Skip to main content
eScholarship
Open Access Publications from the University of California

Uniform Diffusion of Cooper Pairing Mediated by Hole Carriers in Topological Sb2Te3/Nb

Abstract

Spin-helical Dirac Fermions at a doped topological insulator's boundaries can support Majorana quasiparticles when coupled with s-wave superconductors, but in n-doped systems, the requisite induced Cooper pairing in topological states is often buried at heterointerfaces or complicated by degenerate coupling with bulk conduction carriers. Rarely probed are p-doped topological structures with nondegenerate Dirac and bulk valence bands at the Fermi level, which may foster long-range superconductivity without sacrificing Majorana physics. Using ultrahigh-resolution photoemission, we report proximity pairing with a large decay length in p-doped topological Sb2Te3 on superconducting Nb. Despite no momentum-space degeneracy, the topological and bulk states of Sb2Te3/Nb exhibit the same isotropic superconducting gaps at low temperatures. Our results unify principles for realizing accessible pairing in Dirac Fermions relevant to topological superconductivity.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View