Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Inositol Trisphosphate Receptors and Nuclear Calcium in Atrial Fibrillation

Abstract

Rationale

The mechanisms underlying atrial fibrillation (AF), the most common clinical arrhythmia, are poorly understood. Nucleoplasmic Ca2+ regulates gene expression, but the nature and significance of nuclear Ca2+-changes in AF are largely unknown.

Objective

To elucidate mechanisms by which AF alters atrial-cardiomyocyte nuclear Ca2+ ([Ca2+]Nuc) and CaMKII (Ca2+/calmodulin-dependent protein kinase-II)-related signaling.

Methods and results

Atrial cardiomyocytes were isolated from control and AF dogs (kept in AF by atrial tachypacing [600 bpm × 1 week]). [Ca2+]Nuc and cytosolic [Ca2+] ([Ca2+]Cyto) were recorded via confocal microscopy. Diastolic [Ca2+]Nuc was greater than [Ca2+]Cyto under control conditions, while resting [Ca2+]Nuc was similar to [Ca2+]Cyto; both diastolic and resting [Ca2+]Nuc increased with AF. IP3R (Inositol-trisphosphate receptor) stimulation produced larger [Ca2+]Nuc increases in AF versus control cardiomyocytes, and IP3R-blockade suppressed the AF-related [Ca2+]Nuc differences. AF upregulated nuclear protein expression of IP3R1 (IP3R-type 1) and of phosphorylated CaMKII (immunohistochemistry and immunoblot) while decreasing the nuclear/cytosolic expression ratio for HDAC4 (histone deacetylase type-4). Isolated atrial cardiomyocytes tachypaced at 3 Hz for 24 hours mimicked AF-type [Ca2+]Nuc changes and L-type calcium current decreases versus 1-Hz-paced cardiomyocytes; these changes were prevented by IP3R knockdown with short-interfering RNA directed against IP3R1. Nuclear/cytosolic HDAC4 expression ratio was decreased by 3-Hz pacing, while nuclear CaMKII phosphorylation was increased. Either CaMKII-inhibition (by autocamtide-2-related peptide) or IP3R-knockdown prevented the CaMKII-hyperphosphorylation and nuclear-to-cytosolic HDAC4 shift caused by 3-Hz pacing. In human atrial cardiomyocytes from AF patients, nuclear IP3R1-expression was significantly increased, with decreased nuclear/nonnuclear HDAC4 ratio. MicroRNA-26a was predicted to target ITPR1 (confirmed by luciferase assay) and was downregulated in AF atrial cardiomyocytes; microRNA-26a silencing reproduced AF-induced IP3R1 upregulation and nuclear diastolic Ca2+-loading.

Conclusions

AF increases atrial-cardiomyocyte nucleoplasmic [Ca2+] by IP3R1-upregulation involving miR-26a, leading to enhanced IP3R1-CaMKII-HDAC4 signaling and L-type calcium current downregulation. Graphic Abstract: A graphic abstract is available for this article.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View