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The soggy saddle theory of fission 
L.6. Moretto and G. buarino 

Aostract: The transition state theory of fission is generalized to allow 
for trajectories that return from saddle to compound nucleus. 

The standard Bohr Wheeler (BW) theory of fission decay*, identical 
with the transition state theory for chemical reactions, is subject to 
serious limitations of both quantal and classical nature. We want to 
consider here the most crucial approximation of the theory, i'cs possible 
failure, and a generalization designed to overccnie part of the 
difficulty. The basis of the BU theory is to calculate the flux of the 
density distribution in phase space across a suitably chosen 
hypersurface normal to the reaction coordinate. This flux is then 
identified with the reaction rate; this is both the beauty and the trap 
of the theory. The flux and the reaction rate can be identified if and 
only if no phase-space trajectory, after crossing the hypersurface, comes 
back and crosses it again returning to the reactant's region. In order 
to eliminate, or at least to alleviate, the problem, the "transition 
state", or the position of the hypersurface, is chosen to cut across the 
saddle point in coordinate space, on the hope that, once the saddle point 
is negotiated, the system irreversibly rolls down towards the product 
region. This is certainly an extreme approximation, requiring a 
substantial decoupling (low viscosity) between collective and internal 
degrees of freedom. 

An alternative approximation is to assume high viscosity in the 
general saddle point neighborhood. As a result, the flux from the 
compound nucleus is trapped in the saddle region and the associated 
randomization leads to a backflow towards the compound nucleus. For this 
case the natural way to handle the problem is the use of the Master 
Equation. 

Let us consider a compound nucleus A, a saddle point region B, a 
region C far down the scission valley, and a nucleus D after one neutron 
emission. The transition probabilities are \] (from A to B), X2 
(frGm B to A), X3 (from B to C), X n (from A to D), X n- (from B to 
0) and are -illustrated in fig. la. 

The master equations are 

*A = *B X2 - *A ( X1 + X n , ; *B = *A X1 * *B ( X1 + X 3 * X n ' ) ; 

*C = V3 ; *D = *A Xn + *BV 
where the ?s are the time dependent populations. Two main differences 
with respect to the standard theory are visible: a) there is a backflow 
from B to A that makes the decay of A nonexponential (notice that by 
setting X2 * ° ** recover the BW expression); b) neutrons are allowed 
to be emitted from the saddle region. 

The system of differential equations can be solved in a 
straightforward way. From the populations at time infinity one can 
obcain the following expressions for rN/rp 
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The first term to the right is the standard result. The above 
expressions can be obtained without solving 
summing over the probability tree (fig. lb) 
expressions can be obtained without solving the differential equation by 

b). 
One can try to assign values to the Xs by using detailed balance. 

One obtains 

, _ T % ( E - B F > . T , 
X l " h P f t ( £ ) TT « 

-B F /T T - V T 

T - (B N +B F ) /T 
,\ at T as \ 
' A 2 _ F _ A 3 

(B F-B„)/T 
r N / r F = 2e F N + t , - ( B F + ^ ,)/T -2B N/T 

+ e 

Thus 

The assumption X2=X3 has been used although it is doubtful. 
Experimental data should verify it. 

The new expressions favor neutron decay in two ways, a) by allowing 
neutron decay from the saddle; b) more important, by feeding back the 
flux from the saddle region to the compound nucleus. 

An intermediate situation can be envisaged as follows. For a given 
viscosity at the saddle, there will be a critical velocity along the 
fission coordinate, above which the system escapes altogether towards 
fission and below which the system gets trapped in the saddle region. 
The treatment can be modified by splitting X] as follows: 

*1 = HSEJ | { ° P < E - BF - £ ) d £ + f p(E - BF - e) d J 

• 4 m { p ( E " V f 1 " e £ ° / T ] + P ( E " B F > e ~ £ ° / T } = >1S +*1F 
The f i r s t term corresponds to saddle trapping and the second to complete 
saddle negot iat ion ( f i g s , l c . I d ) . The general resu l t is 

„ , . . X 1F ( X 2 + x3 + Y > + A1SX3 

Again i t is reasonable, although not necessary, t ha t , fo r the systems 
trapped in the saddle region X? = X3. I f one disregards the 
cont r ibut ion of the neutron decay from the saddle region and obtains the 
simple form: 



Interesting effects can be observed by introducing a temperature 
dependence of e 0 , which is equivalent to assuming a temperature 
dependent friction coefficient. Results for the BU case and for various 
temperature dependences of EQ are shown in f ig . 2. 
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