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Abstract

We discuss two estimation methods for fitting linear dynamic sys-
tems. The first is the existing DYNAMALS algorithm, that uses Alter-
nating Least Squares and a majorization substep. With this method,
it is difficult to ensure that the latent states are completely in the
space of the predictor variables. We propose an alternative method
that uses a single step algorithm. After direct implementation, the
latent states are in the space of the predictor variables. The proposed
method can also estimate intercepts in the system and measurement
equations. The porposed method is compared with the existing DY-

NAMALS method using a real-life example.

Keywords: Longitudinal reduced rank regression, state space modelling, op-

timization methods.



1 Introduction.

Recently, Bijleveld and De Leeuw proposed an algorithm for fitting the longi-
tudinal reduced rank regression or state space model (Bijleveld & De Leeuw
1991) The algorithm used least squares and majorization substeps. Its main
advantage over existing methods is that it can easily incorporate optimal scal-
ing of non numerical variables, by adding a third substep to the iteration.
The drawbacks of the algorithm, however, are the slow majorization proce-
dure, standardization of the variables which makes it impossible to model
e.g. exponential developments, and the fact that the latent state variables
are usually not completely in the space of the predictor variables, for reasons
we will detail below. In the following we will propose a different method that
directly estimates the unknowns using a quasi-Newton type of optimization
procedure. The solutions for the latent variables are completely in the space
of the predictor variables. Moreover, the proposed algorithm appears to be
simple, efficient and reliable. The two methods will be compared using an

example from psychotherapy research.



2 The state space model.

In the following vectors will be denoted by lower case characters, matrices
by upper case characters. Suppose we have observed k input variables x and
m output variables y at T consecutive occasions. We suppose that there
is a time dependence in the measurements, which is modeled by supposing
that the x influence the y through p-dimensional latent variables z. The
z accommodate the time dependence in the measurements by following a
Markov type of dependency; the latent states z thereby serve as the memory
of the system. Usually, the dimensionality of the z is lower than that of the
smallest of the dimensionalities of # and y. In that sense the z also filter
the dependence of the output on the input. A visual representation of this

model is in Figure 1. In formula this model can be written as follows:

(1) 2z =Fz 4 + Gy (system equation)
(2) v, =Hz (measurement equation )
where the subscript ¢ indicates the timepoints ¢, I is the px p state transition

matrix, GG is the p x k control matrix, H is the m X p measurement matrix,

and z;, x4, and y; are vectors of dimensionality p x 1, £ x 1, and m x 1
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Figure 1: Visual representation of the state space model

respectively. Model (1) (2) is known under various names: linear dynamic
system, state space model, longitudinal reduced rank regression model, linear
dynamic model. For a discussion of the state space model see Ljung (1987),

Willems (1990), Bijleveld & De Leeuw (1991) and Harvey (1989).

In matrix notation for all time points simultaneously the model becomes:
(3) 7 =BZF' + X&'
(4) Y =ZH'
with Z the T' x p matrix containing the latent states from time 1 until time

T, X the T'x k matrix containing the input variables from time 1 until time

T, Y the T'x m matrix containing the output variables from time 1 until time
T, and B the T' x T shift matrix such that B(z,...,2%) = (20,...,25_,).
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Note that zg is an unknown entity, in fact z{, 2], ... is unknown, and several
options are available for estimating it from the available data. Bijleveld &
De Leeuw (1991) proposed to set zg = z1 by default but this may in a number
of cases be suboptimal.

In fitting this model the following loss function was proposed by Bijleveld

& De Leeuw (1991):

(5) 0, =w?SSQ(Z — BZF' — XG') + SSQ(Y — ZH')

where ‘SSQ’ stands for the sum of squares over all the arguments. The
weight w specifies the relative importance of the input and output. There
are only two choices for w which are non-arbitrary: w = 0 and w — oo.
All other choices for w are arbitrary, even the choice w = 1 gives a solution
that is strictly speaking dependent upon the scaling of the variables. As w
becomes smaller, the last(output)-part of the loss function (5) becomes more
and more important, which has the consequence that the latent states 7
are more and more in the space of the output variables; in the limiting case
with w = 0, (5) yields principal components analysis. As w becomes larger,
the input becomes more and more important, and in the limiting case where

w — 00, the latent states are situated in the space of the input variables.



In state space analysis, algebraic methods such as the one advanced by
Ho & Kalman (1966), solve (1) and (2) for Z, F', G and H, using a minimal
dimension of the state space; these algebraic methods also produce solutions
in which the latent state variables are completely in the space of the predictor
variables.

As the option w = 0 is not relevant in a dynamic context, the option
w — oo is the only interesting option here, being the straightforward dynamic
analogue of (reduced rank) regression analysis. Thinking of the reduced rank

regression model as a special case of the state space model, namely the special

case of (3), (4) where F' = 0:

(6) 7 =X@

(7) Y =ZH

the choice for w — oo is then also analogous to the situation in reduced rank
regression where 7 = XG' (Davies & Tso 1982). A third way to think of
the model (1), (2) is as a principal components analysis of the output, with

restrictions z; = F'z;_1 + Gx; on the component scores 7.



