Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

High-resolution μCT imaging for characterizing microcalcification detection performance in breast CT

Abstract

Purpose: To demonstrate the utility of high-resolution micro-computed tomography ( μ CT ) for determining ground-truth size and shape properties of calcium grains for evaluation of detection performance in breast CT (bCT). Approach: Calcium carbonate grains ( ∼ 200    μ m ) were suspended in 1% agar solution to emulate microcalcifications ( μ Calcs ) within a fibroglandular tissue background. Ground-truth imaging was performed on a commercial μ CT scanner and was used for assessing calcium-grain size and shape, and for generating μ Calc signal profiles. Calcium grains were placed within a realistic breast-shaped phantom and imaged on a prototype bCT system at 3- and 6-mGy mean glandular dose (MGD) levels, and the non-prewhitening detectability was assessed. Additionally, the μ CT -derived signal profiles were used in conjunction with the bCT system characterization (MTF and NPS) to obtain predictions of bCT detectability. Results: Estimated detectability of the calcium grains on the bCT system ranged from 2.5 to 10.6 for 3 mGy and from 3.8 to 15.3 for 6 mGy with large fractions of the grains meeting the Rose criterion for visibility. Segmentation of μ CT images based on morphological operations produced accurate results in terms of segmentation boundaries and segmented region size. A regression model linking bCT detectability to μ Calc parameters indicated significant effects of μ Calc size and vertical position within the breast phantom. Detectability using μ CT -derived detection templates and bCT statistical properties (MTF and NPS) were in good correspondence with those measured directly from bCT ( R 2 > 0.88 ). Conclusions: Parameters derived from μ CT ground-truth data were shown to produce useful characterizations of detectability when compared to estimates derived directly from bCT. Signal profiles derived from μ CT imaging can be used in conjunction with measured or hypothesized statistical properties to evaluate the performance of a system, or system component, that may not currently be available.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View