Skip to main content
eScholarship
Open Access Publications from the University of California

Toward MBenes Battery Electrode Materials: Layered Molybdenum Borides for Li‐Ion Batteries

Abstract

Lithium-ion and sodium-ion batteries (LIBs and SIBs) are crucial in our shift toward sustainable technologies. In this work, the potential of layered boride materials (MoAlB and Mo2 AlB2 ) as novel, high-performance electrode materials for LIBs and SIBs, is explored. It is discovered that Mo2 AlB2 shows a higher specific capacity than MoAlB when used as an electrode material for LIBs, with a specific capacity of 593 mAh g-1 achieved after 500 cycles at 200 mA g-1 . It is also found that surface redox reactions are responsible for Li storage in Mo2 AlB2 , instead of intercalation or conversion. Moreover, the sodium hydroxide treatment of MoAlB leads to a porous morphology and higher specific capacities exceeding that of pristine MoAlB. When tested in SIBs, Mo2 AlB2 exhibits a specific capacity of 150 mAh g-1 at 20 mA g-1 . These findings suggest that layered borides have potential as electrode materials for both LIBs and SIBs, and highlight the importance of surface redox reactions in Li storage mechanisms.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View