Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Magnetic resonance multitasking for multidimensional assessment of cardiovascular system: Development and feasibility study on the thoracic aorta

Published Web Location

https://doi.org/10.1002/mrm.28275
Abstract

Purpose

To develop an MR multitasking-based multidimensional assessment of cardiovascular system (MT-MACS) with electrocardiography-free and navigator-free data acquisition for a comprehensive evaluation of thoracic aortic diseases.

Methods

The MT-MACS technique adopts a low-rank tensor image model with a cardiac time dimension for phase-resolved cine imaging and a T2 -prepared inversion-recovery dimension for multicontrast assessment. Twelve healthy subjects and 2 patients with thoracic aortic diseases were recruited for the study at 3 T, and both qualitative (image quality score) and quantitative (contrast-to-noise ratio between lumen and wall, lumen and wall area, and aortic strain index) analyses were performed in all healthy subjects. The overall image quality was scored based on a 4-point scale: 3, excellent; 2, good; 1, fair; and 0, poor. Statistical analysis was used to test the measurement agreement between MT-MACS and its corresponding 2D references.

Results

The MT-MACS images reconstructed from acquisitions as short as 6 minutes demonstrated good or excellent image quality for bright-blood (2.58 ± 0.46), dark-blood (2.58 ± 0.50), and gray-blood (2.17 ± 0.53) contrast weightings, respectively. The contrast-to-noise ratios for the three weightings were 49.2 ± 12.8, 20.0 ± 5.8 and 2.8 ± 1.8, respectively. There were good agreements in the lumen and wall area (intraclass correlation coefficient = 0.993, P < .001 for lumen; intraclass correlation coefficient = 0.969, P < .001 for wall area) and strain (intraclass correlation coefficient = 0.947, P < .001) between MT-MACS and conventional 2D sequences.

Conclusion

The MT-MACS technique provides high-quality, multidimensional images for a comprehensive assessment of the thoracic aorta. Technical feasibility was demonstrated in healthy subjects and patients with thoracic aortic diseases. Further clinical validation is warranted.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View