Skip to main content
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Memantine, Simvastatin, and Epicatechin Inhibit 7-Ketocholesterol-induced Apoptosis in Retinal Pigment Epithelial Cells But Not Neurosensory Retinal Cells In Vitro



7-ketocholesterol (7kCh), a natural byproduct of oxidation in lipoprotein deposits is implicated in the pathogenesis of diabetic retinopathy and age-related macular degeneration (AMD). This study was performed to investigate whether several clinical drugs can inhibit 7kCh-induced caspase activation and mitigate its apoptotic effects on retinal cells in vitro.


Two populations of retinal cells, human retinal pigment epithelial cells (ARPE-19) and rat neuroretinal cells (R28) were exposed to 7kCh in the presence of the following inhibitors: Z-VAD-FMK (pan-caspase inhibitor), simvastatin, memantine, epicatechin, and Z-IETD-FMK (caspase-8 inhibitor) or Z-ATAD-FMK (caspase-12 inhibitor). Caspase-3/7, -8, and -12 activity levels were measured by fluorochrome caspase assays to quantify cell death. IncuCyte live-cell microscopic images were obtained to quantify cell counts.


Exposure to 7kCh for 24 hours significantly increased caspase activities for both ARPE-19 and R28 cells (P < 0.05). In ARPE cells, pretreatment with various drugs had significantly lower caspase-3/7, -8, and -12 activities, reported in % change in mean signal intensity (msi): Z-VAD-FMK (48% decrease, P < 0.01), memantine (decreased 47.8% at 1 µM, P = 0.0039 and 81.9% at 1 mM, P < 0.001), simvastatin (decreased 85.3% at 0.01 µM, P < 0.001 and 84.8% at 0.05 µM, P < 0.001) or epicatechin (83.6% decrease, P < 0.05), Z-IETD-FMK (68.1% decrease, P < 0.01), and Z-ATAD-FMK (47.7% decrease, P = 0.0017). In contrast, R28 cells exposed to 7kCh continued to have elevated caspase-3/7, -8, and -12 activities (between 25.7% decrease and 17.5% increase in msi, P > 0.05) regardless of the pretreatment.


Several current drugs protect ARPE-19 cells but not R28 cells from 7kCh-induced apoptosis, suggesting that a multiple-drug approach is needed to protect both cells types in various retinal diseases.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View