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Abstract of the Dissertation

Multimodal sensory contributions to hippocampal

spatiotemporal selectivity

by

Bernard Willers

Doctor of Philosophy in Physics

University of California, Los Angeles, 2013

Professor Mayank Mehta, Co-chair

Professor Katsushi Arisaka, Co-chair

The hippocampal cognitive map is thought to be driven primarily by distal visual cues and

self-motion cues, although other sensory cues have also been demonstrated to influence place

cells. Performing controlled experiments exploring the precise role played by different sensory

modalities in determining spatial representation in the hippocampus is challenging due to

need to control non-specific stimuli such as scent cues and acoustic reflections.

To overcome these challenges we have developed an immersive virtual reality system for

rats, in which any spatial information in these non-specific sensory cues are eliminated. The

system combines full field of view visual stimuli with spatially accurate auditory stimuli to

enable a variety of complex spatial tasks. To eliminate much of the subjectivity in identifiying

single units in extracellular recording, an improved automated spike sorting method was

developed based on existing gaussian mixture approaches.

These tools were then applied to determine whether visual cues alone are sufficient for

standard place cell activity in the CA1 region of the hippocampus. Single unit activity

was recorded both in virtual reality, where only visual cues and non-vestibular self-motion

cues provided spatial information, and in the real world using a linear track experimental

paradigm.

ii



Place cells displayed robust spatial selectivity in virtual reality, but only 20% of putative

pyramidal cells were active in virtual reality, compared with 45% in the real world task. Distal

visual and nonvestibular self-motion cues are thus sufficient to provide spatial selectivity, but

vestibular and other sensory cues present int he real world are necessary to fully activate the

place cell population. While bidirectional cells preferentially encode absolute position in the

real world, they exhibited a distance coding scheme in virtual reality, suggesting that other

sensory cues such as scent marks are necessary for a robust bidirectional position code.

The frequency of hippocampal theta oscillations was reduced in virtual reality, and its

speed dependence abolished. Despite this, phase precession of place fields was essentially

identical in the two environments. These results constrain mechanisms governing both hip-

pocampal theta oscillations and the temporal code. Taken together, these results reveal

cooperative and competitive interactions between sensory modalities for control over hip-

pocampal spatiotemporal selectivity and theta rhythm.
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CHAPTER 1

Introduction

1.1 Measuring neural activity

A variety of techniques are available to perform functional measurements of neural activity.

In humans, where techniques must by necessity be non invasive, functional magnetic reso-

nance imaging (fMRI) is commonly employed to measure blood oxygenation in the brain.

However, fMRI lacks both the spatial and temporal precision required to study neural circuits

in detail.

Another popular class of techniques are based on optical imaging, typically using fluo-

rescence microscopy with calcium indicator dyes or voltage sensing dyes. While such optical

methods can successfully record activity from a large number of neurons, and enable accurate

identification of neurons over multiple recording sessions, they have two key shortcomings.

The first challenge is that the temporal resolution of measurements is insufficient to detect

single action potentials, a problem which may be overcome in future using faster dyes and

more sensitive imaging devices. The second problem faced by optical techniques is the in-

ability to record from deep brain structures. Two-photon microscopy, the leading candidate

for deep imaging using optical methods, is only feasible up to depths of several hundred

micron.

For these reasons, the majority of functional studies of intact neural circuits in animal

models employ electrical recording from electrodes implanted in the brain. Electrode based

recording methods can be used to record either the membrane potential of individual neurons,

or the extracellular activity of a small patch of neural tissue. They offer significantly better
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temporal resolution than optical methods, but cannot as easily and reliably identify and

record from the same cell over multiple recording sessions.

The potential difference across the cellular membrane of a neuron is typically referred to

as the membrane potential. An ionic concentration gradient maintained across the member

by ion channels and pumps maintain the baseline value of the membrane potential on the

order of −70mV [1]. When the membrane potential exceeds a threshold of around −55mV

a large and rapid electrical impulse, termed an action potential, is produced. Typical action

potentials last roughly 1ms with an amplitude of 100mV . These action potentials are activity

propagated down the axon and trigger the release of neurotransmitters at synapses formed

with other neurons. The action potentials, often simply referred to as spikes, are the primary

output of neurons, and thus of particular interest in recordings. Methods to record the

membrane potential of a neuron include sharp electrodes [2], which pierce the cell membrane,

or patch clamp recordings [3] which employ micro pipettes to create a high impedance seal

with a portion of the membrane. While such recordings deliver an unparalleled amount of

data about the sub threshold activity of a neuron, they are difficult to perform in behaving

animals, and only record the activity of single neurons.

As a result of these drawbacks, the majority of functional recordings in behaving ani-

mals are performed using electrodes inserted into the extracellular medium. The resulting

potential between the electrode and a suitable ground is thus created by the combination

of current sources and sinks caused by current flowing across nearby cell membranes [4].

Extracellular recordings typically contain data in distinct frequency bands. At high frequen-

cies, typically above 300 Hz, the spiking activity of nearby neurons is detectable in the form

of extracellular spikes. The lower frequency signal, typically below 300 Hz, is referred to

as the local field potential (LFP). The precise nature and origin of the LFP is not clear,

although it is generally considered to be representative of the synaptic inputs received by

nearby neurons [4–6]. The length scale for contributions to the LFP is thought to be roughly

200 µm [7,8].

Extracellular spikes are typically much smaller than those observed in membrane poten-
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Figure 1.1: Scanning electron microscope image of a tetrode probe. Four 13 µm nichrome

electrodes are twisted together and the insulation fused with a heat gun.

tial recordings. An extracellular electrode can detect spikes from neurons up to 150 µm from

the electrode [9], which makes it possible to detect spiking activity from multiple neurons on

a single electrode. Separating these spikes by the neuron of origin, a process referred to as

spike sorting, is an important problem in extracellular recording. The basis of the technique

is that different neuron types, together with different neuron-electrode geometry configura-

tions, will produce different extracellular waveforms [10]. Neurons further away from the

electrode are typically harder to isolate, and in practice single unit isolation is often only

possible for neurons within 50 µm of the electrode [9, 11]. Most spike sorting is done man-

ually, a process which is both extremely subjective and error prone [12]. A more detailed

discussion of the sorting process, together with an improved algorithm for systematic sorting

are presented in chapter 2.
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Figure 1.2: Micro-drive design with twenty two tetrode shuttles. Each tetrode is threaded

through a narrow tube attached to a screw, allowing independent depth adjustment of each

tetrode.

To enhance the variability in waveforms from different neurons multiple electrodes can be

bundled together into a single probe. A probe configuration with four such channels, termed

a tetrode (see figure 1.1), has been shown to significantly enhance the isolation of single units

[13]. To employ such probes when recording from behaving animals, a micro-drive containing

multiple individually adjustable probes is surgically fixed to the skull. Our experiments using

rats use a twenty-two tetrode micro-drive (see figure 1.2) weighting approximately 25 grams.

1.2 Spatial representation in the hippocampus

1.2.1 The hippocampus

The hippocampus, a curved structure located in the medial temporal lobe, has been the

subject of considerable study as a result of its role both in spatial navigation and short to

long term memory consolidation.

The importance of the hippocampus to memory formation was first elucidated by an

influential study by Scoville and Milner, in which they reported that surgical lesions of the

4



hippocampus in a human patient lead to severe anterograde amnesia [14]. The patient was

unable to form new memories, but retained memories from long before the operation. This

suggested that the hippocampus played a key role in the formation and consolidation of new

memories. The hippocampus and the related cortical structures forming the medial temporal

lobe are considered to be responsible for declarative memory [15,16].

Single unit recordings from hippocampal neurons in rats lead to the discovery that these

cells fire selectively in certain spatial regions within the environment [17]. The discovery of

these cells, termed place cells, suggested that in addition to its role in declarative memory

formation the hippocampus is an integral part of the brain’s spatial processing system [18].

1.2.2 The hippocampal rate code

The discovery of place cells [17] led to the suggestion that these cells could serve as the

basis for generative a cognitive map of the environment [18]. Such spatially selective firing

is found in multiple subregions of the hippocampus, including CA1 and CA3 [19], and the

dentate gyrus [20].

The region of space within which a place cell is active is termed a place field. Unlike

sensory cortical areas place fields to not exhibit topographic organization [21], but the size

of place fields do increase systematically along the dorsa-ventral axis of the hippocampus [22].

The instantaneous firing rates from from a local population of hippocampal cells, whose place

fields are distributed throughout the environment, forms an accurate representation of the

rat’s position [21] which is referred to as the hippocampal rate code [23].

Place cells have been the subject of intensive study since their discovery, and numerous

interesting properties have been revealed [24]. One curious feature is that during free behav-

ior in a two dimensional environment place cells respond only to the position of the animal.

However, when the animal is constrained to run on a narrow linear track place cells exhibit

firing which is both spatially and directionally selective [25]. Later experiments revealed that

in a two dimensional environment with a sequential task the place cells do in fact exhibit
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directional selectivity [26].

Behavioral studies have demonstrated that the hippocampus is necessary for spatial learn-

ing [27]. Consistent with this observation, place field properties demonstrated systematic

changes with experience [21,28,29]. The changes include a backward shift in the place field

center of mass, and a negatively skewed increase in firing rate [28,29] which are predicted as

a result of spike-timing dependent plasticity [30,31]. Furthermore, populations of place cells

active during track behavior exhibit sequential reactivation during slow-wave sleep [32–34],

a phenomenon which is hypothesized to be involved in memory consolidation.

Besides their spatial selectivity, hippocampal firing rates have also been demonstrated

to be modulated by several variables and behaviors. In particular, running speed [35–40]

reward conditions and other non-spatial behaviors and stimuli [36, 41–46] all contribute to

hippocampal activity. The subpopulation of cells that are active is different between different

environments [21]. Subsequently, deforming the environment can cause a different set of cells

to become active in a process termed remapping [47].

1.2.3 The hippocampal temporal code

While there are many oscillatory bands in the LFP, during active behavior the dominant

activity in the LFP are large amplitude oscillations in the theta band (∼8Hz) [48]. The timing

of spikes within place fields with respect to the theta rhythm has been shown to provide a

temporal code for the rat’s position [25, 49] beyond the position information present in the

spatial firing rate. In particular, each successive spike as the rat traverses the place field

occurs at a lower phase of the theta oscillation than the previous spike, an effect referred to

as phase precession. Data recorded across multiple runs through the place field reveals that

spikes precess through a full 360◦ cycle over the width of the place field, but on a single run

precession is often only 180◦ [50].

The addition of spike phase information can provide greater accuracy in position decod-

ing based on a small number of place fields, as it provides a mechanism for encoding position
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which is independent of behavioral confounds such as running speed [51, 52]. While phase

precession is primarily studied using linear track experiments, it has been shown that an

animal’s trajectory through a place field in a two dimensional environment can be disam-

biguated by the temporal code [53]. Besides greater information for spatial decoding, phase

precession also produces sequential activation of adjacent place fields on the timescale of

spike timing dependent plasticity [30, 31], which is believed to be important for sequence

learning [54–56]. Phase precession has also been demonstrated in layer 2 grid cells in the

medial entorhinal cortex [57], suggesting that its generating mechanism is broadly applicable.

The mechanisms generating phase precession have attracted considerable modeling in-

terest, with a wide variety of models in the literature. Many of these models are based on

the notion that the LFP, and theta oscillations in particular, correspond to rhythmic in-

hibitory input to the place cells. This idea is consistent with finding that most hippocampal

interneurons provide perisomatic inhibition to pyramidal neurons [58].

While there are a number of different models for phase precession, they can be split into

three categories. The first of these are oscillatory interference models [25,59], which model the

membrane potential as the combination of oscillating somatic and dendritic inputs. Within

the place field, the dendritic oscillator is assumed to exhibit a speed dependent frequency

increase which, when coupled with spiking activity at the peaks of the interference pattern

in the membrane potential, leads to spatial phase precession. The second class of models

are based on recurrent network activity [60, 61]. Precession is proposed to be the result of

a sequence of associated place cells activity within each theta cycle. Due to the need for

recurrent connections such models cannot explain precession in CA1, which lacks recurrent

excitatory connections. The third class of models involve spatially modulated depolarization,

which forms the place field, interacting with rhythmic inhibition. In the soma-dendrite

interference models [62,63] the depolarizing input is also modulated by the theta rhythm. An

asymmetric ramping depolarization has also been shown to be capable of generating phase

precession [29, 64–66]. Recent membrane potential recordings in mice [67] displayed such

ramping excitation, consistent with observations of asymmetric spiking activity in rats [28,

7



29,66].

1.2.4 Sensory inputs and place fields

The relationship between the cues in the environment and place fields has been studied in

some detail, although no clear consensus has been reached on which sensory modalities are

responsible for the generation of place fields. Early experiments indicated that the most

important influence may be the distal visual cues in the environment. Indeed, rotating the

visual cues in a cylindrical chamber causes the place fields to rotate [68].

In support of the importance of visual cues, place cells in rats which are introduced to an

environment in darkness remap when the lights are turned on [69]. However, no remapping is

observed if the environment is initially illuminated and the lights are then turned off. Other

sensory cues such as olfactory and self motion cues must thus be capable of maintaining the

rate code. This is consistent with the presence of normal place fields in blind rats [70]. The

contribution of olfactory and self motion cues may explain findings that the hippocampus

can respond differently to two identical visual environments [71].

It has been reported that wiping the track between trials of a linear track causes place

fields to remap [72], while the fields are stable, even in darkness, if the track is not wiped

down. Furthermore, the additional of proximal cues to the track increase the fraction of

place cells active in both directions [73]. Lesions or chemical based deactivation of the

vestibular nucleus has also been shown to disrupt place cell firing and destroy head direction

selectivity [74,75].

1.3 Outline

More than forty years after the discovery of place cells, there is still no consensus as to the

sensory stimuli that govern the formation of place fields. In part this is due to the substantial

difficulty in eliminating non-specific sensory cues. There is evidence to suggest that distal

visual cues play a dominant role, but cells are modulated by multiple sensory modalities.
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In this dissertation I will discuss the design of a virtual reality system which attempts to

mitigate these problems. This virtual reality system, combined with an improved spike

sorting method, is then applied to definitely answer the question of whether visual cues

alone are sufficient for place cell activity in CA1.

In chapter 2 I discuss the spike sorting problem in some detail, including an overview of

existing methods, followed by details of the sorting pipeline I have developed for tetrode data

using a combination of existing algorithms and some post processing heuristics. Thereafter

chapter 3 provides further discussion on the motivation behind virtual reality for rats. By

examining the sensory capabilities of the rat we obtain a set of requirements, followed by

information about the hardware design and software implementation. The work presented

in this chapter is result of joint effort with Daniel Aharoni. Having established the tools

to be used, chapter 4 presents the analysis of place cells recorded in highly similar real and

virtual linear track environments. Details of the similarities and differences, together with

the calculations done to obtain them are provided. Many of the results from this chapter

appear in our publication [76]. The experiment was designed by all authors, data collection

was primarily performed by Pascal Ravassard and Ashley Kees, and all analysis performed

by myself. Finally, chapter 5 provides further discussion of the results obtained, directions

for possible future research, and concluding remarks.
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CHAPTER 2

Spike sorting

Extracellularly positioned electrodes produce recordings which typically include contribu-

tions from both the local field potential and action potentials from multiple nearby neurons.

