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A GENERALIZED NONPARAMETRIC TEST FOR

LATTICE-ORDERED MEANS

MATTHEW STRAND

Abstract. Treatment means in factorial experiments are lat-
tice ordered when there is an increase in mean response as
the level of any factor is increased, holding the other fac-
tors ¯xed. Such means occur naturally in many experiments.
A nonparametric test for lattice-ordered means involving a
Kendall-type statistic will be summarized for k-factor facto-
rial experiments. Speci¯cally, the form of the test statistic
and variance under the null hypothesis will be presented. In
addition, a normalized version of the test statistic will be
discussed and applied to relevant data.

1. Introduction

Data from factorial experiments have been routinely analyzed using
ANOVA for many years. This classical method of inference determines
which factors and interaction of factors are statistically signi¯cant, and also
indicates whether some di®erence in treatment means exists using an overall
F-test. For many experiments a researcher may expect a certain order on the
treatment means, thus a more speci¯c test than one for \some di®erence"
may be appropriate. Consider the following examples.
Example 1: Athletes often take anabolic-androgenic steroids (high levels

of testosterone) in an attempt to increase their strength. The use of these
and other types of steroids in sports has been quite controversial due to
potential health risks, and the unfair advantage that they may give athletes
over those not taking the drug. However, the e±cacy of such drugs has only
been determined in recent years. A 2x2 controlled experiment by Bhasin, et.
al. (1996) tested the e®ects of testosterone (no-placebo/yes-600mg) and ex-
ercise (no/yes) on muscle size and strength in men with previous weightlift-
ing experience. (The exercises included bench pressing and squatting, and
size and strength of the triceps and quadriceps muscles were measured before
and after the treatment period.) For both exercise and no-exercise groups,
it might be expected that those given the testosterone will have greater
increase in mean muscle size than those given the placebo. Similarly, for
each of the placebo and testosterone groups, one might expect that average
muscle size will have greater increase for those exercising than for those not
exercising. It is not as clear how mean response will compare between the
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2 MATTHEW STRAND

placebo-and-exercise group and the testosterone-and-no-exercise group. Ta-
ble 1 displays data for change in quariceps muscle volume over the 10 week
treatment period, for which a total of 30 subjects were measured. (The
treatment sample sizes were not equal, partially due to the fact that certain
subjects that did not complete the experiment.)
Example 2: The rate of growth for bacteria depends largely on its environ-

mental conditions, including such factors as temperature and pH. For exam-
ple, extreme high and low temperatures are used to either kill or inhibit the
growth of bacteria. Water activity (aw) is another factor related to bacterial
growth. In plain water (for which aw = 1), bacteria generally grows most
quickly, while increasing the amount of a humectant such as sodium chloride
in the solution decreases water activity (aw < 1) and slows down bacterial
growth. Buchanan and Bagi (1997) performed an experiment where the
growth of Escherichia-coli O157:H7 (E-coli) was observed in a brain-heart
infusion (BHI) broth for various levels of temperature (19±C; 28±C), pH (4.5,
5.5, 6.5) and aw (0.982, 0.985, 0.987), using sucrose as the humectant. (This
was actually just a subset of their entire experiment.) For these factors
and levels, E-coli growth rate is expected to increase, on average, as one
of the factors is increased, holding the others ¯xed. The justi¯cation for
this hypothesis comes from previous models showing this particular rela-
tionship, but where sodium chloride was used as the humectant (Buchanan
and Klawitter, 1992; Buchanan, et. al. 1993; Sutherland, Bayliss and Brax-
ton, 1995). Once again, it is not as clear how an increase in one or two
factors but a decrease in one or two of the others will a®ect mean growth
rate. Table 2 contains the means reported for each treatment.
In both experiments one may be interested in carrying out a test where

