- Main
Complex optical transport, dynamics, and rheology of intermediately attractive emulsions.
Published Web Location
https://doi.org/10.1038/s41598-023-28308-6Abstract
Introducing short-range attractions in Brownian systems of monodisperse colloidal spheres can substantially impact their structures and consequently their optical transport and rheological properties. Here, for size-fractionated colloidal emulsions, we show that imposing an intermediate strength of attraction, well above but not much larger than thermal energy ([Formula: see text] [Formula: see text], through micellar depletion leads to a striking notch in the measured inverse mean free path of optical transport, [Formula: see text], as a function of droplet volume fraction, [Formula: see text]. This notch, which appears between the hard-sphere glass transition, [Formula: see text], and maximal random jamming, [Formula: see text], implies the existence of a greater population of compact dense clusters of droplets, as compared to tenuous networks of droplets in strongly attractive emulsion gels. We extend a prior decorated core-shell network model for strongly attractive colloidal systems to include dense non-percolating clusters that do not contribute to shear rigidity. By constraining this extended model using the measured [Formula: see text], we improve and expand the microrheological interpretation of diffusing wave spectroscopy (DWS) experiments made on attractive colloidal systems. Our measurements and modeling demonstrate richness and complexity in optical transport and shear rheological properties of dense, disordered colloidal systems having short-range intermediate attractions between moderately attractive glasses and strongly attractive gels.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-