While the analysis of multi-unit activity can be worthwhile, it is clearly desirable to isolate

individual cells in the recording to study the firing properties of single units. This is referred

to as the spike sorting problem, and remains a field of active research.

In this chapter I will outline the general techniques used, together with details of the

sorting procedure I have developed, which combines some of the existing techniques with

new algorithms and software tools. We begin by considering the stages into which the spike

sorting process is typically divided:

1. Detecting action potentials;

2. extracting and aligning spike waveforms;

3. dimensionality reduction and feature extraction;

4. sorting the data into clusters.

2.1 Detection

Extracellular action potentials tend to be quite small (on the order of 100µV ), compared

to the amplitude of oscillations in the local field potential. Fortunately, these two sources

typically contribute in different frequency ranges, so the first step in extracting extracellular

action potentials is therefore to filter the wide band recordings.
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Figure 2.1: A 100ms sample of unfiltered extracellular recording. Arrows indicate spikes

tracked over future figures. While intracellular spikes are positive voltage deflection, ex-

tracellular spikes are in fact negative voltage deflections. For this reason, by convention

extracellular traces are inverted before plotting both here and in future figures.
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Figure 2.2: Data from figure 2.1 filtered between 300 and 6000 Hz. Dashed line indicates a

4σ detection threshold.

Typical filter ranges are 300 or 600 to 6000 Hz. Most data acquisition systems offer

on-line filtering capability using finite impulse response (FIR) filters. However, such on-line

(causal) filters introduce a phase lag which varies as a function of frequency. As a result,

the resulting action potential waveforms are distorted [77, 78] in a manner which reduces

accuracy of subsequent spike sorting. Off-line (non causal) filtering, avoids the phase lag

problem by running a causal filter first forward and then backward in time over the sample.

Our system employs off-line filtering using a 4th order Butterworth filter [79] with a pass

band between 300 and 6000 Hz.

Once the signal has been filtered, action potentials can be detected by simple voltage

thresholding. However, energy based detection methods have been shown to be more effective

at reduce false positive detections [80]. We define the non-linear energy operator (NEO) as:

ψ[x(t)] =

(
∂x

∂t

)2

−
(
∂2x

∂t2

)
x(t) (2.1)

With the discrete analogue:

ψt = xn
2 − xn+1xn−1 (2.2)

Through Fourier decomposition it can be shown that the value produced by this operator
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Figure 2.3: Output of the non-linear energy operator on the data in figure 2.2. Black line

indicates the detection threshold. Note the improved contrast between action potentials and

noise, resulting in more accurate detection.

is approximately the instantaneous power times the instantaneous frequency. Since action

potentials are both large and rapid voltage fluctuations in the filtered signal, thresholding

the NEO signal provides an excellent way of detection action potentials. A short filtered

voltage trace and its NEO are depicted in figures 2.3 and 2.2.

2.2 Waveform extraction

Once spikes have been detected, and a small window of data (1.5ms in our system) is ex-

tracted on each channel around the detected event. It is important that these waveforms be

properly aligned for later dimensional reduction. Typically waveforms are align using the

maximum peak across recording channels, although energy based alignment mechanisms have

also been shown to work well [81]. This alignment process can be improved by up-sampling

the waveforms using cubic splines, performing the alignment, and then down-sampling back

to the original sampling frequency [82].
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Figure 2.4: Extracted waveforms from all four channels of the tetrode probe for the spikes

indicated by the arrows in figures 2.1 and 2.3.

2.3 Dimensionality reduction and feature extraction

At this stage, the dimensionality of the resulting dataset is quite large (D = 240 for 1.5ms

waveform segments recorded at 40 kHz on the four channels of a tetrode). Much of this data

is highly redundant, so there is substantial computational benefit to be had from reducing

the dimensionality of the data.

We therefore seek to extract a subset of the data which is small enough to work with but

still contains sufficient information identify single neurons. As discussed in section 1.1, the

major advantage of recording using tetrode probes is that the same action potential can be

detected on each channel, but because of the geometry of the probe the action potentials will

be slightly different on each channel. Simply selecting the peak amplitude of the waveform on

each of its four channels thus provides a effective way of choosing the feature set. Figure 2.5

depicts a sample of the four channel spike peaks on a well positioned tetrode.

By simply selecting the peak amplitude, however, we lose a lot of information about the

shape of the waveform that can aid in classification. Principle component analysis (PCA)
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Figure 2.5: Two dimensional projections of spike peak amplitude on the four channels of

the tetrode for all spikes detected during the hour of recording from which previous samples

were drawn. Yellow and green arrows indicate the location of the spikes in figure 2.4
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Figure 2.6: First three eigen vectors of the covariance matrix for the spike in figure 2.5.

Notice that the first eigen vector mimics the shape of an extracellular spike waveform.

provides an alternative approach. Briefly, suppose the data set xi, contains N samples in D

dimensions. We can estimate the covariance matrix of the data:

Σ̂ =
N∑
i

xix
T
i (2.3)

and find its eigen vectors vj and eigen values λj such that

Σ̂vj = λjvj j = 1 . . . D (2.4)

The eigen values λj are proportional to the fraction of the total variance in the data

explained by variance along the vector vj. We can thus keep the majority of the variance in

our data while reducing dimensionality (from D to M) by projecting along the M vectors

vj with the largest corresponding eigen values.

yi =
[
v1 . . .vM

]
xi (2.5)
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The first three eigen vectors of the dataset in figure 2.5 are shown in figure 2.6. While

PCA is reasonably effective and fast to compute, it is fundamentally a linear transformation

of the data, which limits the complexity of the structure it can extract. There is therefore a

great deal of research on non-linear methods of dimensionality reduction.

Some of the proposed methods include ISOMAP [83, 84], Laplacian eigenmaps [85], and

graph laplacian features [86]. While these methods are often capable of revealing interesting

structure in high dimensional data, they are significantly more computationally intensive

(O(n3) or O(n2 log n) depending on the method) making them impractical for the datasets

encountered in in our experiments, which often include hundreds of thousands of data points.

Another popular approach to feature extraction is based on the discrete wavelet trans-

form [87]. Briefly, each waveform is decomposed as a linear combination of a base (”mother”)

wavelet at a variety of offsets and scale factors. The coefficients generated by the wavelet

transform are then used as features, with deviation from a normal distribution being used

as the signal for an interesting or useful coefficient [88, 89].

2.4 Clustering

Once the spike data has been reduced to a workable dimension, the next step is to identify

isolated clusters in the data. These clusters should, in theory, correspond to different neurons.

This assumption is usually verified through the use of several cluster metrics, described below.

In addition to single unit clusters, a typical dataset contains a dense cluster of low amplitude

spikes which originate at distant neurons. These low amplitude spikes are difficult to separate

into multiple sources, and are typically either discarded, or used in analysis of multi unit

activity.

2.4.1 Cluster metrics

In order to separate clusters that correspond to single neurons from those that do not, as

well as to assess the quality of clustering, it is useful to compute a variety of metrics that
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describe the clusters. Many of these metrics have a biological motivation, whereas others

are largely statistical in nature.

Arguably the most important tool in identifying single neuron clusters is the knowledge

that neurons exhibit a refractory period [90]: for a small time interval following an action

potential, the neuron is incapable of producing another action potential. While the exact

length of the refractory period varies among cell types, it is typically around one to two

milliseconds. It follows that a cluster exhibiting a large number of refractory violations (two

spikes falling within the refractory period of one another) is unlikely to be a single neuron.

In practice the fraction of refractory spikes is often used as a simple metric, but, it is possible

to compute a better estimate of the fraction of false positive spikes in a cluster [91].

Suppose the cluster is a combination of two distinct point processes. Process A, corre-

sponding to the ‘true’ neuron, and process B, corresponding to noise or misclassified spikes.

Let NA, NB be the number of spikes from these processes, R be the number of refractory

violations, T be the duration of the recording session, τr the refractory period, and τc the

censor period of the spike detection method. Process A is subject to a refractory restriction,

but process B, which we assume to be Poisson, is not. Refractory violations can therefore

be of type AB or type BB.

Each spike from A creates a window of 2(τr − τc) around it during which a spike from B

would generate a refractory violation. We therefore expect the number of AB violations to

be:

RAB =
2(τr − τc)NANB

T
=

2(τr − τc)
T

NB(N −NB) where N = NA +NB (2.6)

Under the Poisson assumption, the time between spikes from B are exponentially dis-

tributed, so the number of BB violations is expected to be:

RBB = (NB − 1)

(
1− exp

{
−NB

(τr − τc)
T

})
(2.7)
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Figure 2.7: Three action potentials in rapid succession from a single cluster demonstrating

complex spiking. Notice the significant reduction in spike amplitude.

Since the values of N , T , R, τr and τc are observable for a given cluster, the resulting

transcendental equation

2(τr − τc)
T

NB(N −NB) + (NB − 1) +

(
1− exp

{
−NB

(τr − τc)
T

})
= R (2.8)

can be solved numerically for NB, after which the false positive estimate from refractory

spiking is simply f
(r)
p = NB/N . It should be pointed that the zeroth order expansion of

the exponential in equation (2.8) yields the result from [91], whose calculation neglected

the possibility of BB refractory violations. The assumption of Poisson spiking from the

noise process B is imperfect in many recordings, but is nevertheless a reasonable basis for

developing the estimator.

Two more metrics with biological basis are the burst index and complex spike index [92]

of a cluster. Some neurons, such as the pyramidal neurons in CA1 with which we are

primarily concerned here, are known to exhibit complex spike bursts. Such a burst typically

involves several spikes in rapid succession, each with smaller amplitude that the one preceding

it [93, 94].

To quantify the presence of these effects, we define the burst index of a cluster as the

percentage of spikes that occur within 20 ms of their predecessor. The complex spike index

19



(CSI) is then defined as the percentage of spikes within a burst that exhibit amplitude decay

minus the percentage of spikes within a burst that exhibit an increase in amplitude relative

to their predecessor. For cells which do not exhibit complex spiking, such as the inhibitory

interneurons near CA1, the CSI will typically be close to zero, while for pyramidal neurons

in CA1 values of 50% or higher are not uncommon.

A common metric to quantify the separation between clusters is the isolation distance [95].

It is defined, for a given cluster, as the Mahalanobis distance (computed on peak amplitudes

using the cluster mean and covariance) threshold at which the number of spikes below the

threshold is twice the number of spikes in the cluster. Unfortunately this metric is dependent

on the number of dimensions in the data. Transforming this distance using the chi-square

distribution with the appropriate number of dimensions would avoid this problem, but this

is rarely done in practice. Subsequently, care should be taken when comparing isolation

distances reported in different publications.

Finally, one can use the assumption of Gaussian clusters to derive estimates of the prob-

ability of misclassification for each data point, which subsequently leads to false positive and

negative estimates for each cluster [91].

2.4.2 Clustering algorithms

The literature proposing algorithms for spike sorting goes back almost as far as electrophys-

iology does [96]. Methods that have been proposed include:

• Over clustering using k-means followed by merging based on edge density [97];

• Density contour based approaches [98];

• Self organizing maps [99];

• Neural networks [80];

• Optimal linear filters [100];
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• Gaussian mixture models [11];

• Independent component analysis [101–103];

• Student’s t-distribution mixture models [104–106];

• and many more [83,107–110].

Despite all these approaches, the spike sorting problem remains unsolved. This is due in

part to the large variation of cell types, densities and firing rates in different brain regions, as

well as the challenges of electrode drift, complex spiking and overlapping waveforms. Some

of these methods attempt to be fully automated, while others are semi-automatic and require

operator input at key stages in the sorting process. Regardless of the algorithm used, manual

inspection of the output remains an important verification step.

While a full review of all these methods is beyond the scope of this chapter, I want to

briefly motivate our choice of algorithm. It is typical in our experiments to need to sort on

the order of two or three hundred thousand spikes from a single recording session. The large

number of spikes immediately precludes the use of techniques with runtime O(n)2 or higher.

Due to the large difference in firing rate between interneurons and pyrmidal units in CA1,

the method must also be able to successfully identify both high and low density clusters.

As a compromise between the goal of fast execution time and quality of output, we

adopted the KlustaKwik algorithm [111], together with further post-processing of the out-

put. Briefly, KlustaKwik fits Gaussian mixture models to the spike data, using the Akaike

information criterion [112] to determine the number of components in the model. Because

spike data is rarely purely Gaussian, it tends to split single clusters into multiple compo-

nents. On occasion, multiple low rate clusters are grouped together in a single component.

We must therefore detect which components to merge, and which components to split.

Intuitively, components should be split if their peak data are overlapping, and their

waveforms are similar. This is quantified as follows: let x
(1)
i and x

(2)
j be the peak amplitude

data for two clusters. Estimate the mean (µ(1), µ(2)) and covariance (Σ(1), Σ(2)) of the clusters
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Figure 2.8: Output of the clustering algorithm on the data in figure 2.5. The algorithm

identifies 24 clusters and subsequent manual inspection confirms 23 of these as single units.

from the data. Then compute the Mahalanobis distance across clusters:

m
(1)
i =

(
x

(1)
i − µ(2)

)T
Σ−1

(2)

(
x

(1)
i − µ(2)

)
(2.9)

m
(2)
j =

(
x

(2)
j − µ(1)

)T
Σ−1

(1)

(
x

(2)
j − µ(1)

)
(2.10)

and define the distance measure M as the maximum of the means.

M = max

(
1

N1

N1∑
i=1

m
(1)
i ,

1

N2

N2∑
j=1

m
(2)
j

)
(2.11)

Rather than directly thresholding M , whose typical values are not very intuitive, we

again use the assumption of Gaussian data to convert M to the better understood range

of cumulative probability, and merge clusters if β = CDFχ2
d
(M) > 0.95, and the Pearson

correlation coefficient of the mean waveforms exceeds ρ > 0.9.
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If a component contains more than one well isolated cluster, the density of spikes around

the cluster mean is likely to be low (since the cluster mean should lie in between the two well

isolated clusters). We therefore detect clusters to be split by computing the Mahalanobis

distance of each spike in the cluster mi = (xi − µ)T Σ−1 (xi − µ). We expect roughly 20% of

spikes to fall within the quintile threshold mT defined by CDFχ2
d
(mT ) = 0.2. If the fraction of

spikes below this threshold (
∑

i Θ(mT−mi)∑
i

, where Θ is the heaviside function) is below 12.5%,

we identify the component as needing to be split, and rerun on the KlustaKiwk algorithm on

the data assigned to the component. The result of this post processing is shown in figure 2.8.

2.4.3 Manual clustering

Despite the inherent subjectivity involved, much electrophysiology data is clustered man-

ually by a human operator. The process typically involves iterating over two dimensional

projections of various spike features (see section 2.3) and visually identifying isolated clus-

ters. Once such a cluster has been identified, the operator creates a boundary around the

cluster, and the data within the all boundaries are considered to be part of the cluster. As

this process is repeated the boundaries of individual clusters can be iteratively refined.

