- Main
Fast-ion D-alpha diagnostic for NSTX
Abstract
A fast-ion D -alpha (FIDA) diagnostic is under development for the National Spherical Torus Experiment (NSTX). The FIDA technique is a charge-exchange recombination spectroscopy measurement that exploits the large Doppler shift of Balmer-alpha light from energetic hydrogenic atoms to infer the fast-ion density. The principal objective of the NSTX installation is to measure the transport of beam ions caused by fast-ion driven instabilities; detection of perpendicular acceleration of fast ions during high harmonic fast wave heating is another important goal. Recent data from a DIII-D FIDA diagnostic guide the design. The planned NSTX diagnostic consists of two separate instruments focusing on different aspects of the measurement. One instrument uses a transmission grating spectrometer to measure the perpendicular energy spectrum and the spatial profile every 10 ms; the anticipated resolution is ∼10 keV in energy and ∼5 cm in radius. A second instrument employs bandpass filters to detect fast-ion redistribution events with millisecond temporal resolution. © 2006 American Institute of Physics.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file.
-
-
-
-
-
-
-
-
-
-
-
-
-
-