the alternative hypothesis is order restricted. To de¯ne this test, let i =
(i1; i2; : : : ; ik) and j = (j1; j2; : : : ; jk) denote two treatment indices, and let
the relation i ∙ j denote i1 ∙ j1; i2 ∙ j2; : : : ; ik ∙ jk. For the testosterone
experiment, i is de¯ned as follows: i1 = 1 and 2 for placebo and testosterone,
respectively; i2= 1 and 2 for no-exercise and exercise, respectively. (The
index j is de¯ned similarly.) For the E-coli experiment, let i1, i2 and i3 be
associated with temperature, pH, and aw, respectively, where i1 = 1 and
2 for low and high temperatures, i2 = 1, 2 and 3 for low, moderate and
high pH values, and i3 = 1, 2 and 3 for low, medium and high aw values,
all respectively. (Again, j is de¯ned similarly.) The test of interest is then
H0 : ¹i = ¹ for all i versus HA = H1 ¡H0 where

H1 : ¹i ∙ ¹j; i ∙ j:(1)

The type of order on the treatment means in (1) has been referred to as
lattice order (Higgins and Bain, 1999, and Bain, 1994) or matrix order
(Robertson, Wright and Dykstra, 1988). This is a kind of partial order
on the means since not all pairs of means are comparable. Treatments for
which means can be compared under lattice order will be referred to as
lattice-comparable treatments.
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The development of normal distribution likelihood ratio tests of H0 vs.
HA are well summarized in Barlow, et. al. (1972) and Robertson, et. al.
(1988). (Tests with alternatives that have other types of partial orders are
also considered.) The tests exist for the known and unknown variances cases,
for which null distributions are mixtures of chi-squared or beta distributions,
respectively. These distributions have only been explicitly de¯ned for one-
factor and 2x2 experiments, as they are quite complex. Moonesinghe and
Wright (1994) simulated components of the null distributions for k=2 and
various factor levels, allowing one to determine approximate p-values for
given test statistic values. These are done for the equal treatment sample
sizes case.
Nonparametric tests of H0 vs. HA are generally simpler and normal

approximations can be employed even with relatively small experiments.
One-factor tests started appearing in the literature with Terpstra (1952),
Jonckheere (1954) and Chacko (1963). (Note that when k=1, lattice order
is the same as simple order, which is ¹1 ∙ ¹2 ∙ : : : ∙ ¹k.) Bain (1994)
and Higgins and Bain (1999) summarized tests for nonreplicated data when
k=2, using Kendall-type and Spearman-type statistics. The test using the
Kendall-type statistic will be generalized to k factors and replicated data in
this article.

2. Form of the Test

2.1. The Test Statistic. For two treatment indices i = (i1; i2; : : : ; ik) and
j = (j1; j2; : : : ; jk), let i < j denote i1 ∙ j1; i2 ∙ j2; : : : ; ik ∙ jk, with
\<" holding for at least one pair. Also, let Yir denote the response for
replicate r in treatment i, which has a continuous c.d.f. FYir = Fi and
mean E(Yir) = ¹i, for r = 1; : : : ; ni. The statistic that will be used for the
lattice-ordered test is de¯ned as

L =
2

Nla

X
i

X
j>i

Ã
niX
r=1

njX
s=1

I(Yir ∙ Yjs)
!
¡ 1

=
1

Nla

X
i

X
j>i

Ã
niX
r=1

njX
s=1

h
I(Yir < Yjs)¡ I(Yir > Yjs)

i!
;

(2)

where

Nla =
X
i

X
j>i

ninj:(3)