While there exist several software packages to perform such manual clustering, they

are either tied to specific vendor hardware (e.g. SpikeSort3D, Neuralynx, MT), platform

specific (e.g. Klusters [113]) or dependent on expensive commercial software environments

(e.g. MClust, A.D. Redish). For these reasons, together with the flexibility to incorporate

automated algorithms and improvements to the work flow available in these packages, I

have developed an alternative package, which I have unimaginatively dubbed PyClust. The

advantages of PyClust over its competitors include:

• No commercial dependencies, written entirely in Python using open source libraries.

• Cross platform, tested on Windows XP, Windows 7, Mac OS X, Ubuntu Linux 12.04.

• Support for both elliptical and polygon boundaries.
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Figure 2.9: A sample dataset being clustered using the PyClust software package.

• Automatic boundary estimation.

• Algorithmic cluster splitting based on Gaussian mixtures.

• Easily extendable to various input file formats.

• Allows manual inspection of algorithmic clustering results.

Most of the details of implementation are uninteresting1, but the automatic boundary

estimation tool warrants discussion. If the data xi for a cluster were drawn from a multi-

variate normal, then χ2
d = xTΣ−1x is drawn from the chi-square distribution with d degrees

of freedom, where d is the dimensionality of x. Suppose a cluster contains N spikes,with

Nr refractory violations. Each refractory violation involves two spikes, at least one of which

should not be assigned to the cluster. We thus define a threshold T such that:

CDFχ2
d
(T ) = 1− 1

N −Nr

= α (2.12)

1source code available at http://bitbucket.org/bwillers/pyclust
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For a sample of N − Nr data points drawn from the χ2
d distribution we would expect

none of the data to exceed T, so we discard data past this threshold. In effect this procedure

creates an ellipsoid boundary corresponding to the α = 1− 1
N−Nr

confidence interval of the d

dimensional normal distribution. If we apply this strategy to two dimensional projections of

the data we obtain elliptical boundaries, that can then be visually inspected by the operator.

Since each such boundary will constrain the data and change the number of refractory

violations, the outcome is dependent on the order in which we apply boundaries to each

projection. We therefore calculate the effect of the proposed boundaries on every projection,

and choose the one which yields the greatest improvement in the fraction of refractory spikes

N−Nr

N
.

A sample of the output of the algorithm on 6 dimensional principle component data is

shown in figure 2.10. The first and second boundaries that are chosen (third row, third and

first columns respectively) effectively remove almost all refractory spike violations in this

example.
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Figure 2.10: Boundaries produced by PyClust’s autotrim tool on first cluster visible in

figure 2.9.

2.4.4 Electrode drift

An important challenge in spike sorting is the problem of electrode drift. Since the electrodes

are not physically attached to the neurons they are recording from, it is possible, and in fact

quite common, for the position of either the electrode or the cells to move slightly over the

course of a recording session. The resulting systematic variation of the spike amplitude can

substantially complicate the clustering process. Figure 2.11 is an example of such electrode

drift. Notice how two distinct single units become indistinguishable as a result of the drift

in peak amplitude.

One approach to solving the drift problem is to use some form of template matching or

matched filters [100] to identify spikes in the filtered extracellular recording. By continually

updating the template with an average of the recently detected waveforms it is possible to

track the drifting waveform. Unfortunately this approach is complicated by the prevalence of

complex spike bursts (figure 2.7), which lead to a large change in spike waveforms on a short
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Figure 2.11: Spike peaks over an hour long session demonstrating the problem of electrode

drift. Clearly three units are present in the recording, but two of the units are ambiguous

as a result of drift.

timescale. The challenge is thus to design a template matching routine which is sensitive to

longer timescale changes, but can still successfully match large variations in waveforms on a

short timescale.

2.5 Unit classification

There are many cell types in the CA1 region, including excitatory pyramidal neurons and a

many types of inhibitory cells. In order to perform sensible analysis of single unit data, we

must therefore attempt to classify the cell type of each unit. While differentiating between

different interneuron types based only on electrophysiological recording is exceeding difficult,

there is fortunately a clear difference between pyramidal and interneuron data.

Typically, the fall time of the waveform for pyramidal units is significantly slower than

that of interneurons, and the firing rates much lower. We can thus classify cell types based

on a joint fall time and firing rate threshold, as shown in figure 2.12a.
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Figure 2.12: Classification of pyramidal and interneuron units based upon waveform and

firing properties.
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The output of this heuristic classification scheme can be confirmed in two ways. We can

confirm the existence of two classes of waveforms by normalizing each unit’s mean waveform

(such that rms power is unity) and applying principle component analysis to a collection of

single units in a dataset (figure 2.12b). Using the knowledge that pyramidal cells exhibit

complex spiking and exhibit spatially selective firing, comparison of the CSI and spatial

information content (see section 4.4.3) of the waveform classes confirms the identification of

inhibitory and excitatory units (figure 2.12c).

Having established the method used to resolve single unit activity from extracellular

recording, we now turn to the virtual reality system with which experiments were performed.
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CHAPTER 3

Virtual reality for rats

3.1 Introduction

In this chapter we will outline the motivation for virtual reality as an experimental protocol,

the design of the virtual reality system, and some sample behavioral data to demonstrate

the capabilities of the system.

3.1.1 Motivation

Rodent models have played a key role in our understanding of the neural mechanisms of

spatial behaviors and representations [17]. While more complicated models which are closer

to humans both anatomically and genetically are available, experimentation on primates is

controversial, difficult and extremely expensive. Rodents provide a middle ground between

the dual goals of a sufficiently complex animal model and practical experimental concerns,

including cost and available recording techniques.

The study of neural activity in rodent models during spatial behavior has yielded many

important findings, including the original discovery of the place cell [17] and phase precession

[25] in the hippocampus and grid cells [114] in the entorhinal cortex. However, there are

three important problems which limit our ability to gain deeper insight into the underlying

mechanisms of these effects.

The first problem is in identifying the role different sensory modalities and stimuli play

in the formation of neural spatial representations. While place cells are thought to be driven

primarily by distal visual stimuli [18, 68] and self-motion cues [115, 116], spatial navigation
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and hippocampal activity have also been shown to be influenced by other sensory stimuli

including smells [44, 72], sounds [117] and somatosenation [118]. It is exceedingly difficult

to design an experiment wherein sensory inputs in all modalities can be carefully accounted

for.

The second problem lies in the limitations of recording techniques. As discussed in

section 1.1, extracellular recording via single electrodes, tetrodes, or silicon probes, while

suitable for recording from freely behaving animals, are limited by their inability to record

membrane potentials of single cells, and their difficulty in reliably recording from the same

cell population over many days. While patch clamp and sharp electrode recording techniques

can record membrane potentials, they generally require a head fixed subject [3]. There

has been some progress in recent years in developing microdrives for intracellular recording

from freely behaving animals [119,120], but successfully employing these techniques remains

challenging.

Optical recording methods, such as calcium dye imaging using confocal or multi-photon

microscopy allows stable recording from a large population of cells [121, 122], but similarly

requires a head fixed subject. As with intracellular recordings there has been tremendous

research effort applied to problem of miniaturizing optical recording tools to allow for record-

ing from freely behaving animals [123–125], with some very recent success [126]. What is

needed, then, is a experimental design within which animals can express spatial behaviors

whilst being head restrained.

Finally, some potentially interesting experiments are either impractical (e.g. exploring

very large environments) or impossible (instantaneous ‘teleportation’ or alteration of spa-

tially informative cues in all modalities, environments without boundaries, etc.) to perform

in the real world.

For these and other reasons there has been an increasing interest in the use of virtual

reality experimental protocols. These techniques, in a simple form, have been in use with

insect models for some time [127, 128]. Studies have also shown that primates are capable

of navigating virtual environments presented to them on a screen [129]. Early attempts at
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creating a virtual reality apparatus for rodents involved multiple display monitors position

throughout a Y-shaped track, and had limited success [130]. More recently, a linear treadmill

was combined with a back projected half-dome screen [131] .

The biggest improvement in recent years [132] provided several key advances: a toroidal

projection screen with an angular amplification mirror enabled projection for 360 azimuthal

degrees; and a spherical treadmill enabled tracking of two dimensional motion information.

Based on these ideas, both intracellular [67] and optical [133] recording from the CA1 cell

layer of a mouse model on a linear track have been reported in recent years. While the

majority of focus in the literature in recent years is on virtual reality to enable head fixed

recording, the multi-modal stimulus control aspect has not received much attention.

In this chapter I will briefly describe the design of our virtual reality apparatus, which

improves upon existing systems in four ways: significantly improved visual projection field

of view; the addition of realistic auditory stimuli; monitoring of reward checking behavior;

and software support for more complex environments, including spherical and cylindrical

geometries.

3.1.2 Sensory capabilities of the rat

In order to design a virtual reality system for rats, it is necessary to first understand as much

as possible about the sensory capabilities of the animals. Rats are predominantly nocturnal

animals, and in the wild live in underground burrows. This immediately suggests that the

visual modality should be of lesser importance than in humans.

Indeed, the tactile sense of the vibrissae are assumed to be a very important sense to the

rat, based on the relative size of the sensory cortices [134]. While experimental setups to

provide individual whisker stimulation exist [135,136], doing so in a manner consistent with

an animal moving through a virtual environment is an ambitious task beyond the scope of

this work. If the system is thus unable to provide realistic whisker stimulation, it should

be designed so that the input derived from whisking is ideally uniform, or if not uniform at
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least uncorrelated with anything in the virtual space.

A similarly important sense is olfaction, which is equally difficult to manipulate. This

is because of the reality that while olfactometers provide a means to provide different odors

in a controlled manner, there is significant delay between the opening of a valve and the

presentation of the odor. This delay (often on the order of a second or more) is due to the

limited rate of air flow between the olfactometer and the subject. Any attempt to provide

odors consistent with an animals position in a virtual environment therefore requires the

ability to predict the animals position a second or more in the future, which is exceedingly

difficult for all but the simplest tasks. As with tactile input from the vibrissae then, the best

course of action is to ensure there are no persistent correlations between odors and particular

features of the virtual environment.

The vestibular system provides sensory information about acceleration and orientation

in most mammals. Since the virtual reality system is designed to keep the animal in one

place, it naturally suppresses vestibular input. If the manipulation of such input is desired,

it can in principle be achieved by rotating the device so that the gravitational force is applied

at an angle to the body, as is done is flight simulators. However, since one of the primary

questions we hope to address is whether vestibular inputs are necessary for place cell firing in

the hippocampus, our system does not include such manipulations. Such a rotation system,

while possible in theory, is also likely to be mechanically challenging to construct, as it must

be capable of very rapid rotations about multiple axes.

One of the modalities that can be manipulated with great precision in virtual reality is

of course the visual sense. While its usefulness to rats in the wild may be smaller than that

of the other senses, distal visual cues have been shown to exert great influence over place

cell firing [68]. The rat’s visual system is quite different from that of humans in at several

important areas.

First, the eye lacks a fovea and while it contains both rods and cones the cones represent

only about 1% of light sensitive cells [137]. Unlike humans the rat eye contains only short

and medium wavelength color receptors, with peak sensitivity at 359nm and 510nm. Very

33



little sensitivity remains past 650nm [138], which is why rats on a reversed light/dark cycle

are often housed in rooms with red lights. This has an important practical consequence

in that virtual environments should be designed so that sufficient contrast and variation is

achieved in the scene without the use of red colors.

Second, rat’s possess an extremely large field of view. While exact estimates differ, it is

accepted that the azimuthal field is at least 270 ◦ [139]. Only 76◦ of this view is binocular,

so rats use motion parallax for depth perception [140]. It is therefore necessary to project

visual stimuli all around the animal. Furthermore the depth of focus of the visual system is

around 7cm [141]. This means that effectively the entire visual field must be simultaneously

in focus.

Third, the regions of the retina with the greatest ganglion cell density at at the top of the

retina, corresponding to the part of the field of view directly in front of and below the rat.

This, together with the large field of view, suggests that it is important to provide visual

stimuli as close to the rat as possible (a key shortcoming of existing systems, which provide

stimuli only up to the edge of the spherical treadmill).

Finally, the visual acuity of the rat is only one cycle per degree [142]. By contrast

human visual acuity is roughly 30 cycles per degree. This fact substantially reduces the need

for visual complexity, as the system need only project one pixel per cycle. As a result, a

resolution as small as 640 by 480 pixels provides more visual clarity than the rat can discern,

(assuming the pixels are evenly spread across the field of view).

As nocturnal animals, the auditory sense is likely important to rats in the wild. Rats

have a much larger hearing range than humans, starting around 200 Hz at the low end and

going as high as 80 or 90 kHz at the high end [143] [144]. Care must thus be taken to ensure

the experimental setup is not contaminated by ultrasound sources.

Rats also vocalization at a wide range of frequencies. Long vocalizations around 20 kHz

are emitted during times of stress, including detecting predators [145], pain [146, 147], an-

ticipation of pain [148] and others [149, 150]. Distress calls by infant rats fall in the 30 to
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50 kHz range [151, 152]. Positive contexts, such as play [153] and reward anticipation [154]

have also been shown to elicit high frequency vocalizations. This opens up the interesting

possibility of providing auditory stimuli at lower frequencies and recording ultrasonic vocal-

izations to potentially assess stress or reward anticipation, although this is not something we

pursue here. Providing auditory stimuli which mimics the natural vocalizations is another

interesting possibility, but for simplicity is not pursued here.

Perhaps the most important characteristic of the rats auditory system for our purposes

is the ability to localize audio sources. Auditory localization is done based on the difference

in the signals detected by the two ears, together with the direction specific reflection of

sound waves caused by the outer ear [155]. One would thus expect, based on the smaller

distance between their ears, that rats would perform poorly compared to humans in sound

localization tasks. This expectation has been confirmed experimentally: while humans can

pinpoint sounds within 3 ◦ [156], localization acuity of rats is in the 9-12 ◦ range [157, 158].

Given their poor localization ability, care must therefore be taken to make positional auditory

stimuli as realistic as possible.

3.1.3 System requirements

Given the goals of the system and the capabilities of the rat’s sensory mechanisms we can

now play out the requirements for the virtual reality system. The system should:

• Display visual stimuli covering the entire field of view of the rat, including on the floor

directly in front of and round the animal;

• The resolution of the projected visual stimuli must be at least one pixel per degree;

• Provide realistic positional auditory stimuli;

• Track and record the motion of the rat in two dimensions;

• Update the visual and auditory stimuli in a realistic manner according to the animal’s

motion;
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• Be quiet enough not to interfere with auditory stimuli, preferably below 50dB;

• Detect reward checking behavior;

• Record the animal’s position in the virtual environment in a manner that can be

synchronized with electrophysiological recording;

• Be free of electrical noise in the range of interest to electrophysiology (below 20kHz),

in particular have minimal 60Hz AC noise;

• Provide liquid rewards to the animal;

• Allow grooming and rearing behavior for animals that are not head fixed;

• Be easily extensible to allow head fixation (i.e. should not require a change in the

animal’s orientation to operate);

• Have a minimally complex mechanism for defining new virtual environments.

