Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Genetically increased circulating FUT3 level leads to reduced risk of idiopathic pulmonary fibrosis: a Mendelian randomisation study

Abstract

Background

Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal fibrotic interstitial lung disease. Few circulating biomarkers have been identified to have causal effects on IPF.

Methods

To identify candidate IPF-influencing circulating proteins, we undertook an efficient screen of circulating proteins by applying a two-sample Mendelian randomisation (MR) approach with existing publicly available data. For instruments, we used genetic determinants of circulating proteins which reside cis to the encoded gene (cis-single nucleotide polymorphisms (SNPs)), identified by two genome-wide association studies (GWASs) in European individuals (3301 and 3200 subjects). We then applied MR methods to test if the levels of these circulating proteins influenced IPF susceptibility in the largest IPF GWAS (2668 cases and 8591 controls). We validated the MR results using colocalisation analyses to ensure that both the circulating proteins and IPF shared a common genetic signal.

Results

MR analyses of 834 proteins found that a 1 sd increase in circulating galactoside 3(4)-l-fucosyltransferase (FUT3) and α-(1,3)-fucosyltransferase 5 (FUT5) was associated with a reduced risk of IPF (OR 0.81, 95% CI 0.74-0.88; p=6.3×10-7 and OR 0.76, 95% CI 0.68-0.86; p=1.1×10-5, respectively). Sensitivity analyses including multiple cis-SNPs provided similar estimates both for FUT3 (inverse variance weighted (IVW) OR 0.84, 95% CI 0.78-0.91; p=9.8×10-6 and MR-Egger OR 0.69, 95% CI 0.50-0.97; p=0.03) and FUT5 (IVW OR 0.84, 95% CI 0.77-0.92; p=1.4×10-4 and MR-Egger OR 0.59, 95% CI 0.38-0.90; p=0.01). FUT3 and FUT5 signals colocalised with IPF signals, with posterior probabilities of a shared genetic signal of 99.9% and 97.7%, respectively. Further transcriptomic investigations supported the protective effects of FUT3 for IPF.

Conclusions

An efficient MR scan of 834 circulating proteins provided evidence that genetically increased circulating FUT3 level is associated with reduced risk of IPF.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View