- Main
Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex
Published Web Location
https://doi.org/10.1126/science.aan3351Abstract
The mammalian brain contains diverse neuronal types, yet we lack single-cell epigenomic assays that are able to identify and characterize them. DNA methylation is a stable epigenetic mark that distinguishes cell types and marks regulatory elements. We generated >6000 methylomes from single neuronal nuclei and used them to identify 16 mouse and 21 human neuronal subpopulations in the frontal cortex. CG and non-CG methylation exhibited cell type-specific distributions, and we identified regulatory elements with differential methylation across neuron types. Methylation signatures identified a layer 6 excitatory neuron subtype and a unique human parvalbumin-expressing inhibitory neuron subtype. We observed stronger cross-species conservation of regulatory elements in inhibitory neurons than in excitatory neurons. Single-nucleus methylomes expand the atlas of brain cell types and identify regulatory elements that drive conserved brain cell diversity.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.