3.2 System design

3.2.1 Overview

The system is inspired by previous designs [132] but differs in several important areas. The

rat is held in a harness attached to a hinge joint on top of a spherical ball which acts as a

treadmill. The rat is thus free to rear and groom, but cannot rotate on top of the ball. Tasks

requiring the rat to rotate in the virtual environment are accomplished by allowing the rat

to rotate the ball underneath it.

The projection screen is cylindrical in shape, and closed at both the top and bottom

(with a sufficient gap in the floor to allow the ball to protrude as necessary). A curved

mirror is placed at the top of the screen, with a pocket projector suspended beneath it, as

shown in figure 3.1. The visual stimuli thus cover a very large field of view.
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Figure 3.1: Schematic of the virtual reality system. The two angles indicate the vertical field

of view above and below the horizontal covered by the projection system.

A small tube, which is used to dispense liquid reward, extends from the base of the

screen in front of the rat. Seven speakers surround the frame and are used to produce

realistic positional audio. The entire system is controlled by custom software which interfaces

with the sensors and recording equipment via a micro controller (Atmega 8515, Amtel) and

optionally synchronizes with the electrophysiology recording equipment by sending TTL

frame numbers through a digital input output board (NI USB-6501, National Instruments).

3.2.2 Motion tracking

The rat is held atop a 24 inch diameter hollow Styrofoam sphere. To discourage chewing

behavior, the sphere was coated with a thin layer of Foam Coat (Special Effects Supply

Corporation, North Salt Lake, Utah). Unlike previous designs, the sphere is not purely

suspended on a powerful jet of air, as such a system is extremely noisy. Instead, the sphere

rests on an air cushion resembling an inverted hovercraft, which still allows for rotation about
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all three principle axes with minimal friction.

The rotation of the Styrofoam sphere was detected by two laser sensors (ADNS-9500,

Avago) mounted orthogonal to one another along the equator of the sphere. A micro con-

troller queried each sensor every millisecond, and stored cumulative rotation data. The

micro controller in turn was connected to the computer via a serial to USB interface, and

the computer polled the micro controller for rotation data on every display frame. By di-

rectly controlling the laser sensors (rather than simply using an optical mouse as is done in

other setups) we achieved a one-to-one mapping of treadmill rotation distances to virtual

environment distances. The accuracy of the rotation sensors was 1± 0.01 reported rotations

per true rotation of the sphere.

3.2.3 Visual stimuli

There are several components that work together to produce visual stimuli that accurately

depict the virtual environment. As discussed above, the stimuli are projected onto a cylin-

drical screen which covers a large field of view. This is made possible by projecting on a

convex shaped mirror, which reflects onto the entire projection screen. The screen was 75cm

tall with a 68cm diameter, and manufactured by Hollywood Lamp & Shade, Hollywood, CA.

The geometry of the reflecting mirror is calculated numerically using simple optical prin-

ciples (angle of incidence is equal to angle of reflection) to produce a surface which distributes

the pixels from the micro-projector evenly across the screen. Once the geometry of the mir-

ror has been calculated, it is machined from a solid aluminum block and polished until

sufficiently smooth.

The software must then compute the inverse distortions of the visual stimuli needed to

counteract the effect of the curved mirror. This is achieved by maintaining by imaging the

virtual scene ‘reflected’ in a virtual copy of the mirror. This reflection mapping is doing

using a cube map [159], a standard technique in computer graphics.

Briefly, a 3D mesh of the mirror surface is created using the vertex coordinates calculated
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Figure 3.2: A sample cube map of the virtual linear track environment.

previously. For each frame to be drawn by the rendering software, six orthogonal views of

the virtual environment are calculated from the current position of the rat within the virtual

environment (see figure 3.2). Each of these views has a 90 ◦ field of view, and together

represent an approximation of the environment as a cube (optically at infinity).

Every vertex of the mirror mesh is assigned a cubic texture coordinate, which is calculated

numerically by the mirror surface generation algorithm. For each vertex of the mesh a ray

is defined from the position of the rat to the point on the cylindrical screen where pixels

hitting that vertex would be projected. This ray is then extended and the coordinate of its

intersection with a bounding cube provides the cubic texture coordinate for that vertex (see

figure 3.3). Note that while the cube map representing the environment must be recalculated

on every frame, the cubic texture coordinates of the mirror need only be computed once.

Finally the virtual mirror mesh is imaged, and this distorted image is projected onto

the real mirror at a resolution of 800×600 pixels using a micro-projector (MPro160, 3M)

mounted below the mirror in the center of the screen. Using a micro-projector has two

important advantages. First, the projector itself is very small so it does not block projection

of visual stimuli up to 1cm of the rat. Second, it can be operating on (DC) battery power,
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Figure 3.3: Two sample rays demonstrate how cube map texture coordinates are computed

for each vertex on the mirror. The dark rectangle represents the physical screen geometry,

while the lighter square is the virtual cube map.

removing the need for any 60Hz power lines, which can cause substantial electrical interface

during electrophysiology (the video cables must necessarily carry electrical signals, but these

are at much higher frequency ranges than are of interest). The mirror shape, together with

a sample distorted image and the resulting projection are shown in figure 3.4a and 3.4b.

3.2.4 Auditory stimuli

Auditory stimuli were provided using seven speakers (SS-B1000, Sony) placed around the

screen in a hexagonal distribution, with the seventh speaker position as a center speaker. The

use of a thin fabric projection screen avoided acoustic distortions due to the screen geometry.

The entire system was housed within a 3x3m acoustically shielded room to minimize external

noise concerns.

Positional audio was generated by the software using the OpenAL sound programming
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(a) The distorted image produced by the cube

map in figure 3.2, and the projection mirror.

(b) Projected the distorted image onto the mir-

ror produces a scene with realistic perspective.

Figure 3.4: The distorted visual projection.
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library, and the Rapture3D OpenAL implementation1. The Rapture3D system allows the

use of higher order ambisonic sound fields which much more accurately reproduce positional

audio than simple surround sound systems. Audio was transmitted via HDMI from the

computer to an AV Receiver (STRDH520, Sony) and from there to the speakers.

3.2.5 Reward checking and delivery

Liquid reward (typically a 10% sucrose solution) is dispensed through a stainless steel tube

mounted between the treadmill and the floor of the projection screen (see figure 3.1). To

prevent unconsumed sugar solution from contaminating the treadmill a larger stainless steel

drainage tube surrounds the reward tube. The flow of liquid through the tube is controlled

in the software by opening or closing a solenoid valve (003-0141-900, Parker) attached to a

reservoir. Reward is typically dispensed in short pulses of 400ms, which allows the forma-

tion of droplets at the end of the reward tube, and can be activated by any of the trigger

mechanisms described in section 3.2.6

Reward checking behavior were detected using one of several techniques. When electro-

physiological recordings are not required, a capacitive touch circuit (AT42QT1010, Amtel),

connected to the reward tube, was polled by the same micro controller responsible for mon-

itoring the motion sensors. The operating frequency of the capacitive touch circuit is in the

range of interest to electrophysiology, which makes it unsuitable for experiments where these

recordings are desired.

An alternative detection mechanism is based on the junction potential created between

the rat and the reward type when licking [160]. By recording the potential on the reward

tube through the electrophysiology data acquisition system (referenced to the animal ground

signal) a signal is obtained from which licking behavior can be extracted if necessary (see

figure 3.5). This approach is typically less reliable than the capacitive touch circuit, and

only works if a ground signal is available (i.e. for animals where a microdrive and ground

screw have been implanted), but is free of the high frequency electrical noise of the capacitive

1Rapture3D, version 2.5, Blue Ripple Sound Ltd, http://www.blueripplesound.com
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Figure 3.5: Potential difference between the skull ground electrode and the reward tube

during lick behavior demonstrates the junction potential based reward checking system.

Both the valve opening and closing and the individual licks of the reward tube are clearly

visible.
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touch approach.

3.2.6 Control software

The control software for the virtual reality system was written in C++ and tested and run on

a Windows 7 platform, but requires only minor adjustments to run on a Linux platform. The

graphical subsystem is built using the Ogre3D library2 and the positional audio subsystem

using the OpenAL library3, both of which are cross platform. The NI USB-6501 is controlled

using the NI-DAQmx API4. The only platform specific dependency is the micro controller

interface, which is essentially just serial port I/O, and should be easily adaptable to other

platforms.

To facilitate easy creation of virtual environments the software includes a parser for an

XML based track file format. The track file specifies the geometry type (linear, planar,

spherical or cylindrical), together with a collection of entities. Where appropriate the posi-

tion of an entity (such as a visual stimulus or a positional audio source) is defined using two

generalized coordinates: (x, y) for planar tracks, (θ, φ) for spherical tracks, and so on. En-

vironmental entities available include simple geometric primitives, complex Blender meshes,

positional audio sources, and trigger regions.

The task logic is created using a trigger system. Triggers can be defined based on either

a timer or entry into or exit from trigger zones. Once activated these triggers are then

used to activate dynamic elements in the track. Some of the dynamic elements available

include reward dispensers; audio playback; moving scene elements; hiding or showing visual

elements; etc. By chaining together these trigger elements fairly complex behavior can be

elicited, while still being easy to edit and maintain.

Once the track file is selected and initial setup and configuration are done, the system

iterates over a main event loop which continues until interrupted by the operator. To avoid

2Open Graphics Rendering Engine, version 1.6, http://www.ogre3d.org
3Open Audio Library, version 2.0.7.0, Creative Technology Ltd., http://www.openal.org
4NI-DAQmx, National Instruments Corporation, version 9.7
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flicker artifacts due to screen tearing, the main loop is synchronized to the projector redraw

rate. Each iteration of the main loop consists of several steps:

1. The micro controller is polled for the current state of the lick detector and the cumu-

lative treadmill rotation since the last frame.

2. Position and orientation in the virtual world is updated based on the treadmill rotation

after enforcing boundary checks for the environment.

3. Position and timer based triggers are activated as appropriate.

4. The frame counter is incremented, and its current value transmitted to the digital

input TTL port on the electrophysiology data acquisition system.

5. The current frame number, position, orientation, lick detector state and treadmill

rotation deltas are written to disk.

6. Trigger activation messages, if any, are written to disk.

7. The visual scene is updated and displayed.

In the following section we will examine some of the virtual environments created using

this track editing system, together with brief summaries of animal performance in each

environment.

3.3 Virtual environments

We now examine some of the virtual environments and tasks created using the track editing

system described in section 3.2.6. We identify three categories of tasks: those based on

navigation directly to a particular beacon stimulus; those based on navigation to an unmarked

location based on distal stimuli; and those involving particular targeted manipulation of

stimuli.
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3.3.1 Audio-visual beacon orientation

A training task was developed to acclimatize the rats to turning on the treadmill, and to task

their orientation acuity under different cue conditions. The rats were required to rotate the

treadmill so that an audiovisual, visual or audio beacon stimulus was within a 60◦ arc in front

of them. Non azimuthal rotation of the treadmill was ignored, effectively fixing the ‘virtual

rat’ in place but allowing rotations. No stimuli other than the beacon were provided. The

visual beacon consisted of a striped black and white vertical pillar. The auditory beacon was

a complex chirp consisting of a 5-10 kHz sound pulse that repeated fifteen times a second.

The audiovisual beacon was a combination of both of these.

The rat started every trial at a random orientation relative to the beacon, and once the

rat successfully rotated to bring the beacon directly in front of him five reward pulses (of

400ms, as described in section 3.2.5). If the rat rotated the beacon away from the correct

orientation while the reward was being dispensed the reward ceased, creating an incentive

to maintain the correct heading and avoid spuriously spinning the treadmill. Once the

reward was dispensed the stimuli were blacked out (i.e. auditory stimuli muted, and visual

stimuli removed) for two seconds. During this blackout period rotations of the treadmill

were ignored, and the rats orientation rotated randomly, ending the trial. The three trial

types (audio, visual, audiovisual) were randomly interspersed during a session.

On the first day of exposure to the task a reward tone (see section 3.2.5) was coupled

with the valve opening to provide clear feedback on when the goal was achieved. On sessions

thereafter the reward tone was removed to avoid a strategy of simply spinning the treadmill

until a reward tone was played.

3.3.2 Random foraging task

A set of training tasks to teach rats to manipulated the treadmill in a two dimensional

environment were developed which closely mirror random foraging protocols used in place

cell studies in the real world. The rat was placed on top a virtual table shaped like an
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octagon, either 1.5m or 1m in radius depending on the variation. Visual stimuli were placed

on the table, as well as the floor (150cm below the table) and the room walls to mimic the

perspective variations present in the real world.

The rat obtained reward by moving toward any of several (either five, three, or one

depending on the difficulty) visual beacons which consisted of a vertical pillar hanging above

the table, together with a white circle on the table surface. Reward was dispensed up to five

400ms pulses, or until the rat left the reward area, whichever happened first. Once reward

dispensation stopped, the pillar, circle and reward region were moved to a random location

on the table. A shaping procedure was used where a naive rat would start on the large

table with five reward cites, followed by the large table with three reward cites, then the

small table with two reward cites, and finally the small table with a single reward cite. This

sequence of training tasks was the first exposure rats were given to virtual environments

once they had been habituated to the harness and reward tube, and performance typically

reached asymptotic levels within six sessions.

3.3.3 Linear track

The linear track is the protocol employed by a plethora of place cell studies, and was similarly

important in the virtual reality system. Multiple variations were developed, but fundamen-

tally the aim was the same in each case. Motion of the rat in the virtual environment was

constrained to either to forward/backward or rotational degrees of freedom. The animal

would start at one end of a narrow linear track, and would be reward for moving to the

opposite end of the track.

To mirror the perspective variation observed in the real world, the track was typically

placed 150cm above the floor of the virtual room, and included salient visual stimuli on each

of the four walls, the floor of the room, and the linear track itself. Upon reaching the end

of the track, the rat could either manually rotate the environment for the return journey, or

could be instantaneously rotated depending on the variation. This linear track formed the
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(a) Trajectory from session 1. (b) Trajectory from session 9.
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(d) Reward latency.

Figure 3.6: Rat performance on the random foraging task. Asymptotic performance was

achieved within six sessions on both the edge clipping and reward latency measures. Envi-

ronment coverage also improved markedly from the first session.
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Figure 3.7: Schematic of the virtual linear track task. Upon reaching the end of the track,

the rats orientation in the virtual environment is automatically rotated by 180 ◦.

basis for the electrophysiology experiments described in later chapters, and is depicted in

figure 3.7.

A variant of this track was used to test the rats ability to navigate to a particular position

along the track. In these variations the reward was dispensed not at the end of the track, but

far enough from the track end that the animal could overshoot the reward if it were simply

running forward without heeding the stimuli presented. As with the orientation experiment

rats proved to be more accurate with visual stimuli indicating the reward location than with

purely auditory stimuli.

3.3.4 Two dimensional beacon navigation

As a more complex variant of the linear track experiments described above, this task was

designed to measure the spatial accuracy with which rats could move toward a particular

beacon stimulus. As in the orientation task, the beacon could be either a visual pillar, and

auditory chirp, or both. The geometry of the environment was the same as in the foraging

task (an octagonal table). For each trial, rats started at the center of the table at a random

orientation. Reward was dispensed once they navigated to within 25cm of the beacon, after
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(a) Top down schematic of the

audiovisual beacon task.

