Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Ubiquitous Micro-Modular Homologies among Genomes from Viruses to Bacteria to Human Mitochondrial DNA: Platforms for Recombination during Evolution?

Published Web Location

https://doi.org/10.3390/v14050885
Abstract

The emerging Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and its variants have raised tantalizing questions about evolutionary mechanisms that continue to shape biology today. We have compared the nucleotide sequence of SARS-CoV-2 RNA to that of genomes of many different viruses, of endosymbiotic proteobacterial and bacterial DNAs, and of human mitochondrial DNA. The entire 4,641,652 nt DNA sequence of Escherichia coli K12 has been computer-matched to SARS-CoV-2 RNA. Numerous, very similar micro-modular clusters of 3 to 13 nucleotides lengths were detected with sequence identities of 40 to >50% in specific genome segments between SARS-CoV-2 and the investigated genomes. These clusters were part of patch-type homologies. Control sequence comparisons between 1000 randomly computer-composed sequences of 29.9 kb and with the A, C, G, T base composition of SARS-CoV-2 genome versus the reference Wuhan SARS-CoV-2 sequence showed similar patterns of sequence homologies. The universal A, C, G, T genetic coding mode might have succeeded in evolution due in part to its built-in capacity to select for a substantial reservoir of micro-modular domains and employ them as platforms for integrative recombination. Their role in SARS-CoV-2 interspecies transition and the generation of variants appears likely, but their actual involvement will require detailed investigations.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View