The test statistic L is the proportion of unique pairs of responses that are
consistent with the order that is expected on the respective treatment means,
which is then simply rescaled into a range between -1 and +1. (The last step
in (2) follows from the fact that the Yir's are continuous random variables.)
Note that only lattice-comparable treatments are considered. The quantity
Nla in (3) is the total number of response pairs evaluated.
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The statistic L is a useful measure of the degree of lattice order in the
responses. The closer L is to +1, the more the responses are in agreement
with HA, while values of L that are close to or less than zero occur when
the responses do not show strong support of HA. Now L is closely related
to Kendall's correlation statistic (K), particularly when k = 1. However, K
is de¯ned generally for bivariate (X; Y ) data while L is just de¯ned for data
where X has ¯xed levels.
It should be noted that the hypotheses H0 and HA previously given in

terms of means can be generalized to distributions for this nonparametric
test. This will be particularly useful if one can assume that Fi(y) ¸ Fj(y)
for all y, and for all i and j such that i ∙ j, but cannot assume common
errors. In such a case the hypotheses are written as H0 : Fi(y) = F (y) for
all i and some c.d.f. F versus HA = H1 ¡H0 where H1 : Fi(y) ¸ Fj(y) for
all i ∙ j.

2.2. Mean and Variance of LUnder H0. Consider a k-factor experiment
for which the treatment means are lattice ordered. If all responses are
independent and there exists some c.d.f. F such that Fi(y) = F (y ¡ ¹i)
for all y and for all i, then the statistic L can be used to test H0 vs. HA in
terms of the treatment means.
The mean and variance of L under H0 will be denoted as E0(L) and

V ar0(L), respectively. Now E0(L) = 0 since E0[I(Yir < Yjs) ¡ I(Yir >
Yjs)] = 0 for each i, j such that i ∙ j, and for all r and s. The variance
V ar0(L) can be derived using a general expression from Ager and Brent
(1978) since L is a special case of the statistic that they consider. (In
their paper they propose a Kendall-type statistic that can be used for tests
where HA has any type partial order placed on the means or distributions.)
Adapting their variance expression to suit L yields

V ar0(L) =
Nla +Q

3Nla
2 ;(4)

where Nla is as given in (3) and

Q =
X
i

ni

ÃX
j<i

nj ¡
X
j>i

nj

!2
:(5)

For numerical calculations, a more tractable form of the variance is obtained
when Nla in (3) and Q in (5) are rewritten as

Nla =
X
i

X
j¸i
ninj ¡

X
i

ni
2(6)

and

Q =
X
i

ni

ÃX
j∙i
nj ¡

X
j¸i
nj

!2
;(7)



A GENERALIZED NONPARAMETRIC TEST FOR LATTICE-ORDERED MEANS 5

respectively. An existing program to calculate V ar0(L) is available upon
request from the author.

2.3. Asymptotic Normality. The lattice-ordered means test can be car-
ried out easily by determining the exact or simulated permutation distribu-
tion of L under H0 and comparing the test statistic with this distribution. A
simpler approach is to create a test statistic based on L that is asymptotically
standard normal, which should be a good approximation for su±ciently-sized
experiments. Bain (1994) and Ager and Brent (1978) showed that the stan-
dard normal distribution provides an adequate approximation to the test
statistic

Z =
L¡ 1

2Nlap
V ar0(L)

(8)

when the number of unique treatment comparisons, Nla, is as small as 50
to 85. For a 4x4 experiment with nonreplicated data Nla = 84. For a 2x2
experiment with n=5 replicates in each treatment, Nla = 125. (See Table
3 for more examples.) This reinforces the fact that large data sets are not
necessary for the normal approximation to be e®ective. The test of H0 vs.
HA based on Z is a right-tailed test, and the term ` 1

2Nla
' is included as a

correction for continuity.

2.4. Simpli¯cations for Balanced Data. Often times a researcher will
have nonreplicated data or replicated data with equal treatment sample
sizes (with n in each treatment). In such cases, V ar0(L) can be expressed
in closed form in terms of the number of levels for each factor, which are
denoted by mh, h = 1; : : : ; k. Speci¯cally, V ar0(L) is as given in (4), where

Nla = n
2

Ã
kY
h=1

µ
mh + 1

2

¶
¡

kY
h=1

mh

!
(9)

and

Q =
2n3

3k

kY
h=1

µ
mh + 1

2

¶Ã kY
h=1

(2mh + 1)¡
kY
h=1

(mh + 2)

!
:(10)

The derivation of (9) and (10) are given in Appendices A and B, respectively.
One can verify that V ar0(L) reduces to the variance of Kendall's correlation
statistic (K) when k=1 and n=1. Table 3 shows values of Nla and V ar0(L)
for experiments of certain size and for n=1 and 5.