(b) Top down schematic of the

visual beacon task.

(c) Top down schematic of the

audio beacon task.

(d) Trajectories from a rat in

the audiovisual beacon task.

(e) Trajectories from a rat in

the visual beacon task.

(f) Trajectories from a rat in the

audio beacon task.

Figure 3.8: Two dimensional audiovisual beacon navigation task. The rat starts in the center

of the table, at an orientation chosen randmly from a set of four possible orientations. The

location of the reward site is marked by either a visual beacon, and auditory beacon, or

both.
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(a) Top down schematic of the

virtual environment.

(b) Trajectories from a rat’s

first session on the task.

(c) Trajectories from the sixth

session of the same rat.

Figure 3.9: Spatial navigation task based on the Morris water maze. Rats typically reached

asymptotic performance in five or six sessions.

which a blackout was applied and the rat instantaneously moved back to the center of the

table, again at a random orientation. As in other tasks rats demonstrated greater accuracy

in navigating based on visual stimuli than audio stimuli, although they were still able to

perform the task when auditory stimuli were presented (see figure 3.8).

3.3.5 Spatial navigation task

Having examined rats ability to navigate toward particular beacons, we developed a task to

test their ability to navigate toward an unmarked location based on distal stimuli, modeled

after the Morris water maze [161].

The environment consisted of a circular table (with a one meter radius) centered in a

room with distinct visual cues on each wall, and distinct positional audio cues at the center

of each wall (see figure 3.9a). The table was 125cm above the floor, and the room was square

with 4.5 meter sides.

Each trial began with the rat located at one of four random start locations along the
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edge of the table, facing away from the table center. The northeast quadrant of the table

contained an unmarked reward zone (30cm radius during initial training, 20cm radius in

final test version). Upon entry to the reward zone reward was dispensed up to five pulses as

discussed previously, with the modification that the previously unmarked reward zone was

marked with a white circle while reward was dispensed to provide immediate feedback on

task completion. After reward dispensation finished, the environment was blacked out for

two seconds and the rat instantaneously moved to one of the four starting locations. The

rats successfully learned the task within a comparable time to that of the original water maze

(five sessions). Once asymptotic performance was achieved, a probe trial was conducted in

which the reward zone was removed, and the rat freely explored the environment for four

minutes. During this probe trial rats spent significantly more time in the quadrant previously

associated with reward.

Having demonstrated that rats can successfully perform spatial navigation tasks in the

presence of audiovisual stimuli, we designed a variation of the task wherein all visual or

auditory cues were removed in blocks of 8 trials (i.e. 8 trials with all cues, 8 trials with only

audio cues, 8 trials with only visual cues). These three blocks repeated twice in random order.

Interestingly, the rats were unable to perform the spatial navigation task in the presence of

only auditory cues, but their reward checking behavior exhibited spatial information even in

the audio only cue condition.

To account for the possibility that the rats may simply have learned to ignore the audio

cue in the joint cue condition, and test if spatial learning is possible based only on distal

auditory cues we designed two more versions of the navigation task. In each case two stimuli

were used (either purely auditory or purely visual) in a layout (see figures 3.10a and 3.10c)

based on a previous study which provided evidence of spatial navigation based purely on

distal auditory cues [162]. This task failed to show evidence of spatial learning in the auditory

cue condition, with rats adopting a strategy of searching at a fixed distance from the edge

of the table (figure 3.10d).
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(a) Top down schematic of the spatial navigation

task with two visual stimuli.

(b) Trajectories from a single session in the visual

task.

(c) Top down schematic of the spatial navigation

task with two auditory stimuli.

(d) Trajectories from a single session in the audio

task.

Figure 3.10: Spatial navigation task based on the Morris water maze with purely auditory

or visual cues. Rats were unable to navigate based on auditory cues, instead adopting a

circling search strategy.
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Figure 3.11: Sample trajectory of a rat in the spherical foraging task, depicted using the

Mollweide map projection.

3.3.6 Foraging in spherical geometry

To design an environment without boundaries we implemented a spherical geometry track.

The virtual rat is constrained to move on the surface of a sphere of radius 31cm (for an

effective surface area of 1.2m2, comparable to the one meter square open field environments

often used in place and grid cell studies). As with the planar foraging task the rat is rewarded

for reaching a reward site indicated by a vertical pillar. When reward dispensation is finished,

the reward site and accompanying visual cue is moved to one of 20 predefined locations evenly

spread across the surface of the sphere. To provide visual landmarks 16 visual stimuli, mostly

simple geometric shapes, are suspended in air above the sphere. Trajectories from a rat

performing the spherical foraging task are depicted in figure 3.11.

3.3.7 Strobed linear navigation

Two variations of the linear track were designed where all stimuli are temporarily removed

from the environment. The first environment is a linear track navigation task based on
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distal visual cues in which stimuli are removed on six out of every seven frames (seven

frames roughly correspond to the period of the hippocampal theta rhythm). The second

environment is a regular linear track where all visual cues are removed whenever the rat

enters the two regions of the track (corresponding to roughly 40% of the track length).

Results from single unit data are presented in a later chapter.

55



CHAPTER 4

Place cells on the virtual linear track

4.1 Introduction

The linear track is the canonical experimental protocol for much of the literature on hip-

pocampal physiology. Many important findings in the study of place cells were based on

linear track experiments (or variations thereof), including phase precession [25], place field

plasticity and asymmetric expansion [29], sequence replay [34], and others. It is therefore a

natural choice for initial studies in virtual environments.

The virtual linear track provides the opportunity to test the contribution of non-visual

stimuli, including vestibular and olfactory cues, to many results from the real linear track.

Moreover, knowledge of the activity of place cells on a virtual linear tracks would provide

a baseline against which to gauge results from more complicated tasks, which may involve

manipulation of the virtual scene in ways that lack any real world analogue, and would thus

be difficult to interpret independently. Place cells have been measured in VR in head fixed

mice [67,133], and are thought to be similar in VR and RW but this has not been tested

For these reasons, we performed hippocampal recordings from six rats in a virtual linear

track. Four of the rats were also run on a real world linear track with comparable visual

stimuli for comparison.The details and results of these experiments are presented in the

remainder of this chapter.
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(a) A top down schematic of the environment. (b) A rat performing the task.

Figure 4.1: The environment used for electrophysiological recording in a virtual linear track.

4.2 Methods

4.2.1 Real and virtual environments

As described in section 3.3.3, the linear track environment constrains the animal’s motion

in the virtual space along one dimension, and rewards are dispensed at alternating ends of

the track.

The virtual environment consisted of a 220×10cm linear track suspended 1m above the

floor and centered in a 3×3×3m room. Optic flow was provided along the length of the

track by alternating 5cm wide green and blue strips on the track surface. A white grid

(30cm spacing) on the black floor provided parallax-based depth perception. Distinct distal

visual cues covered all 4 walls and provided the only spatially informative stimuli in the VR

(figures 4.1a and 4.1b). To maximize the number of trials run in a session, the visual scene

was instantaneously rotated by 180◦ when the rats reached the end of the track.

In RW, rats ran back and forth on a 220×6cm linear track that was placed 80cm above

the floor. The track was surrounded by four 3×3m curtains that extended from floor to

57



0 110 220

Distance from track start (cm)

0

20

40

60

80

100

120

140

S
p

ee
d

(c
m

/
s)

RW

VR

(a) Visual speed along the track.

0 110 220

Distance from track start (cm)

−100

−50

0

50

100

H
ea

d
A

cc
el

er
a
ti

o
n

(c
m
/
s2

)

(b) Head acceleration along the track.

Figure 4.2: Speed profiles along the track were comparable in RW and VR, although slightly

slower in VR. In contrast, head acceleration (and thus vestibular cues) were effectively elim-

inated in VR.

ceiling. The same stimuli on the walls in the virtual room were printed on the curtains, to

ensure that distal visual cues in RW were very similar to those in RW. The same reward

protocol (sugar water coupled with a tone) was employed in both VR and RW.

All experiments were conducted in identical acoustically- and EMF-shielded rooms. In

both RW and VR four LEDs mounted on top of the drive were used to track the rats’ head

position at a sampling rate of 70Hz. Rats reliably learned to come to a stop at the end of

the VR track, while their speed was somewhat lower in VR (figure 4.2a). Head acceleration

was effectively eliminated in VR (figure 4.2b).

4.2.2 Subjects and training

A trial was defined as one complete traversal of the track, from one of the other, and back to

the original position. In the virtual linear track rats were run for fifteen trials, after which

some manipulations of the environment were performed. Data after the fifteenth trial were

thus not included in the present analysis. In the real world, rats ran many trials, but for
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consistency only the first fifteen trials were included in the analysis.

Six adult male Long-Evans rats (approximately 3.5 months old at the start of training)

were individually housed on a 12 hour light/dark cycle. Animals were food restricted (15-20

grams of food per day) to maintain body weight. Animals were allowed to access a restricted

amount of water (25-35 ml of water per day) after the behavioral session to maintain mo-

tivation. All experimental procedures were approved by the UCLA Chancellor’s Animal

Research Committee and were conducted in accordance with NIH guidelines.

After habituation to the harness and virtual reality system, animals were trained to run

back and forth in a virtual linear track with the same dimensions as those described above,

but with different visual stimuli. This was done to control for the amount of experience on

the final version of the task. Typical training time for a naive rat was around four weeks in

VR. Due to the relatively short training period needed in the real world, rats were trained

in the same RW environment that was used for the final experiment.

In addition to the standard experiment outlined above, we performed two additional

controls. The first was designed to assess whether the visual pillar which represented the

reward location, which was the same in both travel directions, affected the effects observed.

Two rats were run on a variations of the task with the pillar cue removed at either one, or

both ends of the track. The second control tested the role of the passive scene reversal at

the ends of the track, and involved two rats performing a variation of the task where active

turning of the spherical treadmill was required to rotate the virtual environment.

Before and after each task recording session in VR and RW an hour-long baseline session

was recorded to ensure stability of units. During baseline sessions, rats were allowed to rest

in a box outside the task apparatus.

By the time the first place cell was detected (3 to 5 weeks after surgery, see section 4.2.3

below), rats were fully habituated to run the VR and RW tasks with their implant. From

this point on, rats ran the VR task in the final environment as described above. At the time

of recording, the rats had experienced both the RW and VR environments for at least one
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week.

4.2.3 Surgery and electrophysiology

Rats showing sufficient performance in the VR task were implanted with 25-30g drives con-

taining up to 22 independently adjustable tetrodes (13m nichrome wires) positioned over

both dorsal CA1 areas (-4.0mm A.P., 2.4mm M.L. relative to bregma). Surgery was per-

formed under isoflurane anesthesia and heart rate, breathing rate, and body temperature

were continuously monitored. Analgesia was achieved by using Lidocaine (0.5mg/kg, sc) and

Buprenorphine (0.03mg/kg, ip). Two 2mm-diameter craniotomies were drilled using custom

software and a CNC device with a precision of 25µm in all 3 dimensions. Dura mater was

removed and the drive was lowered until the cannulae were 100 µm above the surface of the

neocortex. The implant was anchored to the skull with 7-9 skull screws and dental cement.

The occipital skull screw was used as ground for recording. Rats were administered 40mg

sulfamethoxazole and 8mg trimethoprim in drinking water and 10mg/kg carprofen (Rimadyl

bacon-flavored pellets) one day prior to surgery and for at least 10 days during recovery.

Tetrodes were lowered gradually after surgery into the hippocampus and allowed to sta-

bilize above the CA1 hippocampal subregion. Positioning of the electrodes in CA1 was

confirmed through the presence of sharpwave ripples during recordings, and through histol-

ogy after experiments were completed (figure 4.3).

Signals from each tetrode were acquired by one of four 27-channel headstages, digitized

at either 32kHz or 40kHz, bandpass-filtered between 0.1Hz and 9kHz, and recorded contin-

uously. Spikes were extracted off-line and sorting was performed using a combination of the

algorithm discussed in 2.4.2 and manual sorting 2.4.3.

In total, we recorded 106, 62, 55, 136, and 73 track active cells in the five rats in VR,

and 125, 72, 22 and 21 track active cells in the four rats in RW.
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Figure 4.3: Histology micrograph shows a tetrode track ending in CA1. Arrow indicates the

tetrode tip. Scale bar: 1mm.

4.3 Quantifying selective activity

Meaningful quantification of place cell firing properties require the introduction and precise

definition of two constructs, the ratemap and place field.

Since the activity of place cells on a linear track can be different in the two opposing

running directions, the animal’s position was linearized so that the linearized position x

starts from zero, and increases to 2L (for a track of length L) at the end of the trial. Firing

activity during running periods and stationary periods were considered separately.

4.3.1 Ratemaps

The spatial firing ratemap λ(x) provides an estimate of the firing rate of the cell at the

linearized position x. A simple way to estimate the ratemap λ(x) of a single unit is to bin

both the animal’s position data (yielding an occupancy histogram) and the position at the

time of each spike (a spike count histogram), and then simply dividing the latter by the

former.
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If some smoothing of the ratemap is desirable (which is usually the case), these histograms

can be smoothed by convolution with a Gaussian kernel. For reasonable values of the bin

size δx and the smoothing kernel width σx metrics computed from λ(x) are typically fairly

insensitive to the exact value of these parameters, but the potential dependence on the

parameterization should be kept in mind.

A more rigorous approach is afforded by the point process modeling framework [163],

which provides a means to compute the likelihood of a ratemap model. Briefly, time is

discretized into narrow bins of width δ (typically 1ms) with centers ti, i = 1 · · ·T . The spike

train of a cell can then be represented as a binary vector Yi ∈ 0, 1, with unit value in each

bin where a spike occurred. Since a spike waveform recording is typically at least 1ms wide,

there cannot be more than one spike within a 1ms time bin. The ratemap can be modeled

in an appropriate manner, typically an expansion of basis functions such as polynomials or

splines. Let the parameters of the model be a1 . . . aM , and use the notation λ̂a(x) for the

ratemap model.

By treating each time bin as an independent Bernoulli trial with a probability of a spike

occurring Pi(a) = λ̂a(x(ti))δ, we can calculate the likelihood of the observed spike train as

a function of the model parameters:

L(a1, · · · , aM) =
T∏
i=1

[Pi(a)]Yi [1− Pi(a)]1−Yi (4.1)

and hence the log likelihood:

l(a1, · · · , aM) =
T∑
i=1

Yi ln [Pi(a)] + (1− Yi) ln [1− Pi(a)] (4.2)

Now that we have a means to compute the likelihood we can fit the model using the

standard techniques (gradient descent, Markov chain Monte Carlo, etc.). If the model λ̂a(x)

is convex in its parameters a1 . . . aM simple gradient descent is guaranteed to converge to the

global optimum, and also has the advantage of being very fast to compute. Two important

model classes for which this property holds are Poisson regression
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ln λ̂a(x) =
M∑
i=1

aifi(x) (4.3)

and logistic regression:

logit(P (x)) = ln
λ̂a(x)δ

1− λ̂a(x)δ
=

M∑
i=1

aifi(x). (4.4)

Choosing a larger number of basis functions for the expansion becomes analogous to using

narrower smoothing kernels in the binning approach, but has the advantage of providing a

natural way to use the techniques in the model estimation literature (AIC [112], BIC [164],

etc.) to choose the appropriate model order in a systematic manner. Finally, goodness of fit

testing can be performed through the time rescaling theorem [165,166]. Having computed the

firing ratemap of the cell based on its spike train, we can now quantify its spatial information

content.

