2SiF6:Mn4+ red phosphor exhibits an extraordinarily large negative thermal quenching property. For instance, under the excitation of 477 nm laser light, the sample photoluminescence intensity amazingly increases by 347-fold when the temperature is increased from 4 to 477 K. The temperature-driven transition probability enhancement of the phonon-induced luminescence around Mn4+ ions in the phosphor is argued to be responsible for the large negative-thermal-quenching phenomenon. We also demonstrate a pc-WLED with R a of 82 and correlated color temperature of 2701 K by using the K2SiF6:Mn4+ red phosphor + commercial yellow phosphor of YAG:Ce3+.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-