Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Synergistic Porosity and Charge Effects in a Supramolecular Porphyrin Cage Promote Efficient Photocatalytic CO2 Reduction**

Abstract

We present a supramolecular approach to catalyzing photochemical CO2 reduction through second-sphere porosity and charge effects. An iron porphyrin box (PB) bearing 24 cationic groups, FePB-2(P), was made via post-synthetic modification of an alkyne-functionalized supramolecular synthon. FePB-2(P) promotes the photochemical CO2 reduction reaction (CO2 RR) with 97 % selectivity for CO product, achieving turnover numbers (TON) exceeding 7000 and initial turnover frequencies (TOFmax ) reaching 1400 min-1 . The cooperativity between porosity and charge results in a 41-fold increase in activity relative to the parent Fe tetraphenylporphyrin (FeTPP) catalyst, which is far greater than analogs that augment catalysis through porosity (FePB-3(N), 4-fold increase) or charge (Fe p-tetramethylanilinium porphyrin (Fe-p-TMA), 6-fold increase) alone. This work establishes that synergistic pendants in the secondary coordination sphere can be leveraged as a design element to augment catalysis at primary active sites within confined spaces.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View