4.3.2 Place fields

A place field is a region of space within which a spatially selective cell exhibits active firing.

Since some cells can exhibit multiple place fields it is useful to analyze them separately.

We define a place field as a region where the ratemap exceeded 5Hz for at least 5cm. The

boundaries of a place field are defined as the points where the firing rate drops below 5% of

the peak value within the place field for at least 5cm.

To ensure place fields thus defined exhibit activity over multiple trials we require that

a place field be active over many trials. However, for fields with low firing rate it may

be entirely normal to see a trial without spiking activity. To determine whether a field is

abnormally quiet on a given trial we therefore use a probabilistic approach. For each trial

t compute the ratemap within the place field boundaries over all trials except the current

one λ{T−t}(x). The number of spikes on trial t is therefore expected to be drawn from the

Poisson distribution with expected value
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E[Nt] =

∫
λ{T−t}(x)Ot(x)dx. (4.5)

Where Ot(x) is the occupancy on trial t. If the observed number of spikes is below the

α = 0.05 percentile of the Poisson distribution the field is considered to be inactive on that

trial.

By treating the firing ratemap within a place field as a probability density function, we

can compute moments. The first few of these have very natural interpretations: the center

of mass of the place field, the half-width, and skewness:

λ̃(x) =
λ(x)∫
λ(x)dx

(4.6)

xcom =

∫
xλ̃(x)dx (4.7)

σ2 =

(
width

2

)2

=

∫
(x− xcom)2λ̃(x)dx (4.8)

skew =

∫ (
x− xcom

σ

)3

λ̃(x)dx (4.9)

4.4 Properties of the rate code

4.4.1 Selective hippocampal activation in VR

The first fundamental question about hippocampal activity in VR is whether the overall level

of cell activity is comparable to that in RW. To address this we compared the number of cells

that are track active (defined as having rate above 1 Hz during running periods on the track)

in VR and RW sessions to the number of cells isolated during the preceding baseline session.

During baseline sessions rats were allowed to rest in a sleep box, and typically exhibited a

wide variety of behaviors including grooming, sleeping and exploring. Baseline sessions thus

provide an opportunity for a maximal subset of cells to be active, and comparing task to

baseline cell counts provide an estimate of the fraction of hippocampal cells active during
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for active cells.

Figure 4.4: While the fraction of pyramidal cells active in the VR (20.4 ± 0.9 %) was half

that of RW (45.5± 2.1 %), the firing rates of active cells differed only slightly on the track

(p = 0.035, rank-sum test) between VR (2.71 ± 0.08 Hz) and RW (3.06 ± 0.12 Hz). Firing

rates of active cells at the goal location were also similar between VR (3.16± 0.18 Hz) and

RW (3.06± 0.12 Hz). RW data are represented in blue, and VR data in red. Histograms are

overlaid with a kernel density estimate using a Gaussian kernel and Silverman’s rule [167]

for bandwidth estimation. A similar color and plotting convention is used throughout the

remainder of the text.

the task sessions.

We recorded a total of 2119 pyramidal cells in baseline sessions preceding the VR task,

and 528 pyramidal cells in baseline sessions preceding the RW task (as mentioned above, the

VR task was run with greater frequency). Interestingly, while 45.5% of the RW baseline cells

were track active, only 20.4% of the baseline cells were active in VR (figure 4.4a). Despite

this two fold reduction in the number of active cells, the track firing rates of active cells in

the VR (2.71 ± 0.08 Hz) were only slightly smaller than those in RW (3.06 ± 0.12 Hz), an

effect that may explained by the reduced running speed in VR [35]. Firing rates at the goal

location were also comparable (figure 4.4c), but once again the fraction of active cells was

halved in VR (figure 4.4a). This suggests that a subset of cells were selectively deactivated

65



450 450

450

450

P1 (µV )P3 (µV )

P2 (µV )

P4 (µV )

(a) VR

450 450

450

450

P1 (µV )P3 (µV )

P2 (µV )

P4 (µV )

(b) RW

Figure 4.5: Peak projections of spike data recorded from the same tetrode on the same

day in both VR and RW conditions clearly demonstrate the reduction in active cell count.

Pyramidal neurons circled in green, interneurons in purple.

in the VR, rather than overall reduction in firing rates. The effect is evident in comparing

spike sorting data projections for VR and RW data recorded from the same tetrode on the

same day (figures 4.5a and 4.5b).

4.4.2 Stability

One important consideration is the possibility of unstable spiking activity occurring outside

a clearly defined place field. To quantify this we introduce the stability index, defined for

each cell as the correlation between the ratemap computed over even numbered trials and the

ratemap computed over odd numbered trials. By comparing even and odd numbered trials

(rather than the first and second half of trials) we avoid mislabeling systematic variation as

instability.

The stability index for track active cells was slightly lower in VR than in RW (figure 4.6a),

but this was not due to unit isolation concerns (figure 4.6b). Cluster isolation distance, false
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Figure 4.6: The stability index of cells in VR (0.80 ± 0.01) is slightly lower than for cells

in RW (0.87 ± 0.01), (p = 1.01× 10−5, rank-sum test). However, this is not due to cluster

isolation differences in the two conditions.
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(a) Sample cell recorded in RW.
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(b) Sample cell recorded in VR.

Figure 4.7: Sample cells exhibiting clear spatially selective firing. Top panel depicts the

ratemap λ(x), while the bottom is a raster plot indicating individual spike positions on each

trial.

positive estimate, and false negative estimates (section 2.4.1) alone could not explain the

variance observed in stability, but recording in VR has a significant effect, as assessed by a

four way ANOVA (piso = 0.06, pfp < 0.05, pfn = 0.6, pvr < 0.001). All further analysis was

thus restricted to cells that were classified as stable, defined as having stability index greater

than one half.

4.4.3 Spatial selectivity and information content

Clearly spatially selective firing was observed in cells both in RW and VR (figures 4.7a

and 4.7b). However, not all cells in either RW or VR exhibit such clearly selective firing. It

is thus helpful to quantify the degree of spatial selectivity exhibited by the spiking activity

of a cell.

To quantify the spatial information in a ratemap we begin with the information theory
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definition of entropy. For a random variable X with discrete probability density p(x) the

entropy is defined as:

H(X) = −
∑
i

p(xi) log2 p(xi) (4.10)

Thus defined the entropy measures the expected suprisal of the distribution. It can be

thought of as a measure of how much is not known about the outcome of a draw from the

distribution. The distribution with lowest entropy is the Dirac delta, while the uniform

distribution has maximal entropy.

To apply this definition we need a probability distribution, so define

ξ(xi) =
piλ(xi)

λ̄
where λ̄ =

∑
i

piλ(xi) and pi =
O(xi)∑
j O(xj)

. (4.11)

Since our interest is in defining a measure of spatial information which is greater for a

cell with a more spatially selective ratemap, we define the information content of a ratemap

to be the entropy of the uniform ratemap minus the entropy of ξ.

I = H(p)−H(ξ) =
∑
i

pi

(
λ(xi)

λ̄

)
log2

(
λ(xi)

λ̄

)
(4.12)

In addition to computing the information content for a given cell, we are also interested

in finding whether a cells exhibits spatial modulation, which we define here to mean a spatial

information content greater than what would be expected by chance in the absence of any

relationship between the rat’s position and spike timing. We can estimate a null distribution

for the information content of a cell by repeatedly shuffling the spike train vector for each

trial with respect to the position vector, and then computing the information content for the

shuffled ratemaps.

Finally, as an alternative to spatial information we introduce the sparsity [168] of a

ratemap (roughly corresponding to what fraction of the track the cell is active over), which

is defined as:

S = 1−
(∫

λ(x)dx
)2∫

[λ(x)]2 dx
(4.13)
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Figure 4.8: Spatial information content of pyramidal cells in VR (1.23± 0.03 bits) is signifi-

cantly reduced (p = 6.48× 10−8, rank-sum test) compared to those in RW (1.58±0.05 bits).

Similarly, ratemap sparsity in VR (0.65 ± 0.01) is significantly reduced (p = 1.21× 10−9,

rank-sum test) compared to RW (0.73 ± 0.01). Consistent with this, place field width in

VR (55.8 ± 1.2 cm) is significantly greater (p = 6.94× 10−12, rank-sum test) than in RW

(44.3± 1.4 cm).

So the sparsity of a uniform ratemap is zero, and a delta function ratemap has sparsity unity.

Both the spatial information content (figure 4.8a) and the ratemap sparsity (figure 4.8b)

are lower in VR than in RW. However, cells in both VR and RW overwhelmingly exhibit

spatial modulation, with 96% of pyramidal cells in VR and 99% of cells in RW having spatial

information content significantly above chance level. A reasonable explanation for these two

results, which is borne out by the data, is that cells in VR still exhibit spatially selective

firing, but that their place fields are wider than place fields in RW (figure 4.8c).

4.4.4 Directional firing

An interesting property of place cell firing on real world linear tracks is their directionality.

A majority of place cells are active in only one direction [35], an effect which is absent in
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Figure 4.9: There is no significant difference (p = 0.212) between the observed distribution

of directionality index values in VR (0.56± 0.02) and RW (0.59± 0.02).

two dimensional environments unless a spatial sequence is introduced [26]. We quantify this

effect by defining the directionality index :

D =

∣∣∣∣∫ (λF (x)− λR(x)) dx∫
(λF (x) + λR(x)) dx

∣∣∣∣ (4.14)

Where λF and λR are the firing ratemaps for the forward and backward running directions

respectively. Cells which fire in only one running direction thus have a directionality index

of unity, while cells which fire equally in both directions have a directionality index of zero.

Cells with D ≥ 0.5 are considered to be directional, while cells with D < 0.5 are considered

bidirectional.

Despite the absence of vestibular cues associated with turning around in the VR, the

observed distributions of directionality index values are not significantly different in VR and

RW (figure 4.9). This implies that vestibular cues are not necessary for directional place cell

firing, but that distal visual cues are sufficient to generate directional activity.
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Figure 4.10: Ratemaps from two sample cells that exhibit bidirectional activity. The cell

active in the VR (red) fires at the same distance from the start of the track, while the RW

cell (blue) fires at the same absolute spatial position.

4.4.5 Bidirectional activity: the disto code

However, while the fraction of cells that were bidirectional is comparable in VR and RW, the

ratemaps of these cells exhibited very different characteristics. It is known that bidirectional

cells in RW fire at roughly the same spatial position in both running directions [73,75,168],

though there is a slight backward shift in each direction around the common midpoint,

creating a prospective coding scheme. This firing pattern is also apparent in our data

(figure 4.10).

In sharp contrast to the position coding of bidirectional cells in the RW, bidirectional

cells in VR tended to fire at the same distance from the start of the track in both running

directions, creating a disto-code (figure 4.10).

The quantify this effect, we introduce the disto-code index and position-code index. We

begin by finding, for bidirectional cells, the boundaries of the largest place field. In the

opposite running direction these boundaries are used to define a position-coding zone (ZP ),

and a disto-coding zone (ZD) by flipping the boundaries as appropriate. The disto-code
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index is then defined as:

ID =

∫
x∈ZD

λ(x)dx−
∫
x/∈ZD

λ(x)dx∫
x∈ZD

λ(x)dx+
∫
x/∈ZD

λ(x)dx
, (4.15)

and similarly the position-code index is defined as:

IP =

∫
x∈ZP

λ(x)dx−
∫
x/∈ZP

λ(x)dx∫
x∈ZP

λ(x)dx+
∫
x/∈ZP

λ(x)dx
(4.16)

Defined in this way, the index values are in the range [−1, 1], with positive values for

indicating the presence of a disto- or position-coding scheme, and negative values indicating

an absence of these effects. It should be noted that the two are not mutually exclusive,

a cell which fires in the middle of the track, for example, would have positive values for

both ID and IP . Nevertheless, cells in RW exhibited significantly positive position-code

index (figure 4.11a), but negative disto-code index (figure 4.11b). Cells in VR displayed

the opposite effect, with negative position-code index (figure 4.11a), but positive disto-code

index (figure 4.11b).

It is possible that the disto-coding cells are in fact responding in time [116], rather than

distance. Since these two variables are so closely linked in the current experiment, it is

not possible to conclusively disambiguate them. It can however be partially addressed by

comparing ratemaps calculated in both distance and time during the fastest and slowest trial

blocks. By calculating the correlation between the fast and slow ratemaps, we find that a

distance representation is more stable than a time representation, not just at the population

level (figure 4.12a), but also for individual cells (figure 4.12b).

If the majority of individual cells in VR exhibit a disto-coding scheme, it stands to reason

that the population level coding scheme should also be distance based. While single cell

properties are interesting, the collective activity of multiple units is an equally important

area to investigate. To estimate the similarity of the population rate code between one

position and another we define the population vector overlap by computing a normalized dot

product along the unit dimension (where N is the number of single units in the population):
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Figure 4.11: Position-code index values were positive in RW (0.27 ± 0.05, p = 8.2× 10−7,

sign-rank test), but negative in VR (−0.11±0.04, p = 1.8× 10−2, sign-rank test), indicating

the presence of a bidirectional position code in RW, but it’s absence in VR. In contrast,

disto-code index values were negative in RW (−0.25± 0.06, p = 5.1× 10−5, sign-rank test)

but positive in VR (0.14 ± 0.04, p = 9.5× 10−4, sign-rank test), indicating the presence of

a disto code.
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Figure 4.12: The fast/slow trial correlations are significantly (p = 4.8× 10−5, rank-sum

test) greater in the distance representation (0.57 ± 0.02) than in the time representation

(0.44 ± 0.02). The majority of individual cells also displayed greater correlation in the

distance representation than in time.
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PV O(x, y) =

∑N
j=1 λj(x)λj(y)√∑N

j=1 λ
2
j(x)

√∑N
j=1 λ

2
j(y)

(4.17)

Since the overlap values are not normal in their distribution, we estimate significance

using a shuffling bootstrap approach. By repeatedly shuffling the unit identities and com-

puting the overlap we obtain a distribution of overlap values under the null hypothesis that

a cell’s ratemap at the two positions (x, y) is no more correlated than the ratemaps of two

unrelated cells. The advantage of this shuffling approach is that it maintains effects which

are not specific to the single cells (such as position dependence of place field width).

The population vector of bidirectional cells in RW reveals a clear -45◦ diagonal (fig-

ure 4.13a), indicating that cells spiked around the same position on the track in both move-

ment directions. The opposite is true in VR, where the population vector reveals a clear +45◦

diagonal (figure 4.13b), indicating that cells spiked at the same distance along the track in

both directions. In both cases these diagonals significantly exceed levels expected by chance

in the absence of either position or distance coding effects (figures 4.13c and 4.13d). A disto-

code like response has been reported on a single unit level in RW [115, 169], but not on the

population level.

