
UCLA
Posters

Title
SYS 1: Programming and Architecting Embedded Networked Systems

Permalink
https://escholarship.org/uc/item/95h363qs

Authors
Om Gnawali
Ben Greenstein
Ramakrishna Gummadi
et al.

Publication Date
2006

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/95h363qs
https://escholarship.org/uc/item/95h363qs#author
https://escholarship.org
http://www.cdlib.org/

VangoVango: Systems Support for High Data: Systems Support for High Data--Rate SensingRate Sensing

KairosKairos:: MacroprogrammingMacroprogramming Wireless Sensor NetworksWireless Sensor Networks

Programming and Architecting Embedded Programming and Architecting Embedded
Networked SystemsNetworked Systems

Om Gnawali, Ben Greenstein, Ramakrishna Gummadi, Ki-Young Jang, August Joki, Nupur Kothari, Jeongyeup Paek, Marcos Vieira,
Deborah Estrin, Ramesh Govindan, Eddie Kohler, Todd Millstein

Tenet: An Architecture for Tiered Embedded SystemsTenet: An Architecture for Tiered Embedded Systems
Problem Statement Approach

UCLA UCLA –– UCR UCR –– Caltech Caltech –– USC USC –– CSU CSU –– JPL JPL –– UC MercedUC Merced

Center for Embedded Networked SensingCenter for Embedded Networked Sensing

Benefits

• Tenet applications run on Masters
Masters task motes. Motes sense and locally process
generated sensor data. Results are delivered to the
application program which can then fuse the results,
and re-task the motes or trigger other sensing
modalities.

• Case study: Pursuit–evasion application
Comparable performance with only 12% additional
overhead

Multi-node data fusion functionality and
application logic should be implemented only in

the master tier. The cost and complexity of
implementing this functionality in a fully

distributed fashion on motes outweighs the
performance benefits of doing so.

• Simplifies application development
Task library’s tasklets can be flexibly composed for different apps

• Re-usable generic mote tier
Multiple applications/tasks can run concurrently

• Robust and scalable network sub-system

Sample(1000ms, 20, REPEAT, 1, ADC0, LIGHT)
-> ClassifyAmplitude(99, 1, LIGHT, ABOVE)
-> StampTime(TIME, LOCAL)
-> LinkAttributes(LIGHT, TIME, AND)
-> SendPtr()

• Large-scale sensor network deployment will
be tiered
Motes enable flexible deployment and dense
instrumentation, while 32-bit Masters have greater
network bandwidth and computing resources.

• Multi-mote data fusion leads to fragile and
unmanageable systems
Applications are hard to develop and debug, and
reduces the re-usability of the mote tier.
Can we take advantage of tiered systems to improve
manageability and robustness of the overall system?

• The Tenet Principle:

Motivation
• Macroprogramming: Allow all nodes to be

programmed as a single unit
• Global program behavior captured as a single

sequential task on a centralized memory model
• No need for explicit parallelization or

synchronization code
• Challenge is designing the compiler and

runtime components that generate and
implement an equivalent concurrent distributed
version …

• Main programming primitives in Kairos:
get_neighbors(node) to obtain current one-
hop neighbors of a node, var@node to access
node-local data, a concurrent version of the for
statement

• Kairos compiler partitions the central program
into nodecuts, each of which is executed entirely at
a single node

• Kairos runtime orchestrates the execution of each
successive nodecut, fetching the remote variables
needed by them, and migrating the computation
from node to node as necessary

Approach

Kairos Architecture

Example
#include “kairos.h”
int maximum;
node-local int value;
void module_max(){

nodelist all_nodes=get_nextwork_nodes();
for(n=get_first(all_nodes);n!=NULL;n=get_next(all_nodes)){

if(value@n > maximum)
maximum = value@n;

} }

• Ease of programming (Kairos extends C)

• Kairos code almost a third the size of nesC code

• No user level synchronization code needed

Benefits

Ongoing and future work

• Mote implementation: A Kairos compiler which
can output nesC + Kairos runtime for motes

• Generic Failure Recovery: Automated recovery
mechanisms in presence of various classes of
failures

• Various levels of performance optimizations

• Exploiting Heterogeneity, Hierarchy, and User-
level Energy/Resource Management

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 50 100 150 200 250 300 350 400 450

F
ra

ct
io

n
of

 B
as

el
in

e
P

ow
er

Gate Level (mV)

Total Recovered Power

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 100 200 300 400 500 600 700 800 900

F
ra

ct
io

n
of

 B
as

el
in

e
P

ow
er

Minimum Dominant Frequency (Hz)

Total Recovered Power

Phone: Amp. Gate 245 mV
Phone: Amp. Gate 120 mV

Phone: No Amp. Gate
Voice: Amp. Gate 245 mV
Voice: Amp. Gate 120 mV

Voice: No Amp. Gate

ApplicationsMotivation
• Data-processing requirements are dynamic

Researchers don’t know the best way to filter data;
haven’t seen such spatially dense data before.
Ambient noise changes with environmental conditions.
Placement of a sensor affects its response to stimulation.

• The physical environment is unpredictable
Climatic and physical variation affects RF availability
Deployment density affects link availability, contention,
and network congestion.

• Capturing high-rate phenomena requires
calibrated node-local in-network filtering
Each node produces lots of data and best effort collection
leads to collisions and significant data loss.

Approach
• Application life-cycle oscillates between

efficiency and experimentation phases
For calibration, hypothesis tests, and pattern searches,
it’s best to collect representative waveforms to masters.
Given bandwidth limitations, best to transfer data
processing to sensor nodes to return as much
interesting information as possible.

• Vango components
Filters to measure, transform, and interpret data.
Simple way to connect filters (linearly) across
platforms to serve an application task.
Control mechanism to activate and configure
processing on the mote or master tier, depending on
current application phase.

• Auricle (acoustics)
Improving application performance requires
balancing user-specific data filtering with
bandwidth availability.

• Neuromote (neural signals)
Runs with same Vango software as acoustics.

Neural signal from a living mouse
4 8 12 16 20 24 28 32

Waveform
Characterization

Time [ms]

Data

Control

USB
Interface

to PC

oror
i686 µServer

12-bit
ADC

TelosB
mote

Bio-
Interface

Amplifier and
Microphone

+

	Programming and Architecting Embedded Networked Systems

