Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Cruz

UC Santa Cruz Previously Published Works bannerUC Santa Cruz

Inhibitory Investigations of Acyl-CoA Derivatives against Human Lipoxygenase Isozymes.

Abstract

Lipid metabolism is a complex process crucial for energy production resulting in high levels of acyl-coenzyme A (acyl-CoA) molecules in the cell. Acyl-CoAs have also been implicated in inflammation, which could be possibly linked to lipoxygenase (LOX) biochemistry by the observation that an acyl-CoA was bound to human platelet 12-lipoxygenase via cryo-EM. Given that LOX isozymes play a pivotal role in inflammation, a more thorough investigation of the inhibitory effects of acyl-CoAs on lipoxygenase isozymes was judged to be warranted. Subsequently, it was determined that C18 acyl-CoA derivatives were the most potent against h12-LOX, human reticulocyte 15-LOX-1 (h15-LOX-1), and human endothelial 15-LOX-2 (h15-LOX-2), while C16 acyl-CoAs were more potent against human 5-LOX. Specifically, oleoyl-CoA (18:1) was most potent against h12-LOX (IC50 = 32 μM) and h15-LOX-2 (IC50 = 0.62 μM), stearoyl-CoA against h15-LOX-1 (IC50 = 4.2 μM), and palmitoleoyl-CoA against h5-LOX (IC50 = 2.0 μM). The inhibition of h15-LOX-2 by oleoyl-CoA was further determined to be allosteric inhibition with a Ki of 82 +/- 70 nM, an α of 3.2 +/- 1, a β of 0.30 +/- 0.07, and a β/α = 0.09. Interestingly, linoleoyl-CoA (18:2) was a weak inhibitor against h5-LOX, h12-LOX, and h15-LOX-1 but a rapid substrate for h15-LOX-1, with comparable kinetic rates to free linoleic acid (kcat = 7.5 +/- 0.4 s-1, kcat/KM = 0.62 +/- 0.1 µM-1s-1). Additionally, it was determined that methylated fatty acids were not substrates but rather weak inhibitors. These findings imply a greater role for acyl-CoAs in the regulation of LOX activity in the cell, either through inhibition of novel oxylipin species or as a novel source of oxylipin-CoAs.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View