The visual cues presented by the virtual environment are different in two running direc-

tions (i.e. the scene has minimal symmetries). This therefore suggests that the disto-coding

cells, which fire the same way in both directions, are not responding based upon visual stim-

uli. We hypothesize that they are in fact representative of a path integrator neural circuit

based upon self motion cues such as optic flow and ambulatory input.

One possibility to consider is that the disto-code may arise due to the presence of a salient

visual stimulus (the vertical pillar) that signifies reward in both running directions. To check

that this single symmetry in the virtual environment was not responsible for the disto-code

observed we ran two rats in a control experiment in which the pillar was removed at either

one or both ends of the track. The rats’ behavior was not altered by this manipulation, and

the bidirectional cell still exhibited a clear disto-coding scheme figure 4.14.

76



0 55 110 165 220

Position in forward direction (cm)

220

165

110

55

0

P
o
si

ti
on

in
b

ac
k
w

a
rd

d
ir

ec
ti

on
(c

m
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
o
p

u
la

ti
on

v
ec

to
r

ov
er

la
p

(a) RW population vector overlap.
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(b) VR population vector overlap.
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(c) RW population vector significance.
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Figure 4.13: Population vector analysis of bidirectional cells in RW and VR reveals opposite

coding schemes. In RW the population rate code overlap is significantly above chance level

along a -45◦ diagonal, reflecting the presence of a position code. In VR, the population vector

overlap is significantly above chance level along a +45◦ diagonal, reflecting the presence of

a distance based coding scheme. Note also how the wider place fields in VR manifest as a

wider band in the population vector.
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(f) Zero pillar condition sample 3.

Figure 4.14: Ratemaps from six sample cells recorded in the pillar control experiment still

exhibit clear disto-coding.
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4.5 Properties of the temporal code

4.5.1 Reduction in theta frequency does not alter phase precession

The local field potential (see section 1.1) in CA1 is known to exhibit strong oscillations in

the theta band (4-12 Hz) during running behavior, which modulates both pyramidal and

interneuron firing rates.

Multi-taper power spectral analysis of LFP recordings in VR and RW during running

behavior reveal the clear presence of theta oscillations in both recording conditions. How-

ever, the frequency of theta rhythm in VR is reduced compared to VR, an effect most clearly

visible when comparing the autocorrelation of LFP recordings from the same electrode in

both conditions (figure 4.15).

To ensure calculations involving phase precession and theta rhythm were not adversely

affected by noisy LFP data, only LFPs exhibiting clear theta rhythm were used for further

analysis. The criteria for inclusion was that an LFP needed to have power in the theta

band (4-12Hz) exceeding at least one third of the power in the delta band (0.01-4Hz) during

running periods.

Despite the reduced frequency of the theta rhythm, place fields in both VR (figure 4.16a)

and RW (figure 4.16b) displayed clear phase precession [25,57,60,66,67], with spikes farther

into the place field preferentially occurring at lower phases of the hippocampal theta rhythm.

To quantify the strength of phase precession in a place field, we define a circular linear

correlation coefficient [170] between the position of individual spikes and their theta phase,

as follows:

ρ(x, φ) =

√
r2
cx + r2

sx − 2rcxrsxrcs
1− r2

cs

, (4.18)
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Figure 4.15: Autocorrelation of hippocampal LFP data exhibits clear peaks at multiples of

the theta period in both VR and RW.

100 150 200

Position (cm)

0

180

360

θ
p

h
a
se

(◦
)

VR

0

10

20

30

40

50

F
ir

in
g

ra
te

(H
z)

(a) VR place field

65 95 125

Position (cm)

0

180

360

θ
p

h
as

e
(◦

)

RW

0

10

20

30

40

F
ir

in
g

ra
te

(H
z)

(b) RW place field

Figure 4.16: Spatio-temporal firing rates, computed in a manner analogous to the linear

ratemaps for sample place fields in VR and RW. Phase precession is clearly visible in both

cases.
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Figure 4.17: Quality of phase precession, assessed by a circular linear correlation measure,

showed no difference between VR (0.33 ± 0.01) and RW (0.33 ± 0.01) place fields, while

the frequency of theta rhythm within the place fields was significantly (p = 1.83× 10−49,

rank-sum test) reduced in VR (7.53± 0.02 Hz) compared to RW (8.25± 0.03 Hz).

where

rcx = corr(x, cosφ) (4.19)

rsx = corr(x, sinφ) (4.20)

rcs = corr(cosφ, sinφ). (4.21)

The quality of phase precession in VR was identical to that in RW (figure 4.17a), despite

a 9% reduction in the theta rhythm frequency within each place field (figure 4.17b).

4.5.2 Reduction in spiking frequency

Both pyramidal and interneurons are known to be modulated by the hippocampal theta

rhythm [25, 52, 57, 60, 66, 67]. While pyramidal neurons phase precess, and thus necessarily
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must spike at a frequency faster than the theta rhythm, interneurons are typically phase

locked to theta, firing preferentially at a particular phase of theta. The reduction in LFP

theta frequency should thus manifest itself in a reduction of the spiking frequency of both

pyramidal and interneurons.

By computing the autocorrelation of single unit spike trains (figures 4.18a and 4.18b)

and finding the temporal lag of the first peak, we can estimate the spiking frequency of cells.

Such analysis confirms the significant reduction in theta rhythm frequency (figures 4.18c

and 4.18d).

One potential reason for such a difference in the frequency of theta rhythm could be the

reduced speed of the rats in VR compared to RW. In fact, the well known speed dependence of

theta frequency is a fundamental requirement of a popular class of models of phase precession.

In order to investigate this effect we must introduce a method of estimating the frequency

of theta rhythm in a time dependent way, something which a standard autocorrelation does

not allow.

4.5.3 Time dependent frequency estimation

There are in fact several approaches to estimating the frequency of the theta rhythm in a

time dependent way. The simplest of these involves estimation of the phase of the oscillation

using the Hilbert transform. Once the phase is determined, jumps of 2π in the oscillation

phase can be used to define the beginning and end of an individual theta cycle. The inverse

period of these theta cycles provide an estimate of the average theta frequency over the

course of the cycle. While simple, this method is limited in the temporal resolution it can

provide.

An alternative is to numerically differentiate the phase estimates produced by the Hilbert

transform to produce an estimate of the instantaneous frequency of the oscillation. This over-

comes the temporal resolution problem, but has been shown to provide biased estimates [171].

The short time Fourier transform (STFT) provides a third approach, but is plagued by the
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the same pyramidal neuron in both VR and Rw.
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Figure 4.18: Spiking frequency of interneurons in VR (7.40±0.03 Hz) was significantly lower

(p = 5.2× 10−16, rank-sum test) than in RW (8.13± 0.07 Hz). Pyramidal neurons similarly

exhibited significantly (p = 7.6× 10−51, rank-sum test) decreased spiking frequency in VR

(7.83± 0.03 Hz) compared to RW (8.81± 0.05 Hz).
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inverse relationship between temporal accuracy and frequency accuracy. The most accurate

method for LFP data is based on the Kalman filter [171], and is the one employed in this

analysis, unless otherwise stated.

4.5.4 Speed dependence of LFP theta rhythm

In RW the frequency of the hippocampal theta rhythm is known to increase with running

speed. While this is reflected in our RW data, data recorded in VR do not exhibit any

clear relationship between speed or theta frequency (figure 4.19c). In fact, the distribution

of correlation coefficients between speed and theta frequency in VR is centered around zero

(figure 4.19d), whereas in RW a large majority (85.4%) of recordings exhibit significant

correlation between running speed and theta frequency. These results are consistent with

previous studies which reported modification of the theta rhythm by lesions of the vestibular

nucleus [172].

The fact that phase precession is identical in VR and RW despite the large changes in the

theta rhythm places restrictions on theories of phase precession that depend on the precise

value of theta frequency or its speed dependence [25,173–175]. Instead they favor alternative

mechanisms that are insensitive to the these phenomena [29, 60, 66], that apply equally to

networks with diverse connectivity patterns such as the entorhinal cortex and CA1, and

hence do not require recurrent excitatory connections [29, 66].

Interestingly, the amplitude of theta oscillations increases similarly with speed in VR

and RW (figure 4.19e). Suggesting that unlike frequency, theta amplitude is unaffected by

vestibular cues.

4.5.5 Speed dependent interneuron spike frequency

Since the LFP theta rhythm strongly modulates both pyramidal and interneuron spiking

activity, the absence of speed dependent change in the LFP frequency should manifest itself

in the spiking frequency of both cell types. However, since pyramidal neurons are selective
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Figure 4.19: Speed dependent frequency increased is absent in VR. Correlation coefficients

between theta frequency and speed in RW (0.21± 0.01) and VR (−0.01± 0.01) reveals the

absence of speed dependence in theta frequency. In contrast, theta amplitude is similarly

affected by speed in RW (0.16± 0.01) and VR (0.16± 0.01).
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(a) Sample interneuron in RW.
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(b) Sample interneuron in VR.

Figure 4.20: Sample speed dependent spike train autocorrelation from interneurons in RW

and VR. The RW cell shows clear speed dependent increase in theta frequency (i.e. decrease

in period), while the VR cell does not exhibit any reliable change with speed. For ease of

visual comparison each speed bin has been z-scored.

active on only portions of the track, and typically have much lower mean rates than interneu-

rons, estimation of speed dependent effects on spiking frequency for pyramidal neurons is a

difficult task.

We therefore focus on interneurons, for which we can compute speed-dependent spike

train autocorrelation. Computing the autocorrelation of a point process can be achieved by

iterating over all possible pairs of events in the process, and computing the time difference

between events. For n spikes, this produces a set of n(n− 1) time deltas, which can then be

binned with bin sizes appropriate to the problem under investigation.

This approach to computing an autocorrelation lends itself naturally to extension to

speed-dependent autocorrelation. For each pair of spikes, compute not only the time differ-

ence δt, but also the mean speed between the two spike times. By binning these n(n − 1)

pairs of time and speed values, we can estimate a speed dependent autocorrelation which,

for each speed bin, can then be filtered in the theta band to produce an estimate of the theta

modulated spiking frequency at different speeds. Applying this procedure to interneuron
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spike trains confirms the speed modulation of theta rhythm in RW (figure 4.20a), and the

absence of speed modulation in VR (figure 4.20b).

4.6 The role of passive scene rotation

4.6.1 Different environments hypothesis

One important consideration is the potential effect of the passive scene rotation when the

rat reaches the ends of the track in VR. By passively reversing the scene, the animal is

potentially deprived of visual and self-motion cues which may be necessary to establish that

it is viewing the same scene from a different angle, rather than simply an entirely different

scene. Such an effect could potentially explain the absence of a bidirectional position code

in virtual reality.

This argument, however, does not stand up to further scrutiny. It has been shown that

the subpopulations of cells active in different environments are largely independent [29]. The

hypothesis that the rat is treating the virtual scene as two independent worlds, rather than

views of the same world, thus makes a prediction about the fraction of cells that should be

bidirectional.

Suppose, for the time being, that the rat treats each of the two running directions as

different environments. Given that the visual and other sensory cues are of similar saliency in

both running directions, it is reasonable to assume that the probability of a cell being active

(i.e. exceeding firing rate threshold T ) in one “environment” is the same as the probability

of it being active in the other.

Define F1(r) as the cumulative distribution function of firing rates in the first environ-

ment, and similar F2(r) for the second environment. We can similarly define F1∪2(r) for

the cumulative distribution of firing rates in the combined environment (i.e. using spiking

and occupancy data from both environments). From the assumption of equal probability of

activation we have p = 1−F1(T ) = 1−F2(T ). Let η indicate the fraction of time spent in the
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first environment (typically very close to 0.5, but we do not need to assume any particular

value here).

It follows that the mean rate observed in the joint environment will be roughly r1∪2 =

ηr1+(1−η)r2. It thus has a cumulative distribution function F1∪2(r) = ηF1(r)+(1−η)F2(r).

The probability of being active in the joint environment is therefore

p1∪2 = 1− F1∪2(T ) = 1− ηF1(T )− (1− η)F2(T )

= 1− η(1− p)− (1− η)(1− p)

= p

(4.22)

So to estimate p we can use the fraction of cells active in the joint environment, which (as

discussed in section 4.4.1) was roughly 0.2 in VR and 0.45 in RW.

Now suppose there are N cells in the baseline that may potentially be active in either of the

two environments, based on these probabilities. We then expect n1 ∼ Binomial(N, p) cells

to be active in the first environment, and n2 ∼ Binomial(N, p) in the second environment,

and n1∪2 ∼ Binomial(N, p2) to be active in the joint environment. The fraction of active

cells that are directional (i.e. active in only one of the two environments) is then

d(N, p) = 1− n1∪2

n1 + n2 − n1∪2

. (4.23)

Numerical simulation of the distributions of d(N, p) using the values of N and p observed

in the data are depicted in figure 4.21. As expected, in RW the observed fraction of directional

cells falls well outside the 95% confidence limit. The VR data are even further outside the

confidence intervals than the RW data is.

The observed fractions of cells that are directional are thus significantly lower than would

be predicted by independent activation based on the hypothesis that place cells treat the

two movement directions as distinct environments. Based on these results, it is reasonable

to reject the distinct environment hypothesis.
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Figure 4.21: The observed fraction of cells that are directional lies well outside the null

distribution calculated from the hypothesis that cells treat the two running directions as

different environments.

4.6.2 Rotation triggered population vector analysis

How does the cell population respond to the instantaneous passive rotation of the visual

scene at the track ends? To test this, we computed a rotation triggered population vector

overlap. Briefly, for each cell we computed the firing rate with 10ms temporal resolution

over a window starting five seconds before the rotation, and extending fifteen seconds after

the rotation. We then compute the population vector PV O(t1, t2) in a manner analogous to

the spatial population vector overlap described in equation (4.17). The analysis is restricted

to cells that are active (mean rate exceeding 1Hz) in the five seconds preceding the passive

scene reversal, and the two ends of the track are treated separately.

The population vector reveals several interesting effects (figure 4.22). The first of these is

the absence of any sudden change in the population rate immediately following the rotation.

In fact, there is a high degree of overlap in the ratemap starting a few seconds before rotation,

and continuing roughly five seconds after rotation. It is apparent from the median speed

profile that this region of high overlap corresponds to the period during which the rats are
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Figure 4.22: Rotation triggered population vectors for the two ends of the track. Black

dashed line indicates the time of scene rotation, and circles indicate timing of reward pulses.

Median speed profile overlaid in white.

stationary, and consuming reward.

At first glance these results appear at odds with a report by Jezek et al. [176] of represen-

tation switching within a theta cycle after a change in visual cues, and subsequent flickering

between representations lasting a few seconds. There are, however, several significant differ-

ences. Notably, while flickering was reported primarily in CA3, it was less clear in CA1, an

observation potentially attributable to the lack of recurrent excitatory connections in CA1.

