Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Conformal Ultrathin Film Metal–Organic Framework Analogues: Characterization of Growth, Porosity, and Electronic Transport

Abstract

Thin-film formation and transport properties of two copper-paddlewheel metal-organic framework (MOF) -based systems (MOF-14 and MOF-399) are investigated for their potential integration into electrochemical device architectures. Thin-film analogs of these two systems are fabricated by the sequential, alternating, solution-phase deposition of the inorganic and organic ligand precursors that result in conformal films via van der Merwe-like growth. Atomic force microscopy reveals smooth film morphologies with surface roughnesses determined by the underlying substrates and linear film growth of 1.4 and 2.2 nm per layer for the MOF-14 and MOF-399 systems, respectively. Electrochemical impedance spectroscopy is used to evaluate the electronic transport properties of the thin films, finding that the MOF-14 analog films demonstrate low electronic conductivity, while MOF-399 analog films are electronically insulating. The intrinsic porosities of these ultrathin MOF analog films are confirmed by cyclic voltammetry redox probe characterization using ferrocene. Larger peak currents are observed for MOF-399 analog films compared to MOF-14 analog films, which is consistent with the larger pores of MOF-399. The layer-by-layer deposition of these systems provides a promising route to incorporate MOFs as thin films with nanoscale thickness control and low surface roughness for electrochemical devices.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View