Skip to main content
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Mid-Wave Infrared Photoconductors Based on Black Phosphorus-Arsenic Alloys


Black phosphorus (b-P) and more recently black phosphorus-arsenic alloys (b-PAs) are candidate 2D materials for the detection of mid-wave and potentially long-wave infrared radiation. However, studies to date have utilized laser-based measurements to extract device performance and the responsivity of these detectors. As such, their performance under thermal radiation and spectral response has not been fully characterized. Here, we perform a systematic investigation of gated-photoconductors based on b-PAs alloys as a function of thickness over the composition range of 0-91% As. Infrared transmission and reflection measurements are performed to determine the bandgap of the various compositions. The spectrally resolved photoresponse for various compositions in this material system is investigated to confirm absorption measurements, and we find that the cutoff wavelength can be tuned from 3.9 to 4.6 μm over the studied compositional range. In addition, we investigated the temperature-dependent photoresponse and performed calibrated responsivity measurements using blackbody flood illumination. Notably, we find that the specific detectivity (D*) can be optimized by adjusting the thickness of the b-P/b-PAs layer to maximize absorption and minimize dark current. We obtain a peak D* of 6 × 1010 cm Hz1/2 W-1 and 2.4 × 1010 cm Hz1/2 W-1 for pure b-P and b-PAs (91% As), respectively, at room temperature, which is an order of magnitude higher than commercially available mid-wave infrared detectors operating at room temperature.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View