Further, the analysis in the Jezek study is restricted to periods of mobility, while in our case

the switch in the visual stimuli happens during immobile periods of reward consumption,

when the rats’ attention is focused on the physical reward tube rather than the virtual en-

vironment. These findings further support the conclusion that the passive scene rotation is

unlikely to be responsible for the appearance of the disto-code.
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4.6.3 Active turn control experiment

To confirm that the passive scene reversal protocol did not somehow induce the disto-coding

scheme, a control experiment was run in which two rats were trained to run a variation of the

virtual linear track task where the rats were required to actively rotate the treadmill to rotate

the virtual environment. Bidirectional cells recorded under this protocol still exhibited clear

disto-coding, with the position-code index significantly lower than the disto-code index.
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Figure 4.23: The disto-code persists under the active turning control protocol. Ratemaps

from four sample cells exhibit clear disto coding. The position-code index (−0.30 ± 0.08,

p = 4.6× 10−3, sign-rank test) was significantly weaker than the dominant disto-code index

(0.5 ± 0.07, p = 6.0× 10−5, sign-rank test), a result confirmed by the 45◦ diagonal in the

population vector.
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4.7 Same cell comparisons

While comparisons of population statistics are interesting, ideally one would like to compare

the same individual cells in VR and RW. Such a comparison could, for example, demonstrate

whether the disto-coding and position-coding bidirectional cells are different subpopulations,

or whether the same cell can express both coding schemes depending on the inputs.

As mentioned in section 1.1, it is difficult to identify cells across multiple recordings with

a high level of certainty. On days where the rats were run in both VR and RW environments

cell identification was performed by overlaying cluster boundaries from one session on spike

data from the second and manually identifying clear overlaps. If electrode drift or other

factors rendered the identification ambiguous, no cells from either session were used for

same cell analysis. In all, 40 cells were reliably identified as being active in both VR and

RW recording sessions on the same day.

Given the literature on importance of distal visual cues, which are identical in VR and

RW, one might expect that these cells would fire in a similar fashion in both the virtual

and real environments. To assess the similarity of two ratemaps we use two approaches: the

correlation coefficient, and the Hellinger distance [177] between the (normalized) ratemaps.

The Hellinger distance is a measure of the similarity between two probability distributions,

and is defined (with f(x) and g(x) the density functions) as:

H(f, g) =

√
1

2

∫ (√
f(x)−

√
g(x)

)2

dx (4.24)

So applied to ratemaps λ1(x) and λ2(x), we obtain

H(λ1, λ2) =

√√√√1

2

∫ (√
λ1(x)∫
λ1(x′)dx′

−
√

λ2(x)∫
λ2(x′)dx′

)2

dx. (4.25)

By computing the measures for pairs of cells that cannot be the same cell (such as cells

recorded on different tetrodes), we obtain an estimate of the distribution of these two simi-

larity measures under the null hypothesis that the same cell’s VR and RW ratemaps are no
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Figure 4.24: VR and RW ratemaps for cells reliably identified as the same did not exhibit

similarity significantly above chance level using either a correlation measure (p = 0.61, rank-

sum test) or Hellinger distance (p = 0.8, rank-sum test).

more similar than the ratemaps of random cell pairs. Surprisingly, neither measure’s distri-

bution for the true cell pairs are significantly different from the null distribution (figure 4.24),

a result which reinforces the importance of multi modal sensory stimuli to the activity of

hippocampal pyramidal cells. Six sample cells in VR and RW are presented in figure 4.26.

Is there no relationship between the same cell’s firing in VR and RW then? Using a

similar shuffling procedure to compute a null distribution for other ratemap metrics, we find

that the firing rate (figure 4.25a), information content (figure 4.25b), and directionality index

(figure 4.25c) all exhibit significant correlation between VR and RW. This paradoxical result

suggests that to some extent these properties may be either ‘hard wired’ in the circuit, or

determined by distal visual cues or self motion cues which are identical in VR and RW. As a

result, a cell’s level of spatial and directional tuning is predictable, but exactly where it fires

is dependent on particular environmental cues. Trying to compare the same cells on linear

tracks in multiple rooms would test this finding without any potential concerns about the

role of virtual reality.

It is worth noting that within the same cells the disto-index was reliably larger in VR than

in RW (figure 4.25e), while the position-code index was larger in RW than VR (figure 4.25d).

This suggests that the same cell is capable of expressing both coding schemes, depending
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Figure 4.25: Comparison of cell properties in VR and RW for cells which could be reliably

identified as the same cell in both sessions. Significant correlations between VR and RW

were observed for firing rate (corr. coeff = 0.4, p = 0.011), spatial information content

(corr. coeff = 0.43, p = 6.1× 10−3), and directionality index (corr. coeff = 0.49, p =

1.5× 10−3). No significant RW-VR correlation were observed for position-code index p =

0.19), disto-code index p = 0.3), or spike frequency p = 0.24). Position-code index was

reliably larger in RW, disto-code index reliably larger in VR, and spiking frequency reduced

in VR.
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Figure 4.26: Six sample cells which were reliably identified in both VR (red) and RW (blue)

While the directionality index and spatial information content were correlated across the

two environments, the ratemaps were not similar despite the consistent distal visual cues in

VR and RW. Directionality index and information is indicated in each case.

on the available stimuli. Spiking frequency was reduced in VR for the majority of cells, but

the absence of significant correlation in the spiking frequency in two environments suggests

that the spike frequency is not an intrinsic cell property, but rather a consequence of phase

precession.

96



CHAPTER 5

Conclusion

5.1 Summary and discussion

Despite forty years of study, the mechanisms generating place cell activity in the hippocam-

pus remain poorly understood. In part this is the result of challenges in recording single unit

activity, and controlling multi-sensory stimuli in experimental paradigms.

The spike sorting problem in extracellular recording has similarly been the focus of consid-

erable research effort. However, there is a disconnect between much of the literature, which

tests primarily on synthetic single electrode datasets with a few thousand spikes, and prac-

tical application in hippocampal electrophysiology, where hundreds of thousands of spikes

are not uncommon on a single tetrode. Feature extraction methods such as graph Laplacian

features [86] and clustering algorithms such as dominant sets [108] show great promise on

small datasets, but have an algorithmic complexity much too large to be applied to large

hippocampal datasets. On the other end of the spectrum various on-line sorting algorithms,

such as those based on matched filters [100] allow for fast execution, but necessarily com-

promise on sorting accuracy. By combining existing mixture based methods [111] with post

processing heuristics similar to those employed by human operators I have developed a sort-

ing algorithm which produces sorting results comparable to those of skilled human operators

in a systematic and automated manner. This algorithm was combined with a feature rich

software tool for manual sorting or inspection and modification of automated sorting results

to significantly reduce both the time required to sort hippocampal tetrode data, as well as

the subjectivity in the sorting process.

97



In recent years there has been significant interest in the use of virtual reality systems to

enable the use of head fixed recording techniques such as patch clamp or optical methods

in behaving animals [67, 178–180]. The type of experiments possible within these virtual

reality setups has been limited to simple linear tracks, and the systems have several draw-

backs including the inability to provide precise auditory stimuli and the fact that surgical

implantation of a head fixing plate must be performed before animals can be trained on the

system.

In contrast, the virtual reality system we have developed is much less invasive (though

it can be easily extended to head-fixed recording if required). The display of grooming

behavior in the VR is evidence of low level of stress in the rats using the harness fixing

system. The addition of realistic positional auditory stimuli together with a much larger

visual field of view creates a more immersive system (figure 3.1). Combined with expanded

software this has enabled the study of interesting virtual environments such as a virtual

’water maze’ task (figures 3.9 and 3.10), and foraging behavior with spherical boundary

conditions (figure 3.11). The addition of lick detection capability has revealed an interesting

dissociation between the spatial information in navigation and reward checking behavior,

which are differently modulated by visual and auditory cues.

While there is much to learn from membrane potential recordings of place cells and grid

cells, before results form virtual reality experiments can be properly interpreted a control

study is necessary to determine whether, based on standard extracellular recordings, place

cells in virtual reality are comparable to their real world counterparts.

Results from this comparison between the real and virtual linear tracks reveals several

important aspects of the sensory mechanisms affecting hippocampal activity, and are consis-

tent with recent studies [181]. In both VR and RW an overwhelming majority of pyramidal

neurons displayed significant spatial selectivity, and phase precession was comparable be-

tween VR and RW. This demonstrates that a robust cognitive map can be generated by in

environments where only purely visual cues provide spatial information. Despite this com-

parisons of the same cell in VR and RW reveal that while visual cues are sufficient to generate
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place fields, they are no sufficient to provide identical representations in environments where

visual cues are highly similar but other sensory cues differ [71].

The results are unlikely to be due to the small differences in the visual cues between the

real and virtual conditions, but rather the absence of spatial information in other sensory

modalities. When combined with the observation that roughly half the cell population shuts

down in VR, this suggests that subpopulations of hippocampal cells preferentially respond

to different sensory modalities. With the advent of substantial interest in the use of virtual

reality to enable intracellular recording during behavior [67, 178–180], it is thus important

to keep in mind that such studies may be selectively sampling a subpopulation of cells.

Bidirectional cells switch from a position based representation in RW to a distance based

representation in VR, which is analogous to previous reports of different hippocampal cell

response types based upon task demand [116]. Such observations could imply either the

existence of distinct classes of cells, or adaptability of single units to alternate task demands.

Given the observation that cells which are active in both VR and RW exhibit both disto

and position coding schemes depending on the environment the latter possibility seems more

likely. One potential explanation for the appearance of the disto-code may be that the virtual

reality apparatus provides insufficient information for the rat to grasp that the virtual linear

track is in fact the same environment viewed from two orientations. This explanation seems

unlikely given the persistence of the disto-code in the active turning control experiment,

together with the comparable level of direction selectivity in VR and RW. When considered

together with the observations of position coding in RW [168] which is enhanced by the

addition of odors and textures [73], these results argue that the bidirectional position code

observed in RW is likely generated by the presence of proximal cues on the track. The

disto-code observed in VR, by contrast, is likely generated by self motion cues such as

proprioception and optic flow, which are the only cues which are similar in both running

directions.

Disto-coding has been reported on a single unit level in RW [115,169], but the dominant

population coding effect in RW is position based [73]. Our data did not contain a significant
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number of disto-coding cells in the RW population. The absence of such population level

disto-coding suggests that the proximal cues exert a veto over self-motion cues in determining

the bidirectional coding scheme. Such competitive effects between different sensory modali-

ties may be driven by inhibitory mechanisms across multi-modal inputs, as seen recently in

the primary visual cortex [182].

Observations of lateral entorhinal cortex neurons responding to local cues such as ob-

jects [183], and spatial selective activity of medial entorhinal cortex neurons [114], which are

two of the primary inputs to the hippocampus, lead us to hypothesize that the visual and

self-motion cues driving activity in VR reach CA1 via MEC, while proximal cues driving bidi-

rectional position coding in RW reach CA1 via LEC. Consistent with this hypothesis, while

both LEC and MEC project directly and indirectly to CA1 they modulated CA1 activity

during sleep different [184] and engage local inhibition [185]. Inhibitory effects between the

MEC and LEC pathways may thus be the origin of the competitive interactions responsible

for the disto-position coding switch.

Theta frequency was significantly reduced in VR, corroborating earlier results that vestibu-

lar inputs contribute to theta frequency [172], and its speed dependence was abolished. On

the other hand, theta power had similar speed dependence in VR and RW suggesting that

theta power is largely governed by distal visual and self-motion cues. Despite the large

changes in theta frequency and its speed dependence, phase precession was intact in VR [67],

and its quality was identical in RW and VR, indicating that distal visual and self-motion

cues are sufficient to generate a robust temporal code. These results place restrictions on

theories of phase precession that depend on the precise value of theta frequency or its speed

dependence [25, 173–175]. Instead they favor alternative mechanisms that are insensitive to

these phenomena [29, 60, 66], that apply equally to networks with diverse connectivity pat-

terns such as the entorhinal cortex and CA1, and hence do not require recurrent excitatory

connections [29,66].
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5.2 Future work

With reliable systematic spike sorting of hippocampal tetrode data being achieved, there

are two more important challenges to overcome. Most important in the short term is the

identification of the same cell across multiple recording sessions. Such identification is cru-

cial for studies of long term changes in circuit behavior, as well as phenomena like sleep-

replay [32–34], but at present is possible only for extremely well isolated single units. Solving

this problem will likely require a better way to handle electrode drift within a recording ses-

sion, and extrapolating the drift activity between two sessions. In the long term it would

be ideal to able to determine the spatial position, relative to the electrode, of the neurons

recorded from. With recent advances in structural imaging techniques [186] such spatial

information would make it possible to map the structural connectivity of cells after electro-

physiological recording is completed. On-line spike sorting is important in brain machine

interface problems, but is of lesser concern unless the experimental paradigm requires real

time experimental response to neural activity.

Several technical improvements to the virtual reality system are possible, though chal-

lenging, and may significantly improve both the immersive quality of virtual environments as

well as the range of possible manipulations. In non head fixed systems, real time tracking of

the animals head position will enable the addition of subtle perspective changes to recreate

depth perception, which due to the small binocular region is achieved in rodents primarily

through head bobbing activity. The addition of spatially realistic scent cues may be possible

through the combination of motorized valve olfactometers with the virtual reality software,

although there are significant challenges as a result of the relatively slow speed at which

scents diffuse through air. Even more ambitious, but not impossible, would be the reintro-

duction of vestibular cues by tilting the entire system to use gravitational acceleration. A

much less glamorous improvement, which is extremely important, would be standardizing

on system design and software, so that experiments can be accurately reproduced between

different labs using virtual reality technology.
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These results from the place cell control experiment on the virtual linear track suggest

several further experiments to gain a better understanding of the mechanisms generating

place cell activity. Several of these experiments could clarify the role of various sensory

stimuli in the current experiment. The first of these is to use chemical or optogenetic methods

to selectively inhibit input from different sensory modalities, particularly those that do not

provide spatial information in VR, on the real linear track and see if similar phenomena are

observed in their absence.

A second continuation experiment would be to reproduce the experiment using a swivel

based VR system in which rotational vestibular cues are in tact. Such a system could not

be used for head fixed recordings, and would likely take non-trivial effort to develop, but

such an experiment could definitely disambiguate the role of rotational vestibular cues vs

proximal cues in the disto/position coding switch observed in VR. Manipulating the ‘gain’ of

the spherical treadmill, i.e. the ratio between the distance the rat runs on the physical sphere

and the distance traveled in the virtual environment, provides a means to more conclusively

separate the role of distance and time in the disto-coding result.

Moving beyond the linear track paradigm, the two dimensional virtual foraging task

provides a paradigm where the relationship between distance and position is much less

stereotyped, and the two can be further disambiguated. Once a better understanding of the

differences between cell responses in virtual reality has been achieved, the virtual water maze

and spherical foraging tasks provide unique opportunities to perform recordings from place

cells in conditions which are extraordinarily difficult to do in the real world. Combined with

lick detection data to measure reward expectancy such experiments may reveal much about

the nature of spatial memory.

Virtual reality provides tremendous opportunity for novel experimental paradigms, the

largest challenge in future work may ultimately be in understanding to what extent results

obtained in virtual reality can be applied to the real world.
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Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional
random-access scanning in large tissue volumes,” Nature Methods, vol. 9, no. 2, pp. 201–
8, 2012.
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