Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Disentangling the pedogenic factors controlling active Al and Fe concentrations in soils of the Cameroon volcanic line

Abstract

Active Al, Fe and Si (i.e., oxalate extractable fraction: Alo, Feo, Sio) strongly affect soil physical, chemical and biological properties. This study examined the pedogenic factors affecting Alo, Feo and Sio contents across a soil weathering sequence in the Cameroon volcanic line. We investigated the B horizon (∼50-cm depth) from 26 soils formed in basaltic materials at different elevations (110–2570 m) incorporating a wide range of temperature (14–27 °C) and precipitation (1520–3130 mm). The weathering sequence ranged from weakly weathered Andisols in the southwest region grading to strongly weathered Oxisols on the central highlands. We assumed pyrophosphate extractable Al/Fe (Alp/Fep) as organo-Al/Fe complexes, and Sio, (Alo − Alp) and (Feo − Fep) as short-range-order (SRO) minerals. Factor analysis of climatic (e.g., temperature and precipitation/leaching metrics) and soil geochemical properties (e.g., weathering indices) identified three independent factors representing temperature/dry season intensity, weathering degree and precipitation/leaching as the primary determinants of Alo, Feo and Sio concentrations. Organo-metal complexes (Alp and Fep) were negatively correlated with the temperature/dry season intensity factor, whereas the SRO mineral phases (Sio, Alo − Alp and Feo − Fep) were negatively correlated with weathering degree. The precipitation/leaching factor positively correlated with Alo, Feo and Sio. Our analysis infers that low temperature promotes the formation and preservation of organo-Al/Fe complexes, whereas weathering degree is more critical for SRO minerals. Further, increased weathering and a drier climate enhance the formation of crystalline clay minerals at the expense of SRO minerals. Allophanic materials (Sio) were evident (Sio: 9–43 g kg−1) only in weakly weathered soils. However, low allophanic contents were found in more highly weathered soils (Sio: 2–7 g kg−1) accompanied by high Alp and Fep, suggesting the importance of volcanic parent materials as a direct source of Al and Fe via weathering for the formation of organo-metal complexes. In sum, we clarified the discriminatory effects of climatic factors and degree of weathering in regulating the composition of the active Al, Fe and Si fractions along the Cameroon volcanic line.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View