Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Picosecond spin-orbit torque–induced coherent magnetization switching in a ferromagnet

Abstract

Electrically controllable nonvolatile magnetic memories show great potential for the replacement of conventional semiconductor-based memory technologies. Here, we experimentally demonstrate ultrafast spin-orbit torque (SOT)-induced coherent magnetization switching dynamics in a ferromagnet. We use an ultrafast photoconducting switch and a coplanar strip line to generate and guide a ~9-picosecond electrical pulse into a heavy metal/ferromagnet multilayer to induce ultrafast SOT. We then use magneto-optical probing to investigate the magnetization dynamics with sub-picosecond resolution. Ultrafast heating by the approximately 9 picosecond current pulse induces a thermal anisotropy torque which, in combination with the damping-like torque, coherently rotates the magnetization to obtain zero-crossing of magnetization in ~70 picoseconds. A macro-magnetic simulation coupled with an ultrafast heating model agrees well with the experiment and suggests coherent magnetization switching without any incubation delay on an unprecedented time scale. Our work proposes a unique magnetization switching mechanism toward markedly increasing the writing speed of SOT magnetic random-access memory devices.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View