Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Single Cell Resolution of Human Hematoendothelial Cells Defines Transcriptional Signatures of Hemogenic Endothelium.

Published Web Location

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5914515/
No data is associated with this publication.
Abstract

Endothelial-to-hematopoietic transition (EHT) is an important stage in definitive hematopoietic development. However, the genetic mechanisms underlying human EHT remain poorly characterized. We performed single cell RNA-seq using 55 hemogenic endothelial cells (HECs: CD31+ CD144+ CD41- CD43- CD45- CD73- RUNX1c+ ), 47 vascular endothelial cells without hematopoietic potential (non-HE: CD31+ CD144+ CD41- CD43- CD45- CD73- RUNX1c- ), and 35 hematopoietic progenitor cells (HPCs: CD34+ CD43+ RUNX1c+ ) derived from human embryonic stem cells (hESCs). HE and HP were enriched in genes implicated in hemogenic endothelial transcriptional networks, such as ERG, GATA2, and FLI. We found transcriptional overlap between individual HECs and HPCs; however, these populations were distinct from non-HE. Further analysis revealed novel biomarkers for human HEC/HPCs, including TIMP3, ESAM, RHOJ, and DLL4. Collectively, we demonstrate that hESC-derived HE and HP share a common developmental pathway, while non-HE are more heterogeneous and transcriptionally distinct. Our findings provide a novel strategy to test new genetic targets and optimize the production of definitive hematopoietic cells from human pluripotent stem cells. Stem Cells 2018;36:206-217.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item