Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Electronic Theses and Dissertations bannerUC San Diego

Interpreting human genetic variations through transcriptional regulation and 3D genome organization

Abstract

It has been more than a decade since the human genome was sequenced, but a complete understanding of the functional elements in the human genome is still lacking, especially for the non-coding part of the genome. The lack of complete understanding of the genome makes interpreting the function of genetic variants a daunting challenge. Here I exploited multiple ways to decipher the function of genetic variants by leveraging knowledge about transcriptional regulation and three-dimension genome organization.

First, we developed SNP-SELEX, a high throughput method to assess the effect of SNPs on transcription factor (TF) binding. I demonstrated the superior performance of SNP-SELEX over previous delta PWM models, and applied results of SNP-SELEX to identify putative causal variants for type 2 diabetes. Furthermore, I employed deltaSVM algorithm to develop models that could predict the effect of SNPs on TF binding for any non-coding variants. Those models not only outperform delta PWM models in vitro and in vivo but also could help identify novel master regulator for complex traits and diseases.

Next, I co-led a study to investigate the effect of genetic variants on three-dimensional (3D) chromatin conformation. I identified thousands of regions across the genome where 3D chromatin conformation varies between individuals and found those variations often accompany changes in other genome functions. Moreover, I found DNA sequence variations could influence 3D chromatin conformation and mapped hundreds of Quantitative Trait Loci (QTLs) associated with 3D chromatin features, some of which confer disease risk.

Finally, I analyzed Hi-C data from human embryonic stem cells differentiated to beta cell progenitors to characterize changes in chromatin organizations during differentiation. I identified chromatin loops that are dynamic during different stages and found those loops are also associated with transcriptional regulation. Further, I revealed that chromatin loops form interaction hubs that are related to the establishment of stage-specific transcriptional programs.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View