- Main
Prospects for detecting supernova neutrino flavor oscillations
Published Web Location
https://doi.org/10.1103/physrevd.59.085005Abstract
The neutrinos from a type II supernova provide perhaps our best opportunity to probe cosmologically interesting muon and/or tauon neutrino masses. This is because matter enhanced neutrino oscillations can lead to an anomalously hot ve spectrum, and thus to enhanced charged current cross sections in terrestrial detectors. Two recently proposed supernova neutrino observatories, OMNIS and LAND, will detect neutrons spalled from target nuclei by neutral and charged current neutrino interactions. As this signal is not flavor specific, it is not immediately clear whether a convincing neutrino oscillation signal can be extracted from such experiments. To address this issue we examine the responses of a series of possible light and heavy mass targets, 9Be,23Na,35Cl, and 208Pb. We find that strategies for detecting oscillations which use only neutron count rates are problematic at best, even if cross sections are determined by ancillary experiments. Plausible uncertainties in supernova neutrino spectra tend to obscure rate enhancements due to oscillations. However, in the case of 208Pb, a signal emerges that is largely flavor specific and extraordinarily sensitive to the ve temperature, the emission of two neutrons. This signal and its flavor specificity are associated with the strength and location of the first-forbidden responses for neutral and charge current reactions, aspects of the 208Pb neutrino cross section that have not been discussed previously. Hadronic spin transfer experiments might be helpful in confirming some of the nuclear structure physics underlying our conclusions. ©1999 The American Physical Society.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-