Red Teaming Language Model Detectors with Language Models
Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Red Teaming Language Model Detectors with Language Models

Published Web Location

https://arxiv.org/abs/2305.19713
No data is associated with this publication.
Creative Commons 'BY' version 4.0 license
Abstract

Abstract: The prevalence and strong capability of large language models (LLMs) present significant safety and ethical risks if exploited by malicious users. To prevent the potentially deceptive usage of LLMs, recent work has proposed algorithms to detect LLM-generated text and protect LLMs. In this paper, we investigate the robustness and reliability of these LLM detectors under adversarial attacks. We study two types of attack strategies: 1) replacing certain words in an LLM’s output with their synonyms given the context; 2) automatically searching for an instructional prompt to alter the writing style of the generation. In both strategies, we leverage an auxiliary LLM to generate the word replacements or the instructional prompt. Different from previous works, we consider a challenging setting where the auxiliary LLM can also be protected by a detector. Experiments reveal that our attacks effectively compromise the performance of all detectors in the study with plausible generations, underscoring the urgent need to improve the robustness of LLM-generated text detection systems. Code is available at https://github.com/shizhouxing/LLM-Detector-Robustness.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item