Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

A Bayesian regression tree approach to identify the effect of nanoparticles’ properties on toxicity profiles

Abstract

We introduce a Bayesian multiple regression tree model to characterize relationships between physico-chemical properties of nanoparticles and their in-vitro toxicity over multiple doses and times of exposure. Unlike conventional models that rely on data summaries, our model solves the low sample size issue and avoids arbitrary loss of information by combining all measurements from a general exposure experiment across doses, times of exposure, and replicates. The proposed technique integrates Bayesian trees for modeling threshold effects and interactions, and penalized B-splines for dose- and time-response surface smoothing. The resulting posterior distribution is sampled by Markov Chain Monte Carlo. This method allows for inference on a number of quantities of potential interest to substantive nanotoxicology, such as the importance of physico-chemical properties and their marginal effect on toxicity. We illustrate the application of our method to the analysis of a library of 24 nano metal oxides.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View