Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Whole-vessel coronary 18F-sodium fluoride PET for assessment of the global coronary microcalcification burden

Abstract

Purpose

18F-sodium fluoride (18F-NaF) has shown promise in assessing disease activity in coronary arteries, but currently used measures of activity - such as maximum target to background ratio (TBRmax) - are defined by single pixel count values. We aimed to develop a novel coronary-specific measure of 18F-NaF PET reflecting activity throughout the entire coronary vasculature (coronary microcalcification activity [CMA]).

Methods

Patients with recent myocardial infarction and multi-vessel coronary artery disease underwent 18F-NaF PET and coronary CT angiography. We assessed the association between coronary 18F-NaF uptake (both TBRmax and CMA) and coronary artery calcium scores (CACS) as well as low attenuation plaque (LAP, attenuation < 30 Hounsfield units) volume.

Results

In 50 patients (64% males, 63 ± 7 years), CMA and TBRmax were higher in vessels with LAP compared to those without LAP (1.09 [0.02, 2.34] versus 0.0 [0.0, 0.0], p < 0.001 and 1.23 [1.16, 1.37] versus 1.04 [0.93, 1.11], p < 0.001). Compared to a TBRmax threshold of 1.25, CMA > 0 had a higher diagnostic accuracy for detection of LAP: sensitivity of 93.1 (83.3-98.1)% versus 58.6 (44.9-71.4)% and a specificity of 95.7 (88.0-99.1)% versus 80.0 (68.7-88.6)% (both p < 0.001). 18F-NaF uptake assessed by CMA correlated more closely with LAP (r = 0.86, p < 0.001) than the CT calcium score (r = 0.39, p < 0.001), with these associations outperforming those observed for TBRmax values (LAP r = 0.63, p < 0.001; CT calcium score r = 0.30, p < 0.001).

Conclusions

Automated assessment of disease activity across the entire coronary vasculature is feasible using 18F-NaF CMA, providing a single measurement that has closer agreement with CT markers of plaque vulnerability than more traditional measures of plaque activity.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View