3. Applications of the Test

Example 1 (Testosterone experiment, data in Table 1): For the test of H0
vs. HA, there are Nla = 281 pairs of lattice-order comparisons, 265 of which
are increasing, as expected. Thus the value of L = (265¡ 16)=281 = 0:886,
denoting a strong positive lattice order among the responses. Using the
short program constructed, it was determined that V ar0(L) = 0:0332274.
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Using the normal approximation to L as given in (8), z = 4:85, for which
p < 0:0001. One would reject the hypothesis of equal means and conclude
that exercise and/or testosterone increases mean quadriceps muscle volume.
Example 2 (E-coli experiment, data in Table 2): The test of H0 vs. HA

was carried out on the treatment sample means. (Each treatment actually
had 2 to 3 replicates, but only averages were reported.) The statistic L =
0:80 with Nla = 90. Using the closed form given in section 2.4, with n = 1,
it was determined that V ar0(L) = 0:05144. The normalized test statistic
z = 3:50, for which p = 0:0002. Once again one would reject the equal
means hypothesis and conclude that average E-coli growth speeds up as at
least one of the three factors (water activity, pH, temperature) are increased,
using sucrose as the humectant.

4. Remarks

The lattice-ordered means test can be applied to data from many factorial
experiments where factors are at least ordinal in nature and the responses
are expected to be lattice ordered. Unlike the overall F-test for ANOVA, the
alternative hypothesis for the lattice-ordered means test involves a partial
order on the means. Thus a more speci¯c conclusion is reached when the null
hypothesis is rejected. Also, the nonparametric test is a nice alternative for
experimental data that is nonreplicated. In such a case the overall ANOVA
F-test cannot be performed unless at least one of the interaction e®ects is
assumed to be 0. No such assumption is required for the nonparametric test.
In certain experiments the levels of at least one of the factors may need

to be reversed so that lattice-ordered means are expected. For example,
within a range of temperatures and levels of humidity, a certain plant may
be expected to have more growth as temperature is decreased and humidity
is held ¯xed, or as humidity is increased and temperature is held ¯xed. In
such a case the test can be performed if the levels are simply arranged as
needed.
There are a few notes of caution for the researcher, regarding choosing the

levels of the factors and making conclusions based on results. (1) The levels
of each factor must be considered carefully. In the microbiology example,
the ranges of pH and temperature were selected so that levels too high were
not included. For example, since foods are cooked at higher temperatures to
kill E-coli, the growth rate of this bacteria cannot be expected to continue
increasing if very high temperatures are included in the experiment. The
danger is that when many but not all treatment means follow lattice order
in an experiment, then it is still quite possible to reject the null hypothesis.
In such a case a large majority of the responses (or sample means) may still
be lattice ordered, leading to a value of L that is big enough to accept HA.
(2) For the lattice-ordered means test performed on data from a k-factor
experiment, rejection of the null hypothesis technically does not imply that
any individual factor (or subset of factors) is signi¯cant. Thus, if HA is
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accepted, one can qualify the conclusion by saying `there is a mean increase
in response (at least somewhere), as one or more of the factors is increased.'
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Appendix A. Derivation of Nla for balanced data

Nla = n
2

ÃX
i

X
j¸i
1¡

X
i

1

!

= n2

Ã
m1X
i1=1

m2X
i2=1

: : :

mkX
ik=1

"
m1X
j1=i1

m2X
j2=i2

: : :

mkX
jk=ik

1

#
¡

m1X
i1=1

m2X
i2=1

: : :

mkX
ik=1

1

!

