Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Probabilistic Circuits for Autonomous Learning: A Simulation Study

Abstract

Modern machine learning is based on powerful algorithms running on digital computing platforms and there is great interest in accelerating the learning process and making it more energy efficient. In this paper we present a fully autonomous probabilistic circuit for fast and efficient learning that makes no use of digital computing. Specifically we use SPICE simulations to demonstrate a clockless autonomous circuit where the required synaptic weights are read out in the form of analog voltages. This allows us to demonstrate a circuit that can be built with existing technology to emulate the Boltzmann machine learning algorithm based on gradient optimization of the maximum likelihood function. Such autonomous circuits could be particularly of interest as standalone learning devices in the context of mobile and edge computing.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View