3 Fitting the state space model using alter-

nating least squares with majorization.

Bijleveld & De Leeuw (1991) showed how it is necessary in their case to
restrict the parameters to obtain a meaningful solution. When F', G, H and
7 are unrestricted, the algorithm can trivially decrease the loss to its lower
bound by producing a solution with a very small z, a very small trivial GG

and a very large H. This can be seen as follows. Define:
(8) 0% = w?*SSQ(Z, — BZ,F' — XG') +SSQ(Y — Z,H!),

then by letting 7, — 0, G, — 0, and H, — oo, 02 becomes minimal.
Bijleveld & De Leeuw (1991) chose to restrict Z to Z’Z = I to avoid this
problem. It is also possible to restrict either G or H; the latter is sometimes
encountered in state space analysis (Harvey 1989), the former resembles the
restriction encountered in reduced rank regression. Because of the restriction
Z'7 = 1, estimates for Z cannot be obtained anymore by ordinary least
squares, and a (cumbersome) majorization procedure was needed. Bijleveld
and De Leeuw’s algorithm is named DYNAMALS: for details see Bijleveld

& De Leeuw (1991) and Bijleveld (1989).



Implementation of the option w — oo often induces numerical problems
in DYNAMALS, as it may lead to an ill-conditioned Hessian. In practice,
this means slow minimization and inaccurate solutions, a problem well known
from penalty methods in minimization theory (Murray 1969). In the follow-
ing we will present an alternative optimization method that easily implements
the option w — oo by writing the latent states as a function of the relevant
parameters, and in addition does not need the constraint 7’7 = I. We

extend the model with additional intercepts in the next section.

4 Extensions of the state space model.

In contrast to common mutivariate techniques, the state space model is sen-
sitive to the manner in which the input and output variables are standarized
before the model is estimated. This can be clarified by a simple example.
Suppose zg = 1, F' = %, GG =0 and H = 1. When data is simulated, a

1

sequence 5 of values of y is generated. Obviously, if this sequence is

1
S g
standarized to having mean value 0 first, the simple structure of the model

cannot be recovered anymore. In general terms it means that the fit of a

model on any series of points y; is influenced by the mean value at which it is



entered in the estimation procedure. The same applies to the input variables.
As this mean value is generally unknown, we circumvent this problem by

estimating the mean value along with the other parameters. The formulas

(1) and (2) then become:

(9) 72 =Pz +Gry +u

(10) Yi :HZt—|—U,

where the vectors u and v are called intercept-vectors that have properties

similar to the properties of intercepts in common regression models.

5 Fitting the extended state space model us-

ing direct least squares implementation.

Suppose the latent states are completely in the space of the predictor vari-
ables. Then, the latent state values z1,..., zy are completely defined by the
input x; and the matrices ' and (G, zg and the shift u. This does not mean
that 7 is determined by the input only, as F, (G, zo and u depend also on

the output. This can be formulated in the following theorem:



Theorem 1 The state z; at time t can be written as:

-1
(11) Zt:FtZO—I-ZFk (Gri—g + u)

k=0

proof 1 Clearly, z1 = Fzo+ Gay 4 u, If (11) holds, then:

Zip1 =1z + Gy +u

t—1
=F (FtZo + Z F* (Gre_p + u)) + G +u
k=0
t+1-1

=F""z + Z F* (Gripr—k +u) + Gy + u

k=1

t
:FH—IZO + Z Fk (Gxt—l—l—k + U) 5

k=0

completing the proof by induction.

Corollary 2 If |F|| < 1, then if k — oo, ||F*zl|| — 0, implying that the
influence of the initial state of the system can be neglected after a longer

period, if || F|| < 1.

Corollary 3 If |F|| <1, then if k — oo, SF_  Ftu — (I — F)~'u, implying

that the state is, in the limiting case, a linear combination of the input.

In practice, the terms z; are best computed recursively, using z; = Fz;_+

Gz + u. This also holds for its partial derivatives: (with 6;; the Kronecker

10



azit azst 1
12 =4; FZS ,
similary:
aZit azst 1
13 —52 T Fzs 5
( ) aGk’/’ ptre ot ; aGk’/’
and, finally:
aZit L aZst—l
14 =012, Fo——.
( ) aFk’/’ bt SZ:; aFk’/’

Given the definition of z; outlined above, the loss function can be defined as:

(15) loss = 33 (yﬂ - Z Hyns = )

t=1j=1
The matrix H and the vector v are determined by F', G, zp, u and the input
variables. For each combination of these, H and v can be determined.

We estimate the values of the parameters for which the derivative is clos-
est to zero using the BFGS or Broyden-Fletcher-Goldfarb-Shanno algorithm
(Fletcher 1981). This quasi-Newton type algorithm uses the gradient and
information on the values of the function to determine the search area for
the minimum. It incorporates knowledge on the past iterations in its search,
which makes it very efficient and stable.
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6 Example: the formation of therapeutic al-

liance.