= n2

Ã
m1X
i1=1

m2X
i2=1

: : :

mkX
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∙
(m1 ¡ i1 + 1)(m2 ¡ i2 + 1) : : : (mk ¡ ik + 1)

¸

¡m1m2 : : : mk

!
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Ã
m1(m1 + 1)m2(m2 + 1) : : :mk(mk + 1)

2k
¡m1m2 : : :mk

!

= n2
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µ
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2

¶
¡

kY
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Appendix B. Derivation of Q for balanced data

Q = n3
X
i

ÃX
j∙i
1¡

X
j¸i
1

!2

= n3
X
i

Ã∙
i1i2 : : : ik

¸
¡
∙
(m1 ¡ i1 + 1)(m2 ¡ i2 + 1) : : : (mk ¡ ik + 1)

¸!2

= n3
m1X
i1=1

m2X
i2=1

¢ ¢ ¢
mkX
ik=1

Ã
i1i2 : : : ik ¡ (m1 ¡ i1 + 1)(m2 ¡ i2 + 1) : : : (mk ¡ ik + 1)

!2

= n3
kY
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Ã
mhX
ih=1
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2

!
¡ 2n3

kY
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Ã
mhX
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ih(mh ¡ ih + 1)
!
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kY
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Ã
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ih=1

(mh ¡ ih + 1)2
!
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Ã
kY
h=1

mh(mh + 1)(2mh + 1)

6
¡ 2

kY
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6

+
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6

!

=
2n3

3k

kY
h=1

µ
mh + 1

2

¶Ã kY
h=1

(2mh + 1)¡
kY
h=1

(mh + 2)

!
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Table 1: Androgenic steroid (testosterone) experiment (Bhasin, Storer,
Berman et al., 1996): e®ects of testosterone (placebo, 600mg) and exercise
(no, yes) on quadriceps muscle volume for men. Values given express %
change over the ten week treatement period. Experiment-wide ranks are

given in parentheses.

Placebo Testosterone
no exercise exercise no exercise exercise
-4.51 (1) -2.12 (3) 5.28 (14) 11.40 (20)
-2.55 (2) -2.05 (4) 9.57 (16) 11.98 (23)
-1.00 (5) 1.18 (9) 10.12 (17) 13.39 (25)
-0.40 (6) 2.58 (10) 11.24 (19) 13.43 (26)
-0.19 (7) 3.35 (12) 11.45 (21) 13.44 (27)
0.62 (8) 5.12 (13) 12.43 (24) 13.60 (28)
2.99 (11) 5.84 (15) 13.74 (29)

10.57 (18) 20.02 (30)
11.46 (22)

Table 2: E-coli experiment (Buchanan and Bagi, 1997): observed
exponential growth rate [log(cfu/ml) per hour] for E-coli among various
levels of water activity (aw), temperature and pH. Experiment-wide ranks
are given in parentheses. (Sucrose was used as the humectant to control the

water activity level.)

pH

Temp aw 4.5 5.5 6.5
19±C 0.982 0.206 (5) 0.147 (3) 0.146 (2)

0.985 0.213 (6) 0.227 (7) 0.270 (10)
0.987 0.120 (1) 0.256 (9) 0.247 (8)

28±C 0.982 0.175 (4) 0.454 (13) 0.498 (15)
0.985 0.350 (11) 0.476 (14) 0.501 (16)
0.987 0.418 (12) 0.553 (18) 0.548 (17)
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Table 3: Nla and V ar0(L) for various-sized experiments,
with n=1 and n=5.

n=1 n=5
Experiment size Nla V ar0(L) Nla V ar0(L)

2x2 5 0.3067 125 0.0507
3x3 27 0.1001 675 0.0181
4x4 84 0.0512 2100 0.0096
5x5 200 0.0317 5000 0.0061
6x6 405 0.0217 10125 0.0042
2x2x2 19 0.1302 475 0.0232
3x3x3 189 0.0343 4725 0.0066
4x4x4 936 0.0148 23400 0.0029




