Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Soil domestication by rice cultivation results in plant-soil feedback through shifts in soil microbiota

Abstract

Background

Soils are a key component of agricultural productivity, and soil microbiota determine the availability of many essential plant nutrients. Agricultural domestication of soils, that is, the conversion of previously uncultivated soils to a cultivated state, is frequently accompanied by intensive monoculture, especially in the developing world. However, there is limited understanding of how continuous cultivation alters the structure of prokaryotic soil microbiota after soil domestication, including to what extent crop plants impact soil microbiota composition, and how changes in microbiota composition arising from cultivation affect crop performance.

Results

We show here that continuous monoculture (> 8 growing seasons) of the major food crop rice under flooded conditions is associated with a pronounced shift in soil bacterial and archaeal microbiota structure towards a more consistent composition, thereby domesticating microbiota of previously uncultivated sites. Aside from the potential effects of agricultural cultivation practices, we provide evidence that rice plants themselves are important drivers of the domestication process, acting through selective enrichment of specific taxa, including methanogenic archaea, in their rhizosphere that differ from those of native plants growing in the same environment. Furthermore, we find that microbiota from soils domesticated by rice cultivation contribute to plant-soil feedback, by imparting a negative effect on rice seedling vigor.

Conclusions

Soil domestication through continuous monoculture cultivation of rice results in compositional changes in the soil microbiota, which are in part driven by the rice plants. The consequences include a negative impact on plant performance and increases in greenhouse gas emitting microbes.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View