Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Reduced perfusion in normal‐appearing white matter in mild to moderate hypertension as revealed by 3D pseudocontinuous arterial spin labeling

Abstract

Purpose

To investigate the hemodynamic changes of normal-appearing white matter (NAWM) in hypertension using the 3D pseudocontinuous arterial spin labeling (pCASL) technique.

Materials and methods

Seventy-three subjects, including a patient group (n = 41; 30 males; age = 47.7 ± 8.3 years; test-time blood pressure [BP] = 155 ± 23/98 ± 11 mmHg) and an age-matched control group (n = 32; 14 males; age = 46 ± 8.3 years; test-time BP = 117 ± 8/76 ± 10 mmHg), were recruited and scanned on a 3.0T magnetic resonance imaging (MRI) system using routine MRI sequences and 3D pCASL sequence. The routine MRI sequences were used to further define the NAWM. The cerebral blood flow (CBF) values in various regions of interest (ROIs) were extracted. One-way analysis of variance (ANOVA) and unpaired t-test were performed to evaluate the significance of the intergroup difference in CBF modifications.

Results

Compared to healthy volunteers, CBF values in global gray matter (GM) and various NAWM regions were found to be lower (P < 0.05) in hypertensive patients, except for genu of corpus callosum (CC), cingulate gyrus, amygdala, pallidum, putamen, and thalamus (P > 0.05). Furthermore, compared to the control group, mild hypertension showed significantly reduced CBF in various ROIs (P < 0.05), but no intergroup differences in GM, R anterior horn of periventricular WM, and genu of CC (P > 0.05), while moderate hypertension showed reduced CBF in all ROIs (P < 0.05). However, it was observed that, between mild and moderate hypertensive patients, there were no statistically significant difference in CBF values except for genu of CC (P < 0.05).

Conclusion

3D pCASL has the ability to detect subtle hemodynamic abnormalities in NAWM regions at relatively early stages of hypertension. The observed decreases in CBF in these regions may suggest an increased risk of cerebral small vessel diseases.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View