We have at our disposal data on the alliance formation between therapist
and patient. The data that we will analyse were recorded during 28 consecu-
tivepsychotherapy sessions; for one session alliance scores were lacking, these
were ignored during our analyses. The male therapist had passed his basic
training as a psychotherapist and was attending a course for a certificate
as a behavioral therapist. The male patient was an electro-technical spe-
cialist, suffering from severe anxiety attacks with somatic symptoms. mon-
odramatic of conflict and failure, connected with The alliance rating system
used to record the alliance scores of both therapist and patient was a modi-
fied version of the Penn Helping Alliance Scales (Penn-HAS), for details, see
Hentschel, Kief} ling, Heck & Willoweit (1992).

The data were first analyzed using DYNAMALS. We used the option
w = 1, which is the default option in DYNAMALS; all other options were
default as well. The therapist’s alliance scores served as input, the patient’s
alliance scores served as output. We modelled one dimension for the latent

state. The results are in Table 1. Correlations of the input and output

12



variables with the state are extremely high, the fit is high, and the norm of
F'is on the low side, indicating a fairly instantaneous reaction of the patient
to the therapist, contradicting our intuitive notion of a gradual process of
alliance formation building up in the patient (as well as the therapist), steered
by the therapist. Next, we ran the same example with the direct method.

The results from the analysis of the alliance scores using the direct im-
plementation resemble the DYNAMALS results, viz Table 2. The correlation
of the input with the state has increased (as expected), and the correlation
of the output with the state has decreased (as expected). The norm of F
is similar. The fit is comparable to the fit values in DYNAMALS, and it
is, as expected, somewhat lower. The direct method found as values for the
intercepts u = —.33 and v = .38.

Next, we analyzed the data with higher dimensionalities for the latent
state. We found that a two-dimensional solution describes the data suc-
cinctly; for all higher dimensions of z the corresponding singular values of F
were zero. The results from the two-dimensional analysis are in Table 3.

On the first dimension, the correlations of input and output variable with
the state have remained approximately the same. On the second dimension,
the correlations of input and output variable with the state are lower. The

13



Correlation of therapist’s alliance scores with the latent state .96
Correlation of patient’s alliance scores with the latent state 97
Fit 94
Norm of F A8
Table 1: DYNAMALS Analysis of Alliance Scores
Correlation of therapist’s alliance scores with the latent state .98
Correlation of patient’s alliance scores with the latent state .89
Fit .90
Norm of F A7

Table 2: Analysis of Alliance Ratings with the Direct Method
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Correlation of therapist’s alliance scores with the latent states .94 .50

Correlation of patient’s alliance scores with the latent state 92 .39
Fit 95
0.36 —0.12
F
0.68 0.97
Norm of F 1.19
intercept u .23 21
-.18

intercept v

Table 3: Two-dimensional Analysis of Alliance Ratings with the Direct

Method
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Figure 2: Development of the state space scores over time

largest singular value of F' is greater than 1, indicating an ever increasing
process. The shape of F' indicates that cyclical patterns are captured in this
second dimension of the latent state. The latent state space scores over the
therapy sessions are in Figure 2, where indeed we see ever increasing state
space scores on the second dimension. Summarizing, we can say that the one-
dimensional DYNAMALS and direct method analyses gave results that were
rather similar. In both cases, the alliance scores of the patient showed an
almost instantaneous dependence on the alliance scores of the therapist, with

little or no influence of past alliance scores. In the two-dimensional analysis,

16



the first latent state resembled the latent state from the one-dimensional
solutions. On the second dimension however, a latent state was modelled
that had ever-increasing scores, strongly governed by the prior latent states,
capturing cyclical developments. This second dimension corresponds much

more with our idea of alliance formation as a gradual time-dependent process.

7 Discussion.

One of the main advantages of the linear dynamic systems analysis algorithm
that was proposed by Bijleveld and De Leeuw was that it can easily incor-
porate optimal scaling; in fact the DYNAMALS program has been equipped
with optimal scaling of nominal and ordinal variables, and can estimate miss-
ing values. The direct algorithm proposed here can do the same. In addition,
it is far more efficient in that it does not need the majorization step. This is
because the constraint Z'Z = I is not needed anymore as a consequence of
the direct implementation (Bijleveld & De Leeuw 1991). Non-orthogonality
may be an advantage as this makes it possible to model cyclical patterns of
development, or it may be a disadvantage as it can complicate the interpre-

tation of solutions.
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If the norm of F' is much larger than 1, and T is also large, the direct
implementation may become very slow due to the necessity of decreasing
the step sizes. Alternating least squares using majorization might then be
a better option. For investigating latent states that are supposed to fol-
low something that resembles an exponential curve, the direct method is
probably best suited. Stability information can be obtained from the Fisher
information matrix, an approximation of which is computed in the BFGS al-
gorithm. From practical experience, it appears that both methods converge

at acceptable speed.
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