Skip to main content
Download PDF
- Main
Recombinant human PDCD5 (rhPDCD5) protein is protective in a mouse model of multiple sclerosis
Published Web Location
https://doi.org/10.1186/s12974-015-0338-0Abstract
Background
In multiple sclerosis (MS) and its widely used animal model, experimental autoimmune encephalomyelitis (EAE), autoreactive T cells contribute importantly to central nervous system (CNS) tissue damage and disease progression. Promoting apoptosis of autoreactive T cells may help eliminate cells responsible for inflammation and may delay disease progression and decrease the frequency and severity of relapse. Programmed cell death 5 (PDCD5) is a protein known to accelerate apoptosis in response to various stimuli. However, the effects of recombinant human PDCD5 (rhPDCD5) on encephalitogenic T cell-mediated inflammation remain unknown.Methods
We examined the effects of intraperitoneal injection of rhPDCD5 (10 mg/kg) on EAE both prophylactically (started on day 0 post-EAE induction) and therapeutically (started on the onset of EAE disease at day 8), with both of the treatment paradigms being given every other day until day 25. Repeated measures two-way analysis of variance was used for statistical analysis.Results
We showed that the anti-inflammatory effects of rhPDCD5 were due to a decrease in Th1/Th17 cell frequency, accompanied by a reduction of proinflammatory cytokines, including IFN-γ and IL-17A, and were observed in both prophylactic and therapeutic regimens of rhPDCD5 treatment in EAE mice. Moreover, rhPDCD5-induced apoptosis of myelin-reactive CD4+ T cells, along with the upregulation of Bax and downregulation of Bcl-2, and with activated caspase 3.Conclusions
Our data demonstrate that rhPDCD5 ameliorates the autoimmune CNS disease by inhibiting Th1/Th17 differentiation and inducing apoptosis of predominantly pathogenic T cells. This study provides a novel mechanism to explain the effects of rhPDCD5 on neural inflammation. The work represents a translational demonstration that rhPDCD5 has prophylactic and therapeutic properties in a model of multiple sclerosis.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%