Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

A joint marginal‐conditional model for multivariate longitudinal data

Published Web Location

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5799029/
No data is associated with this publication.
Abstract

Multivariate longitudinal data frequently arise in biomedical applications; however, their analyses are often performed one outcome at a time, or jointly using existing software in an ad hoc fashion. A main challenge in the proper analysis of such data is the fact that the different outcomes are measured on different unknown scales. Methodology for handling the scale problem has been previously proposed for cross-sectional data, and here we extend it to the longitudinal setting. We consider modeling the longitudinal data using random effects, while leaving the joint distribution of the multiple outcomes unspecified. We propose an estimating equation together with an expectation-maximization-type (expectation-substitution) algorithm. The consistency and the asymptotic distribution of the parameter estimates are established. The method is evaluated using extensive simulations and applied to a longitudinal nutrition data set from a large dietary intervention trial on breast cancer survivors, the Women's Healthy Eating and Living Study.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item