Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Low transverse emittance electron bunches from two-color laser-ionization injection

Abstract

A method is proposed to generate low emittance electron bunches from two color laser pulses in a laser-plasma accelerator. A two-region gas structure is used, containing a short region of a high-Z gas (e.g., krypton) for ionization injection, followed by a longer region of a low-Z gas for post-acceleration. A long-laser-wavelength (e.g., 5 μm) pump pulse excites plasma wake without triggering the inner-shell electron ionization of the high-Z gas due to low electric fields. A short-laser-wavelength (e.g., 0.4 μm) injection pulse, located at a trapping phase of the wake, ionizes the inner-shell electrons of the high-Z gas, resulting in ionization-induced trapping. Compared with a single-pulse ionization injection, this scheme offers an order of magnitude smaller residual transverse momentum of the electron bunch, which is a result of the smaller vector potential amplitude of the injection pulse. © 2013 SPIE.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View