Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

A Metaheuristic Adaptive Cubature Based Algorithm to Find Bayesian Optimal Designs for Nonlinear Models

Abstract

Finding Bayesian optimal designs for nonlinear models is a difficult task because the optimality criteriontypically requires us to evaluate complex integrals before we perform a constrained optimization. Wepropose a hybridized method where we combine an adaptive multidimensional integration algorithm anda metaheuristic algorithm called imperialist competitive algorithm to find Bayesian optimal designs. Weapply our numerical method to a few challenging design problems to demonstrate its efficiency. Theyinclude finding D-optimal designs for an item response model commonly used in education, Bayesianoptimal designs for survivalmodels, and Bayesian optimal designs for a four-parameter sigmoid Emax doseresponse model. Supplementary materials for this article are available online and they contain an R packagefor implementing the proposed algorithm and codes for reproducing all the results in this paper.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View