Skip to main content
eScholarship
Open Access Publications from the University of California

Embodiment Effects in Evolutionary Robotics

Abstract

We evolve simple neural network controllers in swimming robots in order to test the hypothesis that, given distinctdimensions of control for the tail structure, evolution will favor the emergence of modular neural networks as most likely toenhance fitness (successful light harvesting). Evolution does lead to improved fitness, but this does not appear to result fromincreases in modularity. However, an unexpected result highlights the importance of embodiment for the evolution of the agent.The output of the neural network controller is high frequency with many extreme excursions, but the actual movements of thetail are damped by the physics of the body as it interacts with the aquatic environment. Subsequent simulations establish therole of these physical parameters in dampening noisy network controller output. Thus, morphology can increase evolvabilityby acting as a low pass filter of high-frequency controller dynamics.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View