Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Association between site‐specific bone mineral density and glucose homeostasis and anthropometric traits in healthy men and women

Published Web Location

https://doi.org/10.1111/cen.13602
Abstract

Objective

Patients with type 2 diabetes mellitus have an increased risk of fracture despite normal or increased bone mineral density (BMD). Studies on the relationship of glucose homeostasis with BMD phenotypes have been inconclusive because distinguishing the roles of insulin resistance and hyperglycaemia in bone remodelling is challenging. In this study, we sought to define the relationship of site-specific BMD with glucose homeostasis traits and anthropometric traits.

Design/patients/measurements

In a cross-sectional study, we examined 787 subjects from the Mexican-American Coronary Artery Disease (MACAD) cohort who had undergone euglycaemic-hyperinsulinaemic clamps, oral glucose tolerance testing and dual X-ray absorptiometry. Glucose homeostasis traits included insulinogenic index (IGI30), insulin sensitivity (M value), insulin clearance (MCRI), fasting insulin, fasting glucose and 2-hour glucose. Univariate and multivariate analyses were performed to assess the association of glucose homeostasis and anthropometric traits with site-specific BMD.

Results

Two-hour glucose was negatively associated with arm BMD in women, which remained significant in multivariate analysis (β = -.15, P = .0015). Positive correlations between fasting insulin and BMD at weight-bearing sites, including pelvis (β = .22, P < .0001) and legs (β = .17, P = .001) in women and pelvis (β = .33, P < .0001) in men, lost significance after multivariate adjustment. Lean mass exhibited strong independent positive associations with BMD at multiple sites in both sexes.

Conclusion

Our findings suggest that (i) anabolic effects of insulin might work via mechanical loading from lean mass; (ii) a direct negative effect of increasing glucose might be more prominent at cortical-bone-rich sites in women; and (iii) lean mass is a strong positive predictor of bone mass.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View