Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Differential effects of immunotherapy with antibodies targeting α-synuclein oligomers and fibrils in a transgenic model of synucleinopathy

Abstract

Disorders with progressive accumulation of α-synuclein (α-syn) are a common cause of dementia and parkinsonism in the aging population. Accumulation and propagation of α-syn play a role in the pathogenesis of these disorders. Previous studies have shown that immunization with antibodies that recognize C-terminus of α-syn reduces the intra-neuronal accumulation of α-syn and related deficits in transgenic models of synucleinopathy. These studies employed antibodies that recognize epitopes within monomeric and aggregated α-syn that were generated through active immunization or administered via passive immunization. However, it is possible that more specific effects might be achieved with antibodies recognizing selective species of the α-syn aggregates. In this respect we recently developed antibodies that differentially recognized various oligomers (Syn-O1, -O2, and -O4) and fibrilar (Syn-F1 and -F2) forms of α-syn. For this purpose wild-type α-syn transgenic (line 61) mice were immunized with these 5 different antibodies and neuropathologically and biochemically analyzed to determine which was most effective at reducing α-syn accumulation and related deficits. We found that Syn-O1, -O4 and -F1 antibodies were most effective at reducing accumulation of α-syn oligomers in multiple brain regions and at preventing neurodegeneration. Together this study supports the notion that selective antibodies against α-syn might be suitable for development new treatments for synucleinopathies such as PD and DLB.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View